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Network Security: the Evolution 

•  The early days 
–  Internet security 

•  Ad hoc mechanisms, obfuscation, little cryptography, 
address based authentication, firewalls, proprietary 
protocols 

•  Applications: telnet, rlogin (.rhosts), smtp, dns, tcp, arp 
– Cryptography 

•  Specialized and sensitive applications, proprietary 

•  Evolution: cryptography became pervasive 
– TLS/SSL (Web, VPN, WiFi), IPSec, DNSSEC, PGP, 

DKIM, Kerberos, Tor/Hidden Services, Bitcoin 
– Malicious: FLAME, Cryptolocker, Silk road  
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Cryptography is not a Panacea 
•   Secure building block are essential but not 

sufficient: integration, usability challenges 
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Outline 
•  Basics of cryptography: basics & best practices 

–  Secret Key Cryptography (symmetric crypto) 
–  Modes of Operation of Encryption Algorithms 
–  Hashing and Message Authentication Codes 
–  Public Key Algorithms (asymmetric crypto) 
–  Cryptographic Pseudo Random Numbers Generation 

•  Overview of applications across the network stack 

•  Recent misuse of the basics 
–  Android Apps, Adobe passwords leaks, Blizzard, PGP 

•  Systems, Standards 
–  TLS/SSL overview, vulnerabilities, and misuse (e.g., WPA-Enterprise) 

•  Emerging trend of malicious use of cryptography 
–  Worms, Ransomware 

•  Privacy 
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Cryptography & Network Security 
•  Cryptography provides the key building blocks for many 

network security services 

•  Network Security services 
–  Authentication, Confidentiality, Integrity, Access control, Non-

Repudiation, Availability, Key Management, Audit 

•  Cryptographic algorithms (building blocks) 
–  Encryption:  

•  Symmetric Encryption (e.g., AES), Asymmetric Encryption (e.g., RSA, El-Gamal) 
–  Hashing functions 
–  Message Authentication Code (e.g., HMAC + SHA1) 
–  Digital Signature functions (e.g., RSA, El-Gamal) 
–  Cryptographic Pseudo Random Numbers Generation 
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Terminology & Services 



Terminology 
•  Network security services  

–  Authentication, confidentiality, integrity, access control, non-
repudiation, availability, key management, auditing 

•  Security attacks 
–  Passive, active 

•  Cryptography models 
–  Symmetric (secret key), asymmetric (public key) 

•  Cryptanalysis 
–  Ciphertext only, known plaintext, chosen plaintext, chosen 

ciphertext, chosen text 
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Network Security Services 
X.800, RFC 2828 

•  Authentication:   
–  assures the recipient of a message the authenticity of the claimed source 

•  Confidentiality:   
–  protects against unauthorized release of message content 

•  Integrity:   
–  guarantees that a message is received as sent (modifications are detected) 

•  Access control:   
–  limits the access to authorized users 

•  Non-repudiation:   
–  protects against sender/receiver denying sending/receiving a message 

•  Availability: 
–  guarantees that the system services are always available when needed 

•  Security audit: 
–  keeps track of transactions for later use (diagnostic, alarms…) 

•  Key management:  
–  allows to negotiate, setup and maintain keys between communicating entities 
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Network Security Attacks 

•  Kent’s classification 
–  Passive attacks: 

•  Release of message content 
•  Traffic analysis 

–  Active attacks: 
•  Masquerade 
•  Replay 
•  Modification of message 
•  Denial of service 

•  Security attacks 
–  Interception (confidentiality) 
–  Interruption (availability) 
–  Modification (integrity) 
–  Fabrication (authenticity) 
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Kerchoff’s Principle 

•  The cipher should be secure even if the 
intruder knows all the details of the 
encryption process except for the secret key 

•  “No security by obscurity” 
– Examples of system that did not follow this 

rule and failed? 
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Securing Networks 

•  Where to put the 
security in a 
protocol stack? 

•  Practical 
considerations: 
–  End to end 

security 
–  No modification 

to OS 

G. Noubir 11 

Link Layer 
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(spread-Spectrum, quantum crypto, etc.) 
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Encryption 



Encrypted Communication 

•  Basic Goal: 
–  Allow two entities (e.g., Alice, and Bob) to communicate over 

an insecure channel, such that an opponent (e.g., Oscar) 
cannot understand what is being communicated 
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Encryption Algorithms Types 
•  Block vs. Stream ciphers 
– Block ciphers:  
•  Input: block of n bits ; Output: block of n bits 
•  Example: AES 

– Stream ciphers:  
•  Input: stream of symbols ; Output: stream of symbols 
•  Examples: RC4, GSM A5, SNOW 3G 

– Block ciphers can be used to build stream ciphers 
(under some assumptions) 
•  Examples: AES-CBC 
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Encryption Models 
•  Symmetric encryption (conventional encryption) 

–  Encryption Key = Decryption Key 
–  i.e., Decryption key can be derived from encryption key 
–  e.g., AES, DES, FEAL, IDEA, BLOWFISH 

•  Asymmetric encryption 
–  Encryption Key ≠ Decryption Key 
–  i.e., Decryption key cannot be derived from encryption key 
–  e.g., RSA, Diffie-Hellman, ElGamal  
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Encryption Models 
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Symmetric vs. Asymmetric Algorithms 

•  Symmetric algorithms are much faster  
–  In the order of a 1000 times faster 

•  Symmetric algorithms require a shared secret 
–  Impractical if the communicating entities don’t have another secure 

channel 

•  Both algorithms are combined to provide practical and 
efficient secure communication 
–  E.g., establish a secret session key using asymmetric crypto and use 

symmetric crypto for encrypting the traffic PGP, TLS/SSL, IKE 
•  Try it using openssl!
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Attacks on Encrypted Messages 
•  Ciphertext only:  

–  encryption algorithm, ciphertext to be decoded 
•  Known plaintext: 

–  encryption algorithm, ciphertext to be decoded, pairs of (plaintext, ciphertext) 
•  Chosen plaintext: 

–  encryption algorithm, ciphertext to be decoded, plaintext (chosen by 
cryptanalyst) + corresponding ciphertext 

