Signal Encoding Techniques

Guevara Noubir noubir@ccs.neu.edu

Reasons for Choosing Encoding Techniques

- Digital data, digital signal
 - Equipment less complex and expensive than digital-to-analog modulation equipment
- Analog data, digital signal
 - Permits use of modern digital transmission and switching equipment

Reasons for Choosing Encoding Techniques

- Digital data, analog signal
 - Some transmission media will only propagate analog signals
 - E.g., optical fiber and unguided media
- Analog data, analog signal
 - Analog data in electrical form can be transmitted easily and cheaply
 - Done with voice transmission over voice-grade lines

Signal Encoding Criteria

- What determines how successful a receiver will be in interpreting an incoming signal?
 - Signal-to-noise ratio
 - Data rate
 - Bandwidth
- An increase in data rate increases bit error rate
- An increase in SNR decreases bit error rate
- An increase in bandwidth allows an increase in data rate

Factors Used to Compare Encoding Schemes

- Signal spectrum
 - With lack of high-frequency components
 => less bandwidth required
 - With no dc (direct current) component
 => ac coupling via transformer possible (electrical isolation)
 - Transfer function of a channel is worse near band edges
 => concentrate transmitted power in the middle
- Clocking
 - Ease of determining beginning and end of each bit position

Factors Used to Compare Encoding Schemes

- Signal interference and noise immunity
 - Performance in the presence of noise
- Cost and complexity
 - The higher the signal rate to achieve a given data rate, the greater the cost

Basic Encoding Techniques

- Digital data to analog signal
 - Amplitude-shift keying (ASK)
 - Amplitude difference of carrier frequency
 - Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
 - Phase-shift keying (PSK)
 - Phase of carrier signal shifted

Basic Encoding Techniques

Figure 6.2 Modulation of Analog Signals for Digital Data

Amplitude-Shift Keying

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

• where the carrier signal is $A\cos(2\pi f_c t)$

Amplitude-Shift Keying

- Susceptible to sudden gain changes
- Inefficient modulation technique
- On voice-grade lines, used up to 1200 bps
- Used to transmit digital data over optical fiber

Binary Frequency-Shift Keying (BFSK)

• Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

• where f_1 and f_2 are offset from carrier frequency f_c by equal but opposite amounts

Binary Frequency-Shift Keying (BFSK)

- Less susceptible to error than ASK
- On voice-grade lines, used up to 1200bps
- Used for high-frequency (3 to 30 MHz) radio transmission
- Can be used at higher frequencies on LANs that use coaxial cable

- More than two frequencies are used
- More bandwidth efficient but more susceptible to error

$$s_i(t) = A\cos 2\pi f_i t \quad 1 \le i \le M$$

- $f_i = f_c + (2i 1 M)f_d$
- f_c = the carrier frequency
- f_d = the difference frequency
- M = number of different signal elements = 2^{*L*}
- L = number of bits per signal element

Figure 6.4 MFSK Frequency Use (M = 4)

• To match data rate of input bit stream, each output signal element is held for:

 $T_{\rm s} = LT$ seconds

- where *T* is the bit period (data rate = 1/T)
- One signal element encodes *L* bits

• Total bandwidth required

 $2Mf_d$

- Minimum frequency separation required $2f_d = 1/T_s$
- Therefore, modulator requires a bandwidth of $W_d = 2^L/LT = M/T_s$

• Two-level PSK (BPSK)

- Uses two phases to represent binary digits

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

- Differential PSK (DPSK)
 - Phase shift with reference to previous bit
 - Binary 0 signal burst of same phase as previous signal burst
 - Binary 1 signal burst of opposite phase to previous signal burst

- Four-level PSK (QPSK)
 - Each element represents more than one bit

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

- Multilevel PSK
 - Using multiple phase angles with each angle having more than one amplitude, multiple signals elements can be achieved

$$D = \frac{R}{L} = \frac{R}{\log_2 M}$$

- D = modulation rate, baud
- R = data rate, bps
- M = number of different signal elements $= 2^{L}$
- L = number of bits per signal element

