College of Computer and Information Science Northeastern University CSG252: Cryptography and Communication Security

=

Problem Set 1 (due September 27, 2004)

Due in class before start of lecture

Problem 1 [20 points]:

(a) Evaluate the following:

- 4657 mod 13 =
- (-4657) mod 13 =
- $3^{64} \mod 19$ Notice that $64 = 2^6$.
- $3^{68} \mod 19$ = Notice that $68 = 2^6 + 4$.
- (b) Devise an efficient algorithm for computing a^b mod c, where a, b, and c, are positive integers. Use the binary encoding b₁b₂...b_n for b.

Problem 2 [20 points]:

Textbook problem 1.29, page 43.

Problem 3 [20 points]:

Textbook problem 1.22, page 41.

Problem 4 [20 points]:

Textbook problem 1.25, page 42.

Problem 5 [20 points]:

Theorem 2.1 (page 9) states that if the prime power factorization of a number is $m = \prod_{i=1}^{n} p_i^{e_i}$, where p_i 's are distinct primes and $e_i > 0$, then the number of integers in Z_m

that are relatively prime with *m* is: $\phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_{i-1}})$.

In class I have shown this theorem for m that is a power of a prime. Prove this theorem for the general case.