•  Chosen ciphertext: 
–  encryption algorithm, ciphertext to be decoded, ciphertext (chosen by 

cryptanalyst) + corresponding plaintext 
•  Chosen text: 

–  encryption algorithm, ciphertext to be decoded, plaintext + corresponding 
ciphertext (both can be chosen by attacker) 

•  Modern cryptography: better models (Game-based / 
indistinguishability proofs) 
–  IND-CPA, etc. 
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Secret Key Cryptography 



Examples of Symmetric  
Encryption Algorithms 

•  Advances Encryption Algorithm (AES) 
– Block size: 128 bits 
– Key size:128/192/256 

•  Data Encryption Standard (DES) – not secure 
– Block size: 64 bits 
– Key size: 56 bits 

•  DES is not recommended (broken) 
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Encryption Modes  
I. Electronic Codebook (ECB) 
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Encryption Modes:  
II. Cipher Block Chaining (CBC) 
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ECB vs. CBC 
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Plaintext ECB Mode Encryption CBC Mode Encryption 

Source: wikipedia 



Encryption Modes:  
III. Cipher Feedback (CFB) 
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Encryption Modes:  
IV. Output Feedback (OFB) 
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Encryption Modes:  
V. Counter (CTR) 

•  Similar to OFB but encrypts counter value 
rather than any feedback value 

•  Must have a different key & counter value 
for every plaintext block (never reused) 
Oi = EncryptK1(i) 
Ci = Pi XOR Oi  

•  Uses: high-speed network encryptions, 
random access to files 
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Galois Counter Mode 
•  Extension of Counter Mode to provide 

Integrity protection 

Used in IEEE802.1ad, 
IPSec, TLS, SSH, etc. 

Intel added instructions  
for GF multiplications  
in 2010 (PCLMULQDQ) 
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Hashing Functions 



Hashing Functions and Message Digests 

•  Goal: 
–  Input: long message 
–  Output: short block (called hash or message digest) 
–  Desired properties:  

•  Pre-image: Given a hash h it is computationally infeasible to find a message that 
produces h 

•  Second preimage 
•  Collisions 

•  Examples: http://www.slavasoft.com/quickhash/links.htm 
–  Recommended Hash Algorithm are SHA-2, SHA-3 by NIST 

•  SHA-1 theoretical attacks but still OK for now 
–  MD2, MD4, and MD5 by Ron Rivest [RFC1319, 1320, 1321] 
–  SHA-1: output 160 bits being phased out 
–  SHA-2: output 224-256-384-512 believed more secure than others 
–  SHA-3: output 224-256-384-512 (+ variable length mode) 

 http://csrc.nist.gov/groups/ST/hash/timeline.html 
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Birthday Attacks 
•  Is a 64-bit hash secure? 

–  Brute force: 1ns per hash => 1013 seconds over 300 thousand years 
•  But by Birthday Paradox it is not 
•  Example: what is the probability that at least two people out of 23 have 

the same birthday? P > 0.5 
•  Birthday attack technique 

–  opponent generates 2m/2 variations of a valid message all with essentially the 
same meaning 

–  opponent also generates 2m/2 variations of a desired fraudulent message 
–  two sets of messages are compared to find pair with same hash (probability > 

0.5 by birthday paradox) 
–  have user sign the valid message, then substitute the forgery which will have 

a valid signature 
•  Need to use larger MACs 

G. Noubir 30 



Message Digest 5 (MD5)  
by R. Rivest [RFC1321] 

•  Input: message of arbitrary length 
•  Output: 128-bit hash 
•  Message is processed in blocks of 512 bits (padding if necessary) 
•  Security: not recommended 

–  Designed to resist to the Birthday attack 
–  Collisions where found in MD5, SHA-0, and almost found for SHA-1 
–  Near-Collisions of SHA-0, Eli Biham, Rafi Chen, Proceedings of Crypto 

2004, http://www.cs.technion.ac.il/~biham/publications.html 
–    Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD, 

Xiaoyun Wang and Dengguo Feng and Xuejia Lai and Hongbo Yu, 
http://eprint.iacr.org/2004/199.pdf 

–  MD5 considered harmful today: creating a rogue CA certificate, 
Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, 
David Molnar, Dag Arne Osvik, Benne de Weger, December 30, 2008 

–  Same attack as part of Flame malware 2012 
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Applications of Hashing Functions 

•  Authentication 

•  Encryption 

•  Message Authentication Codes 
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Message Authentication Code (MAC) 
Using an Encryption Algorithm 

•  Also called Message Integrity Code (MIC) 
•  Goal:  

–  Detect any modification or forgery of the content by an attacker 
•  Some techniques: 

–  Simple techniques have flaws 
–  Use CBC mode, send only the last block (residue) along with the plaintext 

message 
–  For confidentiality + integrity:  

•  Use two keys (one for CBC encryption and one for CBC residue computation) 
•  Append a cryptographic hash to the message before CBC encryption 

–  Best practice technique: 
•  Use a Nested MAC technique such as HMAC for integrity only 
•  Use Galois Counter Mode (GCM) for confidentiality + MAC 
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HMAC 
•  HMACK(x) = SHA-3((K⊕opad) | SHA-3((K⊕ipad)|x)) 

–  ipad = 3636…36; opad = 5C5C…5C 

•  HMAC can be combined with any hashing function 
•  Proven to be secure under some assumptions… 

–  HMAC is a pseudo random function family (PRF) if the compression function 
underlying the hashing function is PRF 
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Public Key Systems 
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Asymmetric cryptosystems 

•  Invented by Diffie and Hellman [DH76], and Merkle 
–  When DES was proposed for standardization 

•  Asymmetric systems are much slower than the symmetric 
ones (~1000 times) 

•  Advantages: 
–  does not require a shared key 
–  simpler security architecture (no-need to a trusted third party) 
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Modular Arithmetic 

•  Modular addition: 
– E.g., 3 + 5 = 1 mod 7 

•  Modular multiplication: 
– E.g., 3 * 4 = 5 mod 7 

•  Modular exponentiation: 
– E.g., 33 = 6 mod 7 

•  Group, Rings, Finite/Galois Fields … 
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Basic RSA Cryptosystem [RSA78] 