Performance

- Bandwidth of modulated signal (B_T) - ASK, PSK $B_T = (1+r)R$
 - $-FSK \qquad B_T = 2DF + (1+r)R$
 - R = bit rate
 - 0 < r < 1; related to how signal is filtered
 - DF = $f_2 f_c = f_c f_1$

Performance

• Bandwidth of modulated signal (B_T)

- MPSK
$$B_T = \left(\frac{1+r}{L}\right)R = \left(\frac{1+r}{\log_2 M}\right)R$$

- MFSK
$$B_T = \left(\frac{(1+r)M}{\log_2 M}\right)R$$

- L = number of bits encoded per signal element
- M = number of different signal elements

Quadrature Amplitude Modulation

- QAM is a combination of ASK and PSK
 - Two different signals sent simultaneously on the same carrier frequency

$$s(t) = d_1(t) \cos 2\pi f_c t + d_2(t) \sin 2\pi f_c t$$

Quadrature Amplitude Modulation

Figure 6.10 QAM Modulator

Additive White Gaussian Noise

• Noise:

- As previously seen, noise has several sources
- Thermal noise source is the motion of electrons in amplifiers and circuits
- Its statistics were determined using quantum mechanics
- It is flat for all frequencies up to 10^{12} Hz.
- We generally call it: Additive White Gaussian Noise (AWGN)
- Its probability density function (pdf) (zero mean noise voltage): ($\sigma^2 = N_0/2$)

$$p(n) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{n}{\sigma}\right)^2\right]$$

Bit Error Rate [Sklar1988]

- BER for coherently detected BPSK: $P_{B} = \int_{\sqrt{2E_{b}/N_{0}}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^{2}}{2}) du$ $P_{B} = Q(\sqrt{2E_{b}/N_{0}})$
- BER for coherently detected BFSK:

$$P_B = \int_{\sqrt{E_b/N_0}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) du$$
$$P_B = Q(\sqrt{E_b/N_0})$$

- Input is fed into a channel encoder
 - Produces analog signal with narrow bandwidth
- Signal is further modulated using sequence of digits
 - Spreading code or spreading sequence
 - Generated by pseudonoise, or pseudo-random number generator
- Effect of modulation is to increase bandwidth of signal to be transmitted

- On receiving end, digit sequence is used to demodulate the spread spectrum signal
- Signal is fed into a channel decoder to recover data

Figure 7.1 General Model of Spread Spectrum Digital Communication System

- What can be gained from apparent waste of spectrum?
 - Immunity from various kinds of noise and multipath distortion
 - Can be used for hiding and encrypting signals
 - Several users can independently use the same higher bandwidth with very little interference

Frequency Hoping Spread Spectrum (FHSS)

- Signal is broadcast over seemingly random series of radio frequencies
 - A number of channels allocated for the FH signal
 - Width of each channel corresponds to bandwidth of input signal
- Signal hops from frequency to frequency at fixed intervals
 - Transmitter operates in one channel at a time
 - Bits are transmitted using some encoding scheme
 - At each successive interval, a new carrier frequency is selected

Frequency Hoping Spread Spectrum

- Channel sequence dictated by spreading code
- Receiver, hopping between frequencies in synchronization with transmitter, picks up message
- Advantages
 - Eavesdroppers hear only unintelligible blips
 - Attempts to jam signal on one frequency succeed only at knocking out a few bits

Frequency Hoping Spread Spectrum

Figure 7.2 Frequency Hopping Example

FHSS Using MFSK

- MFSK signal is translated to a new frequency every T_c seconds by modulating the MFSK signal with the FHSS carrier signal
- For data rate of *R*:
 - duration of a bit: T = 1/R seconds
 - duration of signal element: $T_s = LT$ seconds
- $T_c \ge T_s$ slow-frequency-hop spread spectrum
- $T_c < T_s$ fast-frequency-hop spread spectrum

