Wireless Networks: Network Protocols/Mobile IP

■ Motivation

□ Problems

■ Data transfer
■ DHCP

Encapsulation

☐ Security

☐ IPv6

Adapted from J. Schiller, "Mobile Communications"

Motivation for Mobile IP

Routing

- based on IP destination address, network prefix (e.g. 129.13.42) determines physical subnet
- change of physical subnet implies change of IP address to have a topological correct address (standard IP) or needs special entries in the routing tables
- Specific routes to end-systems?
 - change of all routing table entries to forward packets to the right destination
 - does not scale with the number of mobile hosts and frequent changes in the location, security problems
- Changing the IP-address?
 - adjust the host IP address depending on the current location
 - almost impossible to find a mobile system, DNS updates take too much time
 - TCP connections break, security problems

Requirements to Mobile IP (RFC 2002)

Transparency

- mobile end-systems keep their IP address
- continuation of communication after interruption of link possible
- point of connection to the fixed network can be changed

Compatibility

- support of the same layer 2 protocols as IP
- no changes to current end-systems and routers required
- mobile end-systems can communicate with fixed systems

Security

- authentication of all registration messages
- Efficiency and scalability
 - only little additional messages to the mobile system required (connection typically via a low bandwidth radio link)
 - world-wide support of a large number of mobile systems in the whole Internet

Terminology

- Mobile Node (MN)
 - system (node) that can change the point of connection to the network without changing its IP address

- Home Agent (HA)
 - system in the home network of the MN, typically a router
 - registers the location of the MN, tunnels IP datagrams to the COA
- Foreign Agent (FA)
 - system in the current foreign network of the MN, typically a router
 - forwards the tunneled datagrams to the MN, typically also the default router for the MN
- Care-of Address (COA)
 - address of the current tunnel end-point for the MN (at FA or MN)
 - actual location of the MN from an IP point of view
 - can be chosen, e.g., via DHCP
- Correspondent Node (CN)
 - communication partner

Example network

Data transfer to the mobile system

Data transfer from the mobile system

Overview

Network integration

- Agent Advertisement
 - HA and FA periodically send advertisement messages into their physical subnets
 - MN listens to these messages and detects, if it is in the home or a foreign network (standard case for home network)
 - MN reads a COA from the FA advertisement messages
- Registration (always limited lifetime!)
 - MN signals COA to the HA via the FA, HA acknowledges via FA to MN
 - these actions have to be secured by authentication
- Advertisement
 - HA advertises the IP address of the MN (as for fixed systems), i.e. standard routing information
 - routers adjust their entries, these are stable for a longer time (HA responsible for a MN over a longer period of time)
 - packets to the MN are sent to the HA,
 - independent of changes in COA/FA

Agent advertisement

0	7	8	15	16	23	24	31	
type	oe code			checksum				
#addresse	sses addr. size lifetime				ime			
router address 1								
preference level 1								
router address 2								
preference level 2								
•								

. . .

type		sequence number							
registration	RB	Η	F	M	G	V		reserved	
COA 1									
COA 2									

R: registration required

B: busy

H: home agent

F: foreign agent

M: minimal encapsulation

G: generic routing encapsulation

V: header compression

ICMP-Type = 9; Code = 0/16; Extension Type = 16

TTL = 1 Dest-Adr = 224.0.0.1 (multicast on link) or 255.255.255.255 (broadcast)

Registration

Goal: inform the home agent of current location of MN (COA-FA or co-located COA)

Registration expires automatically (lifetime)
Uses UDP port 434

Mobile IP registration request

0		7 8		16	23	24		31	
	type	SBDI	MGVrsv		lifeti	me			
	home address								
	home agent								
COA									
identification									
extensions									

UDP packet on port 343

Type = 1 for registration request

S: retain prior mobility bindings

B: forward broadcast packets

D: co-located address=> MN decapsulates packets

Encapsulation

	original IP header original da			
new IP header	new data			
outer header	inner header	original data		

Encapsulation I

- Encapsulation of one packet into another as payload
 - e.g. IPv6 in IPv4 (6Bone), Multicast in Unicast (Mbone)
 - here: e.g. IP-in-IP-encapsulation, minimal encapsulation or GRE (Generic Record Encapsulation)
- IP-in-IP-encapsulation (mandatory in RFC 2003)
 - tunnel between HA and COA

ver.	IHL	TOS	length					
	P ident	ification	flags	fragment offset				
T	TTL IP-in-IP			IP checksum				
	IP address of HA							
	Care-of address COA							
ver.	H	TOS	length					
	P ident	ification	flags fragment offset					
T	ΓL	lay. 4 prot.	IP checksum					
		IP addre	ss of	CN				
IP address of MN								
	TCP/UDP/ payload							

Encapsulation II

- Minimal encapsulation (optional) [RFC2004]
 - avoids repetition of identical fields
 - e.g. TTL, IHL, version, TOS
 - only applicable for unfragmented packets, no space left for fragment identification

ver.	IHL		TOS		length			
IP identification				flags fragment offset				
T	TTL min. encap.				IP checksum			
	IP address of HA							
care-of address COA								
lay. 4 p	lay. 4 protoc. S reserved IP checksum							
IP address of MN								
original sender IP address (if S=1)								
TCP/UDP/ payload								

Generic Routing Encapsulation [RFC 1701]