•  E(M) = Me mod n = C  (Encryption) 
•  D(C) = Cd mod n = M  (Decryption) 

•  RSA parameters and basic (not secure) operations: 
– p, q, two big prime numbers   (private, chosen) 
– n = pq, φ(n) = (p-1)(q-1)   (public, calculated) 
–  e, with gcd(φ(n), e) = 1,  1<e<φ(n)  (public, chosen) 
– d = e-1 mod φ(n)   (private, calculated) 

•  D(E(M)) = Med mod n = Mkφ(n)+1 = M  (Euler’s theorem) 
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Example of RSA 
•  Keys generation: 
– p = 5; q = 11 => n =  
–  e = 3 => d = 27 

•  Because ed = 1 mod (p-1)(q-1) 
– Public key: (e, n); Private Key: (d, n) 

•  Encryption 
– M = 2 
– Encryption(M) = Me mod n = 8 
– Decryption(8) = 8d mod n = 2  

•  Typical value e = 216+1, p & q 1000 bits 
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Prime Numbers Generation 
•  Density of primes (prime number theorem): 

–   π(x) ~ x/ln(x) 
•  Sieve of Erathostène 

–  Try if any number less than SQRT(n) divides n 
•  Based on Fermat’s Little Theorem but does not detect Carmichael numbers 

–  bn-1 = 1 mod n  [if there exists b s.t. gcd(b, n) = 1 and bn-1 ≠ 1 mod n  then n does not 
pass Fermat’s test for half b’s relatively prime with n] 

•  Solovay-Strassen primality test 
–  If n is not prime at least 50% of b fail to satisfy the following:  

•  b(n-1)/2 = J(b, n) mod n 

•  Rabin-Miller primality test 
–  If n is not prime then it is not pseudoprime to at least 75% of b<n: 

•  Pseudoprime: n-1 = 2st, bt = ±1 mod n  OR bt2r = -1 mod n for some r<s 
–  Probabilistic test, deterministic if the Generalized Riemann Hypothesis is true 

•  Deterministic polynomial time primality test [Agrawal, Kayal, Saxena’2002] 
G. Noubir 40 



Use of RSA 
•  Encryption (A wants to send a message to B): 

–  A uses the public key of B and encrypts M (i.e., EB(M)) 
–  Since only B has the private key, only B can decrypt M  

 (i.e., M = DB(M)  

•  Digital signature (A want to send a signed message to B): 
–  Based on the fact that EA(DA(M)) = DA(EA(M)) 
–  A encrypts M using its private key (i.e., DA(M)) and sends it to B 
–  B can check that EA(DA(M))  = M 
–  Since only A has the decryption key, only can generate this message 
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Flaws in using Textbook RSA 
•  If message has low entropy  
–  If M ∈ {0, 1}  ⇒ easy to guess 
–  If M is a random 64 bit whp M = M1 x M2  the 

adversary can do a meet in the middle attack 

⇒  Importance of standards for best practices in 
using RSA and cryptography in general 
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Ciphertext Indistinguishability 
•  Indistinguishable Chosen Plaintext Attack (IND-CPA) 

–  Probabilistic asymmetric key encryption algorithm 
–  Computational security 
–  Adversary: probabilistic polynomial time Turing machine 

•  Game 
–  Challenger generates a key pair PK, SK based on some security parameter k (e.g., a key 

size), publishes PK. The challenger retains SK. 
–  Adversary performs a polynomially bounded number of encryptions/operations 
–  Eventually, the adversary submits two chosen plaintexts M0, M1  to challenger 
–  Challenger selects a bit b uniformly random, and sends C = E(PK, Mb) to adversary 
–  The adversary is free to perform additional computations or encryptions.  
–  Finally, it outputs a guess for the value of b. 

•  Scheme is IND-CPA secure if | Prob[guessing b] – ½| < ε(k) [negligible] 

•  Similar definition for symmetric key encryption algorithms using oracles 
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Optimal Asymmetric Encryption Padding 
(OAEP) 

•   Use of RSA is standardized by several PKCS 
public key crypto standards 

•  PKCS #1 v2 (RFC2437) uses OAEP 
 
 
 
When combined with secure trapdoor one-way permutation is 
proven semantically secure under IND-CPA in Random Oracle 
model  
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Keys Establishment 



Diffie-Hellman Key Exchange 

•  Based on the difficulty of computing discrete logarithms 
•  Works also in extension Galois fields: GF(pq) 
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p: prime number, 
g: primitive element of GF(p) 

K = gxy mod p 



Attack on Diffie-Hellman 
Scheme: Public Key Integrity 

•  Need for a mean to verify the public information: certification 
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Random Number Generation (RNG) 

•  RNG is a critical building block of security services 

•  Cryptographic RNG need to be computationally unguessable by 
an adversary and are quite different from RNG for simulations 

•  Blum Blum Shub 1986 
–  xn+1= xn

2 mod M where M = pq the product of 2 large primes both 
congruent to 3 mod 4 

–  x0 co-prime with M 
–  ri = LSB(xi) 
–  Computationally reduces to the quadratic residue problem 
–  Cons: too slow 

•  Rivest RNG 
–  ri = LSB(SHA-256(secret-seed | i)) 
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Building Network Security Services 
•  Confidentiality:  

–  Use an encryption algorithm 
–  Generally an symmetric algorithm for a stream of data 

•  Integrity:  
–  MAC algorithm 

•  Access control: 
–  Use access control tables 

•  Authentication  
–  Use authentication protocols 

•  Non-repudiation 
–  Digital signatures 
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Some Examples 
•  Email 
– PGP or S/MIME: basic use of crypto 

•  Beware your mail client might be storing drafts on the 
server! 