FHSS Performance Considerations

- Large number of frequencies used
- Results in a system that is quite resistant to jamming
 - Jammer must jam all frequencies
 - With fixed power, this reduces the jamming power in any one frequency band

Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - Spread is in direct proportion to number of bits used
- One technique combines digital information stream with the spreading code bit stream using exclusive-OR (Figure 7.6)

Figure 7.6 Example of Direct Sequence Spread Spectrum

DSSS Using BPSK

• Multiply BPSK signal,

 $s_d(t) = A d(t) \cos(2\pi f_c t)$

by c(t) [takes values +1, -1] to get

 $s(t) = A d(t)c(t) \cos(2\pi f_c t)$

- A = amplitude of signal
- f_c = carrier frequency
- d(t) = discrete function [+1, -1]
- At receiver, incoming signal multiplied by c(t)
 - Since, $c(t) \ge c(t) = 1$, incoming signal is recovered

DSSS Using BPSK

(b) Receiver

Figure 7.7 Direct Sequence Spread Spectrum System

Code-Division Multiple Access (CDMA)

- Basic Principles of CDMA
 - -D = rate of data signal
 - Break each bit into *k chips*
 - Chips are a user-specific fixed pattern
 - Chip data rate of new channel = kD

CDMA Example

- If *k*=6 and code is a sequence of 1s and -1s
 - For a '1' bit, A sends code as chip pattern
 - <c1, c2, c3, c4, c5, c6>
 - For a '0' bit, A sends complement of code

• <-c1, -c2, -c3, -c4, -c5, -c6>

• Receiver knows sender's code and performs electronic decode function

 $S_{u}(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$

- <d1, d2, d3, d4, d5, d6> = received chip pattern
- <c1, c2, c3, c4, c5, c6> = sender's code

CDMA Example

- User A code = <1, -1, -1, 1, -1, 1>
 To send a 1 bit = <1, -1, -1, 1, -1, 1>
 To send a 0 bit = <-1, 1, 1, -1, 1, -1>
- User B code = <1, 1, -1, -1, 1, 1>
 To send a 1 bit = <1, 1, -1, -1, 1, 1>
- Receiver receiving with A's code
 (A's code) x (received chip pattern)
 - User A '1' bit: 6 -> 1
 - User A '0' bit: -6 -> 0
 - User B '1' bit: 0 -> unwanted signal ignored

CDMA for Direct Sequence Spread Spectrum

Figure 7.11 CDMA in a DSSS Environment

Categories of Spreading Sequences

- Spreading Sequence Categories
 - PN sequences
 - Orthogonal codes
- For FHSS systems
 - PN sequences most common
- For DSSS systems not employing CDMA
 - PN sequences most common
- For DSSS CDMA systems
 - PN sequences
 - Orthogonal codes

PN Sequences

- PN generator produces periodic sequence that appears to be random
- PN Sequences
 - Generated by an algorithm using initial seed
 - Sequence isn't statistically random but will pass many test of randomness
 - Sequences referred to as pseudorandom numbers or pseudonoise sequences
 - Unless algorithm and seed are known, the sequence is impractical to predict

Important PN Properties

- Randomness
 - Uniform distribution
 - Balance property
 - Run property
 - Independence
 - Correlation property
- Unpredictability

Linear Feedback Shift Register Implementation

^VFigure 7.12 Binary Linear Feedback Shift Register Sequence Generator⁴⁸

Example of M-Sequence

- $[A_3, A_2, A_1, A_0] = [0, 0, 1, 1]$
- Initial State = 1000
- M-Sequence: 000100110101110

Properties of M-Sequences

- Property 1:
 - Has 2^{n-1} ones and 2^{n-1} -1 zeros
- Property 2:
 - For a window of length *n* slid along output for $N (=2^{n}-1)$ shifts, each *n*-tuple appears once, except for the all zeros sequence
- Property 3:
 - Sequence contains one run of ones, length *n*
 - One run of zeros, length *n*-1
 - One run of ones and one run of zeros, length *n*-2
 - Two runs of ones and two runs of zeros, length n-3
 - -2^{n-3} runs of ones and 2^{n-3} runs of zeros, length 1

