

Introduction: Classical Cryptography

Guevara Noubir

http://www.ccs.neu.edu/home/noubir/Courses/CSG252/F04

Textbook: "Cryptography: Theory and Applications",

Douglas Stinson, Chapman & Hall/CRC Press, 2002

Reading: Chapter 1

Definition of Cryptosystem

Definition:

- A cryptosystem is a five-tuple (P, C, K, E, D) s.t. the following conditions are satisfied:
 - 1. Pis a finite set of possible plaintexts
 - 2. Cis a finite set of possible ciphertexts
 - 3. *K*, the keyspace, is a finite set of possible *keys*
 - 4. For each key k, there exists an encryption rule $e_k \in E$, and decryption rule $d_k \in E$ s.t. $d_k(e_k) = Identity$
- Encoding a message:
 - $X = X_1 X_2 \dots X_n \rightarrow Y = X_1 X_2 \dots X_n = e_k(X_1) e_k(X_2) \dots e_k(X_n)$
- Note:
 - Each encryption function has to be injective

Fall'04: CSG252

Classical Cryptography

Review of Basics of Modular Arithmetic

- Congruence:
 - a, b: integers; m: positive integer
 - $a \equiv b \mod m$ iff m divides a-b
 - a is said to be congruent to b mod m
 - Example: $101 \equiv 3 \mod 7$
 - Arithmetic modulo m:
 - $Z_m = \{0, 1, ..., m-1\}; +, x \text{ operations}$
 - Addition is closed
 - 2. Addition is commutative
 - 3. Addition is associative
 - 4. 0 is an additive identity
 - 5. Additive inverse of a is m-a 6. Multiplication is closed
 - 7. Multiplication is commutative
 - 8. Multiplication is associative
 - 9. 1 is a multiplicative identity
 - 10. The distributive property is satisfied
 - $\begin{array}{l} \text{1--5} \Rightarrow Z_m \text{ is an abelian group} \\ \text{1--10} \Rightarrow Z_m \text{ is a ring} \end{array}$
- Other examples of rings: ...

Fall'04: CSG252

Classical Cryptography

Shift Cipher

- $P = C = K = Z_{26}$
- $e_k(x) = (x+k) \mod 26$
- $d_k(x) = (x-k) \mod 26$
- Example:
 - k = 3 is often called *Caesar Cipher*
- Alphabet encoding:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Fall'04: CSG252

Classical Cryptography

5

Desired Properties of Cryptosystems

- Encryption and Decryption function can be efficiently computed
- Given a ciphertext y, it should be "difficult" for an opponent to identify the encryption key k, and the plaintext x
- How about the security of the shift cipher?
- Example:
- Average time to identify the encryption key?
- Conclusion about the key space?

Fall'04: CSG252

Classical Cryptography

Substitution Cipher

- Definition:
 - $P = C = Z_{26}$
 - K: set of all possible permutations of the P
 - $\bullet \quad e_{\pi}(x) = \pi(x)$
 - $d_{\pi}(y) = ?$
- Example:

а	b	C	d	е	f	g	h	i	j	k	ı	m	n	0	р	q	r	S	t	u	>	w	х	у	z
Р	Υ	F	R	Z	Α	L	٧	Е	М	В	Q	Η	U	С	0	S	G	W	Ι	N	D	Т	K	J	Χ

- Key Space:
 - |K| = ?

Fall'04: CSG252

Classical Cryptography

7

Affine Cipher

- $e(x) = (ax + b) \mod 26$
- Conditions on (*a*, *b*)?
- Examples:
 - (a, b) = (2, 5)
 - \bullet (a, b) = (3, 5)

Fall'04: CSG252

Classical Cryptography

Affine Cipher

Theorem:

The congruence ax ≡ b (mod m) has a unique solution x ∈ Z_m iff gcd(a, m) = 1

Definition:

- For a>1, $m \ge 2$, if gcd(a, m) = 1 then a and m are said to be relatively prime (co-prime).
- The number of integers in Z_m that are relatively prime to m is denoted by $\phi(m)$: Euler phi-function (a.k.a totient function).