– Anti-spam: Hashcash, DKIM  

•  DNSSEC, SSH 

•  Cryptocurrency: Bitcoin 

•  TLS/SSL  
– https, VPN, WPA-Enterprise, Tor, Hidden Services 
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Anti-Spam 
•  Current solutions: 

–  Black/white listing IP addresses (e.g., zombie computers, addresses that sent spam 
to honeypots, ISP willingly hosting spammers) 

–  Signatures/content matching rules !
–  Distributed Checksum Clearinghouse: message fuzzy checksum is sent to DCC to 

check how many times it appeared   
–  Sender Policy Framework: specify who can send email from a domain (relies on 

TXT/SPF DNS record) 
dig @8.8.8.8 neu.edu ANY 

   
–  HashCash: add header  

Example: X-Hashcash: 1:20:101130:noubir@ccs.neu.edu::HdG5s/(oiuU7Ht7b:ePa+tr5 
The counter ePa+tr5 is found such that the hash of the X-Hashcash header has its first 

20 bits = 0 
This information is found using brute force 
X-Hashcash constrains the destination email address and date => proof of work 

protects against spam replays 
ver:bits:date:resource:[ext]:rand:counter!
•  ver = 1!
•  bits = how many bits of partial-preimage the stamp is claimed to have!
•  date = YYMMDD[hhmm[ss]]!
•  resource = resource string (eg IP address, email address)!
•  ext = extension -- ignored in the current version!

–  Example of software combining these techniques: spamassassin 
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Sender MTA Authentication 
•  DomainKeys Identified Mail (DKIM RFC 4871, 2007 – RFC 6376, 2011) 

–  DomainKeys initiated by  Yahoo!, today a IETF standard DKIM 

•  The sending MTA adds a signature to the message 
–  MIME header 
–  Public key can be retrieved through DNS system 

 dig @8.8.8.8 s1024._domainkey.yahoo.com any 
 dig @8.8.8.8 gamma._domainkey.gmail.com any 

•  Example: 
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;!
        d=gmail.com; s=gamma;!

        h=domainkey-signature:mime-version:received:received:date:message-id!
         :subject:from:to:content-type;!
        bh=cvC34ODyPB/uEHubbDQQmwxZfqZboGjW5gpY4W6DuzE=;!
        b=ASsElEtXCmM/x3aL38Efnvi9xDrBdleaaBqd24f7XS49pRzhXK/7Vak9+LyLLcN89e!
         GZ7SZi7swY2xIlt3zJTiGrGif0bfQdf7LvlP12g53nczhBBRa8McBVtdK9+ImAZByg8o!
         oEM4INNjMvdhXi9MVXtntkvmsTmWitAJxZgQQ=!
DomainKey-Signature: a=rsa-sha1; c=nofws;!
        d=gmail.com; s=gamma;!
        h=mime-version:date:message-id:subject:from:to:content-type;!

        b=JFWiE0YlmWxu+Sq4OJ9Ef5k3rjbZQ51dGEyaFyvKJYR8NkoGrNoPIUq5f29ld8P0AD!
         Lg058evTVeuWxvfPQfa7K65J9AjEQt5U8d9zBKFfxRAz1h5nr7k2kCLRMnhbqVTkiOIS!
         OUfxIQeMfgbYz0ydCgerEnfGreKMQIYax+dpo= !
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Misuse of the Basics 
•  Crypto libraries are widely available 

•  Developers still lack knowledge of crypto 
basics 

•  Default black-box use leads to vulnerabilities 
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Analysis of Android Apps 
•  Android SSL support can lead to the following 

–  Trusting all certificates no matter who signed them 
–  Accepting a certificate for an arbitrary different domain 
–  1,074 potentially vulnerable apps to MITM 
–  41 out 100 selected for manual verification are vulnerable: 39M – 

185M users 
[FHMSBF’12] “Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security” CCS’2012. 

•  Misuse of Android Crypto Service Providers (15K Apps) 
–  5,656: ECB (BouncyCastle default) 
–  3,644: Constant symmetric key 
–  2,000: ECB (Explicit use) 
–  1,932: Uses constant IV 
–  1,636: Used iteration count < 1,000 for PBE 
–  1,629: Seeds SecureRandom with static data 
–  1,574: Uses static salt for PBE 

[EBFK CCS’13] “An Empirical Study of Cryptographic Misuse in Android Applications” CCS’2013. 
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Adobe Breach (October 2013) 

 
–  Passwords encrypted with 64 bits 3DES in ECB 

•  Not hashed, not salted, not in CBC, not AES  

55 Source: Naked Security G. Noubir 



Adobe Breach (October 2013) 
•   ECB, no salting  
⇒  same password results in the same hash 
⇒  combining the hints makes he guesses easy 
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Weak Pseudo-Random Number Generators 

•  Out or 4.7 million distinct 1024-bit RSA 
12,720 have a shared prime 

•  Many embedded devices 

[LHABK] “Ron was wrong, Whit is right”, IACR, 2012. 

G. Noubir 57 



TLS/SSL 
•  A closer look at the popular TLS/SSL 

•  Overview 

•  Vulnerabilities 
– Design, integration, implementation 
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General Description of SSL/TLS 
•  Terminology: 

–  SSL: Secure Socket Layer 
–  TLS: Transport Layer Security 

•  Concept: secure connections on top of TCP 
–  OS independent 
–  TCP instead of UDP 

•  Cons: Rogue packet problem 
•  Pro: SSL/TLS doesn’t have to deal with packet retransmission 

•  History: 
–  SSLv2 proposed and deployed in Netscape 1.1 (1995) 
–  PCT (Private Communications Technology) by Microsoft 
–  SSLv3: (1995) 
–  TLS proposed by the IETF based on SSLv3 but not compatible (1996) 

–  Uses patent free DH and DSS instead of RSA which patent didn’t expire yet 
–  TLS 1.2 (2008) 

–  Updated in 2011 does not allow SSLv2 
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SSL Architecture 

•  There is a Client and a Server 
•  SSL session 
–  An association between client & server 
–  Created by the Handshake Protocol 
–  Defines a set of cryptographic parameters 
–  May be shared by multiple SSL connections 

•  SSL connection 
–  A transient, peer-to-peer, communications link 
–  Associated with 1 SSL session 
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SSL/TLS Basic Protocol 

•  Basic Protocol: 
–  A -> B: I want to talk, ciphers I support, RA 
–  B -> A: certificates, cipher I choose, RB 
–  A -> B: {S}B, {keyed hash of handshake msgs} 
–  B -> A: {keyed hash of handshake msgs} 
–  A <-> B: data encrypted and integrity checked with keys derived from K 
–  Keyed hashes use K = f(S, RA, RB) 

•  SSL/TLS partitions TCP byte stream into records: 
–  A record has: header, cryptographic protection => provides a reliable encrypted, and 

integrity protected stream of octet 
–  Record types: 

•  Handshake messages 
•  Change cipher spec 
•  Application data 
•  Alerts: error messages or notification of connection closure 
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SSL/TLS Basic Protocol (Cont’d) 

•  How do you make sure that keyed hash in message 3 is 
different from B’s response? 
–  Include a constant CLNT/client finished (in SSL/TLS) for A and 

SRVR/server finished for B 

•  Keyed hash is sent encrypted and integrity protected  
–  Not necessary 

•  Keys: derived by hashing K and RA and RB 
–  3 keys in each direction: encryption, integrity and IV 
–  Write keys (to send: encrypt, integrity protect) 
–  Read keys (to receive: decrypt, integrity check) 
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What’s still missing? 