•		original header	original data	
outer header	GRE header	original header	original data	
new header		new data	a	

ver.	IHL	TOS		length				
	IP identification				fragment offset			
T ⁻	TTL GRE				IP checksum			
IP address of HA								
Care-of address COA								
CRKS	s rec.	rsv.	ver.		protocol			
ch	ecksum	(optional)		offset (optional)			
		k	ey (or	otional)				
		sequenc	e nun	nber (o	ptional)			
		rou	uting (<mark>optiona</mark>	al)			
ver.	IHL	TOS	}		length			
	IP ident	ification		flags	fragment offset			
T	ΓL	lay. 4 p	rot.	IP checksum				
	IP address of CN							
IP address of MN								
	TCP/UDP/ payload							

C: checksum present

R: offset/source routing is present

K: key field for authentication (not implemented)

S:sequence number is present s: strict source routing is used

rec: Recursion control

Optimization of packet forwarding

- Triangular Routing
 - sender sends all packets via HA to MN
 - higher latency and network load
- "Solutions"
 - sender learns the current location of MN
 - direct tunneling to this location
 - HA informs a sender about the location of MN
 - big security problems!
- Change of FA
 - packets on-the-fly during the change can be lost
 - new FA informs old FA to avoid packet loss, old FA now forwards remaining packets to new FA
 - this information also enables the old FA to release resources for the MN

Change of foreign agent MN

Reverse tunneling (RFC 2344)

Mobile IP with reverse tunneling

- Router accept often only "topological correct" addresses (firewall!)
 - a packet from the MN encapsulated by the FA is now topologically correct
 - furthermore multicast and TTL problems solved (TTL in the home network correct, but MN is too far away from the receiver)
- Reverse tunneling does not solve
 - problems with *firewalls*, the reverse tunnel can be abused to circumvent security mechanisms (tunnel hijacking)
 - optimization of data paths, i.e. packets will be forwarded through the tunnel via the HA to a sender (double triangular routing)
- The new standard is backwards compatible
 - the extensions can be implemented easily and cooperate with current implementations without these extensions

Mobile IP and IPv6

- Mobile IP was developed for IPv4, but IPv6 simplifies the protocols
 - security is integrated and not an add-on, authentication of registration is included
 - COA can be assigned via auto-configuration (DHCPv6 is one candidate), every node has address autoconfiguration
 - no need for a separate FA, all routers perform router advertisement which can be used instead of the special agent advertisement
 - MN can signal a sender directly the COA, sending via HA not needed in this case (automatic path optimization)
 - "soft" hand-over, i.e. without packet loss, between two subnets is supported
 - MN sends the new COA to its old router
 - the old router encapsulates all incoming packets for the MN and forwards them to the new COA
 - authentication is always granted

Problems with mobile IP

Security

- authentication with FA problematic, for the FA typically belongs to another organization
- no protocol for key management and key distribution has been standardized in the Internet
- patent and export restrictions

Firewalls

 typically mobile IP cannot be used together with firewalls, special setups are needed (such as reverse tunneling)

QoS

- many new reservations in case of RSVP
- tunneling makes it hard to give a flow of packets a special treatment needed for the QoS
- Security, firewalls, QoS etc. are topics of current research and discussions!

Security in Mobile IP

- Security requirements (Security Architecture for the Internet Protocol, RFC 1825, RFC 1826, RFC 1827)
 - Integrity

 any changes to data between sender and receiver can be detected by the receiver
 - Authentication sender address is really the address of the sender and all data received is really data sent by this sender
 - Confidentiality
 only sender and receiver can read the data
 - Non-Repudiation sender cannot deny sending of data
 - Traffic Analysis
 creation of traffic and user profiles should not be possible
 - Replay Protection receivers can detect replay of messages

IP security architecture I

- ☐ Two or more partners have to negotiate security mechanisms to setup a security association
 - typically, all partners choose the same parameters and mechanisms
- ☐ Two headers have been defined for securing IP packets:
 - Authentication-Header
 - guarantees integrity and authenticity of IP packets
 - if asymmetric encryption schemes are used, some non-repudiation level can also be provided

IP header authentication header UDP/TCP data

- Encapsulation Security Payload
 - protects confidentiality between communication partners

IP security architecture II

- ☐ Mobile Security Association for registrations
 - parameters for the mobile host (MH), home agent (HA), and foreign agent (FA)
- ☐ Extensions of the IP security architecture
 - extended authentication of registration

- prevention of replays of registrations
 - time stamps: 32 bit time stamps + 32 bit random number
 - nonces: 32 bit random number (MH) + 32 bit random number (HA)

Key distribution

Home agent distributes session keys

- ☐ foreign agent has a security association with the home agent
- ☐ mobile host registers a new binding at the home agent
- home agent answers with a new session key for foreign agent and mobile node

DHCP: Dynamic Host Configuration Protocol [RFC 2131]

Application

- simplification of installation and maintenance of networked computers
- supplies systems with all necessary information, such as IP address,
 DNS server address, domain name, subnet mask, default router etc.
- enables automatic integration of systems into an Intranet or the Internet, can be used to acquire a COA for Mobile IP

Client/Server-Model

the client sends via a MAC broadcast a request to the DHCP server
 (might be via a DHCP relay)

DHCPDISCOVER

DHCP - protocol mechanisms

DHCP characteristics

Server

- several servers can be configured for DHCP, coordination not yet standardized (i.e., manual configuration)
- Renewal of configurations
 - IP addresses have to be requested periodically, simplified protocol
- Options
 - available for routers, subnet mask, NTP (network time protocol) timeserver, SLP (service location protocol) directory, DNS (domain name system)
- Security problems!
 - DHCP Authentication IETF-RFC 3118