Fall'04: CSG252

Classical Cryptography

9

Affine Cipher

- If $m = p_1^{e1} p_2^{e2} p_n^{en} \Rightarrow \phi(m) = (p_1^{e1} p_1^{e1-1})...(p_n^{en} p_n^{en-1})$ where p_i 's are distinct primes and the e_i 's are strictly positive integers
- Corollary:
 - The key space of affine ciphers is: mφ(m)
- Definition:
 - For a $\in Z_m$, we denote by a⁻¹ the multiplicative inverse of a s.t. a⁻¹ $\in Z_m$ and a a⁻¹ \equiv a⁻¹a \equiv 1 mod m
- Theorem:
 - a has an inverse iff gcd(a, m) = 1
 - If m is prime every element of Z_m has an inverse and Z_m is called a field

Fall'04: CSG252

Classical Cryptography

Affine Cipher

- Definition:
 - $P = C = Z_{26}$
 - $K = \{(a, b) \in Z_{26} \times Z_{26} : gcd(a, 26) = 1\}$
 - For $k = (a, b) \in K$
 - $e_k(x) = (ax+b) \mod m$
 - $d_k(y) = ?$
- Example:
 - k = (7, 3)

Fall'04: CSG252

Classical Cryptography

11

Vigenère Cipher

- Monoalphabetic cryptosystems:
 - For a given key: each alphabetic character is mapped to a unique alphabetic Character
 - E.g., shift cipher, substitution cipher, affine cipher
- Polyalphabetic crypotosystems
- Vigenere cipher
 - m: positive integer; $P = C = K = (Z_{26})^m$
 - For $k = (k_1, k_2, ..., k_m)$:
 - $e_k(x_1, ..., x_m) = (x_1+k_1, ..., x_m+k_m)$
 - $\mathbf{d}_{k}(y_{1}, ..., y_{m}) = (y_{1}-k_{1}, ..., y_{m}-k_{m})$
- Key space:

Fall'04: CSG252

Classical Cryptography

Hill Cipher

- $m \ge 2$ positive integer; $P = C = (Z_{26})^m$
- Idea: take m linear combinations of the m alphabetic characters of the plaintext
- Example: $k = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix}$
- Condition?

Fall'04: CSG252

Classical Cryptography

13

Hill Cipher

- Definition:
 - m: positive integer; $P = C = (Z_{26})^m$
 - $K = \{m \times m \text{ invertible matrices over } Z_{26}\}$
 - $\bullet e_k(x) = xk$
 - $d_k(y) = yk^1$
- $k^1 = ?$
- det k = ?

Fall'04: CSG252

Classical Cryptography

Permutation Cipher

- Definition:
 - m: positive integer; $P = C = (Z_{26})^m$
 - $K = {\pi: permutation of {1...m}}$
 - \bullet $e_k(x_1, ..., x_m) = (x_{\pi(1)}, ..., x_{\pi(m)})$
 - $d_k(y_1, ..., y_m) = (y_{\pi^{-1}(1)}, ..., y_{\pi^{-1}(m)})$
- Example:
- Permutation matrix and it's inverse

Fall'04: CSG252

Classical Cryptography

15

Stream Ciphers

- Stream Ciphers:
 - Generate a Keystream: $z = z_1 z_2 ...$
 - Encryption: $y = y_1 y_2 ... = e_{z1}(x_1) e_{z2}(x_2) ...$
- Synchronous Stream Cipher:
 - Keystream does not depend on the plaintext
- Definition of Synchronous Stream Cipher
 - A tuple (P, C, K, L, E, D), and a function g s.t.:
 - P (resp. C): finite set of possible plaintexts (resp. ciphertexts)
 - K: keyspace (finite set of possible keys)
 - L: finite set called keystream alphabet
 - g: keystream generator s.t. $g(k) = z_1 z_2 ...$ where $z_i \in L$
 - $\forall z \in L \exists e_z \in E, d_z \in D \text{ s.t. } d_z^{\circ} e_z = Id$
- Example: Vigenere Cipher as a synchronous stream cipher

Fall'04: CSG252

Classical Cryptography

Stream Ciphers (Cont.)