•  SSL/TLS allowed to authenticate the server 

•  How would the server authenticate the user? 
–  SSL/TLS allows clients to authenticate using certificates:  

•  B requests a certificate in message 2 
•  A sends: certificate, signature of hash of the handshake messages 
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Session Resumption 

•  Many secure connections can be derived from the session 
–  Cheap: how? 

•  Session initiation: modify message 2 
–  B -> A: session_id, certificate, cipher, RB 

•  A and B remember: (session_id, master key) 
•  To resume a session: A presents the session_id in message 1 

–  A -> B: session_id, ciphers I support, RA 

–  B -> A: session_id, cipher I choose, RB, {keyed hash of handshake msgs} 
–  A -> B: {keyed hash of handshake msgs} 
–  A <-> B: data encrypted and integrity checked with keys derived from K 
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Computing the Keys 

•  S: pre-master secret (forget it after establishing K) 

•  K= f(S, RA, RB) 

•  6 keys = gi(K, RA, RB) 

•  Rs: 32 bytes (usually the first 4 bytes are Unix time) 
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PKI in SSL 

•  Client comes configured with a list of “trusted 
organizations”: CA 

•  What happens when the server sends its certificate? 

•  When the server whishes to authenticate the client 
–  Server sends a list of CA it trusts and types of keys it can handle 

•  In SSLv3 and TLS a chain of certificates can be sent 
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Negotiating Cipher Suites 

•  A cipher suite is a complete package: 
–  (encryption algorithm, key length, integrity checksum algorithm, etc.) 

•  Cipher suites are predefined: 
–  Each assigned a unique value (contrast with IKE) 
–  SSLv2: 3 bytes, SSLv3: 2 bytes => upto 65000 combinations 

•  30 defined,  
•  256 reserved for private use: FFxx (risk of non-interoperability)  

•  Selection decision:  
–  In v3 A proposes, B chooses 
–  In v2 A proposes, B returns acceptable choices, and A chooses 

•  Suite names examples: 
–  SSL_RSA_EXPORT_WITH_DES40_CBC_SHA 
–  SSL2_RC4_128_WITH_MD5 
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Attacks fixed in v3 

•  Downgrade attack: 
–  In SSLv2 there is no integrity protection for the initial handshake 
–  Active attacker can remove strong crypto algorithm from proposed 

cipher suite by A => forcing A and B to agree on a weak cipher 
–  Fixed by adding a finished message containing a hash of previous 

messages 

•  Truncation attack: 
–  Without the finished message an attacker can send a TCP FIN 

message and close the connection without communicating nodes 
detecting it 

•  Attacks not fixed: session renegotiation, BEAST, CRIME/
BREACH… 
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SSL/TLS Detailed Protocol SSL Stack 
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SSL Record Protocol 

•  SSL Record Protocol defines these two services for SSL connections: 
–  Confidentiality 

•  Using symmetric encryption with a shared secret key defined by Handshake Protocol 
•  AES, IDEA, RC2-40, DES-40, DES, 3DES, Fortezza, RC4-40, RC4-128 
•  CBC mode (except for RC4) 
•  Message is compressed before encryption 

–  Message integrity 
•  Using a MAC with shared secret key 
•  Based on HMAC and MD5 or SHA (with a padding difference due to a typo in an early draft 

of HMAC RFC2104) 

•  Records sent after ChangeCipherSpec record are cryptographically protected 
•  Record header: 

–  [record type, version number, length] 
•  ChangeCipherSpec = 20, Alert = 21, Handshake = 22, Application_data = 23 
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SSL Change Cipher Spec Protocol 

•  One of 3 SSL-specific protocols which 
use the SSL Record Protocol 

•  Single message 
– Causes pending state to become current 
⇒ all records following this will be protected 

with the ciphers agreed upon 

G. Noubir 71 



SSL Alert Protocol 

•  Conveys SSL-related alerts to peer entity 
•  Severity 

•  warning or fatal 

•  Specific alerts 
•  Unexpected message, bad record mac, decompression 

failure, handshake failure, illegal parameter 
•  Close notify, no certificate, bad certificate, unsupported 

certificate, certificate revoked, certificate expired, 
certificate unknown 

•  Compressed & encrypted 
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SSL Handshake Protocol 

•  Allows server & client to: 
–  Authenticate each other 
–  Negotiate encryption & MAC algorithms 
–  Negotiate cryptographic keys to be used 

•  Comprises a series of messages in phases 
–  Establish Security Capabilities 
–  Server Authentication and Key Exchange 
–  Client Authentication and Key Exchange 
–  Finish 
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Handshake Messages 

•  ClientHello message: 
–  [type=1, length, version number, RA, length of session_id, session_id, length of cipher 

suite list, sequence of cipher suites, list of compression methods] 
•  ServerHello: [type=2, length, version number, RB, length of session_id, 

session_id, chosen cipher, chosen compression method] 
•  Certificate: [type=11, length, length of first certificate, first certificate, …] 
•  ServerKeyExchange: (for export: ephemeral public key) 