Properties of M-Sequences

- Property 4:
 - The periodic autocorrelation of a ± 1 m-sequence is

$$R(\tau) = \begin{cases} 1\\ -\frac{1}{N} \end{cases}$$

$$\tau = 0, N, 2N, ...$$

otherwise

Definitions

- Correlation
 - The concept of determining how much similarity one set of data has with another
 - Range between –1 and 1
 - 1 The second sequence matches the first sequence
 - 0 There is no relation at all between the two sequences
 - -1 The two sequences are mirror images
- Cross correlation
 - The comparison between two sequences from different sources rather than a shifted copy of a sequence with itself

Advantages of Cross Correlation

- The cross correlation between an m-sequence and noise is low
 - This property is useful to the receiver in filtering out noise
- The cross correlation between two different m-sequences is low
 - This property is useful for CDMA applications
 - Enables a receiver to discriminate among spread spectrum signals generated by different m-sequences

Gold Sequences

- Gold sequences constructed by the XOR of two m-sequences with the same clocking
- Codes have well-defined cross correlation properties
- Only simple circuitry needed to generate large number of unique codes
- In following example (Figure 7.16a) two shift registers generate the two m-sequences and these are then bitwise XORed

Gold Sequences

(a) Shift-register implementation

Gold Sequences

- Select a preferred pair of m-sequences
 - a m-sequence of period $N=2^{n}-1$
 - a' = a[q] decimation of a
 - gcd(q, n) = 1
 - n/4 ≠ 0
 - q is odd and q = $(2^{k}+1)$ or q = $(2^{2k}-2^{k}+1)$ for some k
 - gcd(n, k) = 1 for n odd; 2 for n=2 mod 4
 - Gold codes ={a, a', $a \oplus a'$, $a \oplus Da'$, $a \oplus D^2a'$, $a \oplus D^{N-1}a'$ }
- Cross correlation bounded by:
 - $|R| \le [2^{(n+1)/2}+1]/N$ for n odd
 - $|R| \le [2^{(n+2)/2}+1]/N$ for n even

Example

- a generated by 0 1 0 0 1:
 - -11111000110111010000100101100
- a' generated by 0 1 1 1 1:
 - -11111001001100001011010001110
- O-shift XOR:

 $-\ 00000011110110111101100010$

Orthogonal Codes

- Orthogonal codes
 - All pairwise cross correlations are zero
 - Fixed- and variable-length codes used in CDMA systems
 - For CDMA application, each mobile user uses one sequence in the set as a spreading code
 - Provides zero cross correlation among all users
- Types
 - Walsh codes
 - Variable-Length Orthogonal codes

Walsh Codes

• Set of Walsh codes of length *n* consists of the n rows of an *n* ' *n* Walsh matrix:

$$-W_1 = (0) \qquad W_{2n} = \begin{pmatrix} W_n & W_n \\ W_n & \overline{W}_n \end{pmatrix}$$

- n = dimension of the matrix
- Every row is orthogonal to every other row and to the logical not of every other row
- Requires tight synchronization
 - Cross correlation between different shifts of Walsh sequences is not zero

Typical Multiple Spreading Approach

- Spread data rate by an orthogonal code (channelization code)
 - Provides mutual orthogonality among all users in the same cell
- Further spread result by a PN sequence (scrambling code)
 - Provides mutual randomness (low cross correlation) between users in different cells

Barker Code – 11 chips

- Used in IEEE802.11 at 1 and 2 Mbps
- Sequence: -1 -1 -1 1 1 1 -1 1 1 -1 1
- Shifted by 3: 1 -1 1 -1 -1 -1 1 1 1 -1 1
- Auto correlation: 1
- Cross with shifted version: -1/11