- Periodic Stream Cipher with period d iff:
 - $\forall i \ge 1 \ z_{i+d} = z_i$
- Example:
 - Vigenere Cipher with keyword length *m* is a periodic stream cipher with period m
- Stream ciphers usually have $L = Z_2$:
 - $e_z(x) = (x+z) \mod 2$
 - $d_{7}(x) = ?$

Fall'04: CSG252

Classical Cryptography

17

Stream Ciphers: LFSR

- $c_j \in Z_2$, and initializing the registers with k_1 , k_2 , k_m
- Properties:
 - Linearity (linear combination of previous terms)
 - Degree *m* (depends only on the previous *m* terms)

 - Key is: (k₁, k₂, ..., k_m, c₀, c₁, ..., c_{m-1})
 (k₁, k₂, ..., k_m) should be different from (0, 0, ..., 0)
 If (c₀, c₁, ..., c_{m-1}) is carefully chosen and (k₁, k₂, ..., k_m) ≠ 0 then the period of the keystream is 2^m-1
- Example: m=4, $(c_0, c_1, c_2, c_3) = (1, 1, 0, 0)$
- Advantages of LFSR: easy to implement in HW,

Fall'04: CSG252

Classical Cryptography

Non-Synchronous Stream Cipher

- Example: Autokey Cipher
 - $P = C = K = L = Z_{26}$
 - $z_1 = k$; $z_i = x_{i-1}$ (for all i > 1)
 - $e_{7}(x) = (x+z) \mod 26$
 - $d_z(y) = (y-z) \mod 26$
- Drawback?

Fall'04: CSG252

Classical Cryptography

19

Cryptanalysis

- The opponent knows the cryptosystem being used (no security through obscurity)
- Definition of attack models:
 - Ciphertext only attack
 - Known plaintext attack
 - Chosen plaintext attack
 - Chosen ciphertext attack
- Objective of the opponent:
 - Identify the secret key

Fall'04: CSG252

Classical Cryptography

Statistical Cryptanalysis

Context:

- Cipher-text only attack
- Plaintext ordinary English (no punctuation, space)
- Letters' probabilities (Beker and Piper):
 - A: 0.082, B: 0.015, C: 0.028, ...
 - E: 0.120; T, A, O, I, N, S, H, R: [0.06, 0.09]; D, L: 0.04; C, U, M, W, F, G, Y, P, B: [0.015, 0.028]
 - V, K, J, X, Q, Z: < [0.01]
 - 30 most common digrams: TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF
 - 12 most common trigrams: THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH

Fall'04: CSG252

Classical Cryptography

21

Cryptanalysis of the Affine Cipher

- Ciphertext (57 characters)= FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDKAPRK DLYEVLRHHRH
- Occurences:
 - R:8; D:7; E, H, K:5, F, S, V:4
- First guess: R: e; D: t
 - 4a + b = 17; $19a + b = 3 \Rightarrow (a, b) = (6, 19)$ but gcd(a, 26) = 2 > 1 illegal!
- Second guess: R: e; E: t ⇒ a=13 illegal!
- Third guess: R: e; H: t ⇒ illegal!
- Fourth guess: R:e; K: $t \Rightarrow (a, b) = (3, 5)$
 - Results in plaintext = algorithmsarequitegeneraldefinitionsofarithmeticprocesses

Fall'04: CSG252

Classical Cryptography

Cryptanalysis of the Substitution Cipher

- Identify possible encryption of e (most common letter)
 - t, a, o, i, n, s, h, r: will probably be difficult to differentiate
- Identify possible digrams starting/finishing with e: -e and e-
- Use trigrams

Fall'04: CSG252

Classical Cryptography

23

Cryptanalysis of the Vigenère Cipher

- First step: identify the keyword length (m)
- Kasiski test [Kasiski 1863, Babbage 1854]:
 - Observation:
 - two *identical* segments of plaintext are encrypted to the *same* ciphertext if they are δ positions apart s.t. δ = 0 mod m
 - Test:
 - Find all identical segments of length > 3 and record the distance between them: δ_1 , δ_2 , ...
 - m divides $gcd(\delta_1, \delta_2, ...)$