–  [type=12, length, length of modulus, modulus, length of exponent, exponent] 
•  CertificateRequest: [type=13, length, length of key type list, list of types of 

keys, length of CA name list, length of first CA name, 1stCA name, …] 
•  ServerHelloDone: [type=14, length=0] 
•  ClientKeyExchange: [type=16, length, encrypted pre-master secret] 
•  CertificateVerify:[type=15, length, length of signature, signature] 
•  HandshakeFinished:[type=20, length=36 (SSL) or 12 (TLS), digest] 
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SSL Handshake Protocol 
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Exportability Issues 
•  Exportable suites in SSLv2: 
–  40 secret bits out of 128 in symmetric keys 
–  512-bits RSA keys 

•  Exportability in SSLv3: 
–  Integrity keys computed the same way 
–  Encryption keys: 40 bits secret 
–  IV non-secret 
–  When a domestic server (e.g., 1024-bit RSA key) 

communicates with an external client the server 
creates an ephemeral key of 512-bits and signs it 
with it’s 1024-bit key 
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TLS (Transport Layer Security) 

•  TLS is and IETF standard similar to SSLv3 
–  RFC 2246, RFC 4346, and  RFC 5246  

•  Minor differences 
–  Record format version number 
–  HMAC for MAC 
–  Pseudo-random function to expand the secrets 
–  Additional alert codes 
–  Changes in supported ciphers 
–  Changes in certificate negotiations 
–  Changes in use of padding 
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Session Renegotiation Flaw/Attack (2009) 

•  The adversary carries a MITM 
  Client! ! ! ! ! !Attacker! ! ! ! ! ! !Server!
  ------ ! ! ! ! !------- ! ! ! ! ! ! !------!

!! ! ! ! ! ! ! !<----------- Handshake ------------>!
!! ! ! ! ! ! ! !<======= Initial Traffic ==========>!

  <-------------------------- Handshake =============================>!
  <======================== Client Traffic ==========================> 
•  Initial traffic: 

!GET /pizza?toppings=pepperoni;address=attackersaddress HTTP/1.1 !
!X-Ignore-This:!

 Note no: CR LF 
•  Client traffic 

!GET /pizza?toppings=sausage;address=victimssaddress HTTP/1.1 !
!Cookie: victimscookie!

!

•  Server sees: 
  GET /pizza?toppings=pepperoni;address=attackersaddress HTTP/1.1 !
  X-Ignore-This: GET /pizza?toppings=sausage;address=victimssaddress HTTP/1.1 !
  Cookie: victimscookie!
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OS X (2014) 
1.  static OSStatus!
2.  SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,!
3.                                   uint8_t *signature, UInt16 signatureLen)!
4.  {!
5.      OSStatus        err;!
6.  (…)!
7.      if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)!
8.          goto fail;!
9.      if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)!
10.          goto fail;!
11.      if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)!
12.          goto fail;!
13.      if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)!
14.          goto fail;!
15.          goto fail; !
16.      if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)!
17.          goto fail;!
18.   !
19.    err = sslRawVerify(ctx,!
20.                         ctx->peerPubKey,!
21.                         dataToSign,        /* plaintext */!
22.                         dataToSignLen,     /* plaintext length */!
23.                         signature,!
24.                         signatureLen);!
25.    if(err) {!
26.      sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "!
27.                      "returned %d\n", (int)err);!
28.      goto fail;!
29.    }!
30.   !
31.  fail:!
32.      SSLFreeBuffer(&signedHashes);!
33.      SSLFreeBuffer(&hashCtx);!
34.      return err;!
35.  }!
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Other Attacks 
•  BEAST (2011) 
–  Attack on CBC mode by re-injecting IVs… 

•  CRIME/BREACH 
–  Attack on compression when combined with  

•  Require attacker to be on the routing path 
–  e.g., controls Access Point 

•  Heartbleed (2014) 
–  Implementation 

•  Check: 
https://www.trustworthyinternet.org/ssl-pulse/  
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WPA-Enterprise Attacks [CKRN’12] 
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Worms: Buffer Overflow to Crypto-Based 
•  Popularized by R. Morris 1988, re-emerged in late 90s - ~2003 mostly DoS 

–  Code Red CRv1 (7/13/2001), Code Red CRv2 (7/19/2001), Code Red II (8/4/2001), 
Nimbda (9/18/2001), …  

•  MS SQL Slammer  
–  Date January 25, 2003 
–  Buffer overflow in MS SQL Server 
–  Doubled every 8.5 seconds until network collapse 
–  90% of vulnerable hosts infected in 10 minutes (75,000) 

•  Helpful worms: Welchia/Nachia worm (installs patches) 

•  Check: http://en.wikipedia.org/wiki/Timeline_of_notable_computer_viruses_and_worms 

•  Where did all the worms go? 
–  Stealthy, instrumented for financial benefits, cyber-crime, cyber-warfare targeted attacks 
–  Conficker A, B, C, D, E: since November 2008 infected 9-15 million hosts  
–  In 2009, PandaLabs analyzed 2M machines and found 6% infected 
–  Stuxnet, FLAME (2009 – 2012 see next slides) 
–  In 2013: Cryptolocker encrypts the files on a user's hard drive, and asks for a ransom 
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Zeus  
•   Trojan horse (2007 - ) 

–  Steals banking information 
–  Man-in-the-browser keystroke 

logging and Form Grabbing 
–  Spreads through drive-by 

downloads, phishing 
–  3.6M infected in the US 

•  Used sophisticated scheme to 
funnel stolen money to 
exploiters through mules 
–  More recently: Bitcoin, 

MoneyPak  

•  New versions using Tor HS 
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Stuxnet 
•  Stuxnet is a computer worm with unique 

characteristics 
– Time frame 2009-2010? 

•  Targets specific SCADA systems 
–  Supervisory Control and Data Acquisition systems 
– Control industrial systems such as power plants 

•  Stuxnets spreads slowly searching for specific 
SCADA systems and reprograms their PLC 
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How does it operate? 
•  Stuxnet uses 4 zero-day attacks as infection vectors + other bugs 

–  USB drive, print spooler, two elevation of privilege bugs 
•  Spreads slowly (to max three nodes) 
•  When spreading over the network remains local to the company 
•  Looks for a MS Windows machine with 

–  WinCC/PCS 7 Siemens Software that controls PLC 
–  Checks for Variable Frequency Drives (AC rotational speed controllers) 
–  Focuses on two vendors (Vacon & Fararo Paya) 
–  Attacks systems that run between 807-1210Hz 
–  Modifies the output frequency for a short interval of time to 1410Hz and then to 2Hz and 

then to 1064Hz 
•  Tries default/hardcoded passwords 
•  Hides existence by installing malicious drivers signed using two stolen keys 

(Realtek, JMicron) 
•  60% damage believed to be in Iran 
•  Variants: Duqu similar to Stuxnet but with different purpose 

•  Seems there was another variant that started in 2007 (stealthier, replays 
recorded physical process, propagates through contractors) 
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FLAME 
•  Perceived goal: cyber-espionage in middle east 

–  Time frame 2010 – 2012? 
–  Targets MS Windows: screenshots, network traffic, records 

audio/keyboard, skype calls, bluetooth beaconing 
–  http://www.crysys.hu/skywiper/skywiper.pdf  

•  Similar to stuxnet but more sophisticated 
–  Size: 20MB 
–  Propagates through LAN or USB stick 
–  Stealthy: identifies which anti-virus is used and avoids it e.g., 

changing files extensions 
–  5 encryption algorithms 
–  Used a fraudulent MD5-based certificate similar to rogue CA 

technique 
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Remarks 
•  Security is about the whole system 
•  Software vulnerabilities are still a major issue 
•  Crypto-based solutions are replacing ad hoc solutions 
•  Public Key Infrastructure and deployment is weak 
•  Network architecture not designed with sufficient 

security 
•  Human factor, users, passwords, policies 
•  SCADA system are vulnerable and critical 
•  Attacks are becoming more sophisticated and targeted 
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Conclusions 
•  Cryptographic provides powerful mechanisms and is 

becoming ubiquitous in systems and Apps 

•  Misuse Challenges 
–  Lack of basic understanding of building blocks 
–  Unsafe defaults 
–  Security libraries should be better scrutinized  

•  Crypto an enabled of future cybercrime 
–  Tor/HS + Bitcoin: Cryptolocker, silk road 
–  How to prevent criminal misuse? 

•  Privacy in the Era of Big Data 
–  Cryptography can play a key role: privacy-preserving services 
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Basics Reading 
•  Introduction to Modern Cryptography: Principles and Protocols 

Jonathan Katz, Yehuda Lindell, Chapman & Hall/CRC 

•  Network Security: Private Communication in a Public World 
[Chap. 2-8] 
Charles Kaufman, Mike Speciner, Radia Perlman, Prentice-Hall 

 
•  Cryptography and Network Security 

William Stallings, Prentice Hall 
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Internals of Symmetric 
Encryption Algorithms 

(auxiliary material) 
•  Unconditional security: One-Time Pad    
•  Historical ciphers 
•  DES, AES 
 



One-Time Pad 

•  Introduced by G. Vernam (AT&T, 1918), improved by J. Mauborgne 
•  Scheme: 

–  Encryption: ci = pi ⊕ ki 
–  ci :ith binary digit of plaintext, pi: plaintext, ki: key 
–  Decryption: pi = ci ⊕ ki 
–  Key is a random sequence of bits as long as the plaintext 

•  One-Time Pad is unbreakable 
–  No statistical relationship between ciphertext and plaintext 
–  Example (Vigenère One-Time Pad): 

•  Cipher:  ANKYODKYUREPFJBYOJDSPLREYIUN 
•  Plain-1 (with k1):  MR MUSTARD WITH THE CANDLE 
•  Plain-2 (with k2) :  MISS SCARLET WITH THE KNIFE!

•  Share the same long key between the sender & receiver 
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Symmetric cryptosystems 
(conventional cryptosystems) 

•  Substitution techniques: 
–  Caesar cipher 

•  Replace each letter with the letter standing x places further 
•  Example: (x = 3) 

–  plain:  meet me after the toga party!
–  cipher: phhw ph diwhu wkh wrjd sduwb!

•  Key space: 25 
•  Brut force attack: try 25 possibilities!

–  Monoalphabetic ciphers 
•  Arbitrary substitution of alphabet letters 
•  Key space: 26! > 4x1026 > key-space(DES) 
•  Attack if the nature of the plaintext is known (e.g., English text): 

–  compute the relative frequency of letters and compare it to standard 
distribution for English (e.g., E:12.7, T:9, etc.) 

–  compute the relative frequency of 2-letter combinations (e.g., TH)  
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English Letters Frequencies 
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Symmetric cryptosystems 
(Continued) 

•  Multiple-Letter Encryption (Playfair cipher) 
–  Plaintext is encrypted two-letters at a time 
–  Based on a 5x5 matrix 
–  Identification of individual diagraphs is more difficult (26x26 possibilities) 
–  A few hundred letters of ciphertext allow to recover the structure of 

plaintext (and break the system) 
–  Used during World War I & II 

•  Polyalphabetic Ciphers (Vigenère cipher) 
–  26 Caesar ciphers, each one denoted by a key letter 

•  key: !deceptivedeceptivedeceptive 
•  plain:  wearediscoveredsaveyourself!
•  cipher:  ZICVTWQNGRZGVTWAVZHCQYGLMGJ 

–  Enhancement: auto-key (key = initial||plaintext) 
•  Rotor machines: multi-round monoalphabetic substitution 

–  Used during WWII by Germany (ENIGMA) and Japan (Purple) 
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Transposition/Permutation 
Techniques 

•  Based on permuting the plaintext letters 
•  Example: rail fence technique 

mematrhtgpry!
etefeteoaat!