Fall'04: CSG252

Classical Cryptography

Index of Coincidence to Find keyword Length

- Index of coincidence:
 - $x = x_1x_2 ... x_n$; $I_c(x)$ is the probability that two random elements of x are identical Let f_0 , f_1 , ..., f_{26} be the number of occurrences of A, B, ..., Z in the string x

$$I_c(x) = \frac{\sum_{i=0}^{25} {f_i \choose 2}}{{n \choose 2}} = \frac{\sum_{i=0}^{25} f_i (f_i - 1)}{n(n-1)}$$

- If x is a string of English text:
- For a mono-alphabetic cipher $I_c(x)$ is unchanged $I_c(x) \approx \sum_{i=0}^{25} p_i^2 = 0.065$
- Try m = 1, 2, ...

 - Decompose y in substrings: $y_1y_{m+1}y_{2m+1}...$; $y_2y_{m+2}y_{2m+2}...$; ...

 If for all substrings: I_c is close to 0.065 then m might be the length If wrong m, then $I_c \approx 26 / 26^2 = 0.038$

Fall'04: CSG252

Classical Cryptography

25

Cryptanalysis of the Vigenère Cipher (Cont.)

- Given the keyword length, each substring:
 - Length: n'=n/m
 - Encrypted by a shift: k
 - Probability distribution of letters: f₀/n', f₁/n', ..., f₂₅/n'
- Therefore:
 - f_k/n' , f_{k+1}/n' , ..., f_{k+25}/n' should be close to $p_{0,...}$, p_{25}
 - Let: $M_g = \sum_{i=0}^{25} p_0 f_{g+i}$
 - If g = k, $M_q \approx 0.065$
 - If $g \neq k$, M_q significantly smaller then 0.065

Fall'04: CSG252

Classical Cryptography

Cryptanalysis of the Hill Cipher

- More difficult to break with cipher-text only
- Easy with known plaintext
- Goal: Find secret Matrix K
- Assumption:
 - Known: *m*
 - Known: *m* distinct plaintext-ciphertext pairs:
 - $(x_i, y_i = e(x_i))$

$$\mathbf{x}_{i} = (\mathbf{x}_{1i}, ..., \mathbf{x}_{mi}); \mathbf{y}_{i} = (\mathbf{y}_{1i}, ..., \mathbf{y}_{mi}) : \mathbf{y}_{i} = \mathbf{x}_{i} \mathbf{K}$$

- $x_i = (x_{1i}, ..., x_{mi}); y_i = (y_{1i}, ..., y_{mi}) : y_i = x_i K$ Define: Y s.t. rows are y_i (similarly X)
- Y = XK
- If X is invertible \Rightarrow K = X⁻¹Y
- What if X is not invertible?

Fall'04: CSG252

Classical Cryptography

Cryptanalysis of the Hill Cipher

- m = 2;
- Plaintext: *friday*
- Ciphertext: PQCFKU

$$X = \begin{pmatrix} 5 & 17 \\ 8 & 3 \end{pmatrix}; Y = \begin{pmatrix} 15 & 16 \\ 2 & 5 \end{pmatrix}$$
$$K = X^{-1}Y = \begin{pmatrix} 9 & 1 \\ 2 & 15 \end{pmatrix} \begin{pmatrix} 15 & 16 \\ 2 & 5 \end{pmatrix}$$

$$K = \begin{pmatrix} 7 & 19 \\ 8 & 3 \end{pmatrix}$$

Can be verified using the third plaintext-ciphertext pair

Fall'04: CSG252

Classical Cryptography

- Known-plaintext attack with known m
 - Given: x₁, ..., x_n and y₁, ..., y_n
- $\bullet \quad \text{Need to compute } c_0, \, ..., \, c_{\text{m-1}}$
 - x_1 , ..., x_n and y_1 , ..., y_n allow us to compute z_1 , ..., z_n
- If $n \ge 2m$ we can obtain m linear equations with m unknowns using:

$$z_{i+m} = \sum_{j=0}^{m-1} c_j z_{i+j}$$

Fall'04: CSG252

Classical Cryptography