•  A more complex transposition scheme 
–  Key:  4312567 
–  Plain: attackp!
    ostpone!
!! !duntilt!
!! !woamxyz 
–  Cipher:  TTNAAPTMTSUOAODWCOIXKNLYPETZ 

•  Attack: letter/diagraph frequency 
•  Improvement: multiple-stage transposition !
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Today’s Block Encryption Algorithms  

•  Key size: 
–  Too short => easy to guess 

•  Block size: 
–  Too short easy to build a table by the attacker: (plaintext, ciphertext) 
–  Minimal size: 64 bits 

•  Properties:  
–  One-to-one mapping 
–  Mapping should look random to someone who doesn’t have the key 
–  Efficient to compute/reverse 

•  How:  
–  Substitution (small chunks) & permutation (long chunks) 
–  Multiple rounds 
⇒ SPN (Substitution and Permutation Networks) and variants 
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Data Encryption Standard (DES) 
•  Developed by IBM for the US government 
•  Based on Lucifer (64-bits, 128-bits key in 1971) 
•  To respond to the National Bureau of Standards 

CFP 
–  Modified characteristics (with help of the NSA): 

•  64-bits block size, 56 bits key length 
–  Concerns about trapdoors, key size, sbox structure 

•  Adopted in 1977 as the DES (FIPS PUB 46, ANSI 
X3.92) and reaffirmed in 1994 for 5 more years 

•  Replaced by AES (DES not secure today) 
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L0 R0 

Plaintext: 64 

IP 

f K1 

R2 = L1 ⊕ f(R1, K2) 

R1 = L0 ⊕ f(R0, K1) L1 = R0 

f K2 

L2 = R1 

R15 = L14 ⊕ f(R14, K15) L15 = R14 

f K16 

IP-1 
Ciphertext 

L16 = R15 R16 = L15 ⊕ f(R15, K16) 

32 32 

48 

Li = Ri-1 
Ri = Li-1 ⊕ f(Ri-1, Ki) 

DES is based on Feistel Structure 
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One DES Round 
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Li-1 Ri-1 

Ri = Li-1 ⊕ f(Ri-1, Ki) Li = Ri-1 

Expansion Permutation 

S-Box Substitution 

P-Box Permutation 

Key (56 bits) 

Shift Shift 

Compression Permutation 

Key (56 bits) 

32 32 

28 28 

48 



S-Box Substitution 

•  S-Box heart of DES security 
•  S-Box: 4x16 entry table 

–  Input 6 bits: 
•  2 bits: determine the table (1/4) 
•  4 bits: determine the table entry 

–  Output: 4 bits 
•  S-Boxes are optimized against Differential cryptanalysis 
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S-Box 1 S-Box 2 S-Box 3 S-Box 4 S-Box 5 S-Box 6 S-Box 7 S-Box 8 

32-Bit Output 



Double/Triple DES 

•  Double DES 
– Vulnerable to Meet-

in-the-Middle Attack 
[DH77] 

•  Triple DES 
– Used two keys K1 and 

K2 
– Compatible with 

simple DES (K1=K2) 
– Used in ISO 8732, 

PEM, ANS X9.17 
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Linear/Differential Cryptanalysis 
•  Differential cryptanalysis 

–  “Rediscovered” by E. Biham & A. Shamir in 1990 
–  Based on a chosen-plaintext attack: 

•  Analyze the difference between the ciphertexts of two plaintexts which have a 
known fixed difference 

•  The analysis provides information on the key 
–  8-round DES broken with 214 chosen plaintext 

–  16-round DES requires 247 chosen plaintext 
•  DES design took into account this kind of attacks 
•  Linear cryptanalysis 

–  Uses linear approximations of the DES cipher (M. Matsui 1993) 
•  IDEA first proposal (PES) was modified to resist to this kind of 

attacks 
•  GSM A3 algorithm is sensitive to this kind of attacks 

–  SIM card secret key can be recoverd => GSM cloning 
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Breaking DES 
•  Electronic Frontier Foundation built a “DES Cracking 

Machine” [1998] 
–  Attack: brute force 
–  Inputs: two ciphertext 
–  Architecture:  

•  PC 
•  array of custom chips that can compute DES  

24 search units/chip x 64chips/board x 27 boards 
–  Power: 

•  searches 92 billion keys per second 
•  takes 4.5 days for half the key space 

–  Cost:  
•  $130’000 (all the material: chips, boards, cooling, PC etc.) 
•  $80’000 (development from scratch) 

•  COPACOBANA (Cost-Optimized Parallel Code Breaker) [2006] 
–  FPGA based, takes less than week, for a cost of $10K 
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The Advanced Encryption 
Standard (AES) Cipher - Rijndael  

•  Designed by Rijmen-Daemen (Belgium)  
•  Key size: 128/192/256 bit 
•  Block size: 128 bit data  
•  Properties: iterative rather than Feistel 

cipher 
– Treats data in 4 groups of 4 bytes 
– Operates on an entire block in every round 

•  Designed to be: 
– Resistant against known attacks 
–  Speed and code compactness on many CPUs 
– Design simplicity 
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AES 

•  State: 16 bytes structured in a array 

•  Each byte is seen as an element of F28=GF(28) 
–  F28 finite field of 256 elements 

•  Operations 
–  Elements of F28 are viewed as polynomials of degree 7 with coefficients {0, 1} 
–  Addition: polynomials addition ⇒ XOR 
–  Multiplication: polynomials multiplication modulo x8+ x4+ x3+x+1 
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S0,0 S0,1 S0,2 S0,3 

S1,0 S1,1 S1,2 S1,3 

S2,0 S2,1 S2,2 S2,3 

S3,0 S3,1 S3,2 S3,3 



AES Outline 
1.  Initialize State  ← x ⊕ RoundKey;  

2.  For each of the Nr-1 rounds: 
1.  SubBytes(State); 
2.  ShiftRows(State); 
3.  MixColumns(State); 
4.  AddRoundKey(State); 

3.   Last round: 
1.  SubBytes(State); 
2.  ShiftRows(State); 
3.  AddRoundKey(State); 

4.  Output y ← State 
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Implementation Aspects 
•  Can be efficiently implemented on 8-bit CPU 
– byte substitution works on bytes using a table of 

256 entries 
– shift rows is a simple byte shifting 
– add round key works on byte XORs 
– mix columns requires matrix multiply in GF(28) 

which works on byte values, can be simplified to 
use a table lookup 
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Implementation Aspects 
•  Can be efficiently implemented on 32-bit 

CPU 
– redefine steps to use 32-bit words 
– can pre-compute 4 tables of 256-words 
–  then each column in each round can be 

computed using 4 table lookups + 4 XORs 
– at a cost of 16Kb to store tables 

•  Designers believe this very efficient 
implementation was a key factor in its 
selection as the AES cipher 
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