IPsec (AH, ESP), IKE

Guevara Noubir
CSG254: Network Security
noubir@ccs.neu.edu
Securing Networks

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocols/Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications Layer</td>
<td>Applications Layer</td>
</tr>
<tr>
<td></td>
<td>telnet/ftp: ssh, http: https, mail: PGP</td>
</tr>
<tr>
<td>(SSL/TLS)</td>
<td></td>
</tr>
<tr>
<td>Transport Layer (TCP)</td>
<td></td>
</tr>
<tr>
<td>(IPSec, IKE)</td>
<td></td>
</tr>
<tr>
<td>Network Layer (IP)</td>
<td></td>
</tr>
<tr>
<td>Link Layer</td>
<td></td>
</tr>
<tr>
<td>(IEEE802.1x/IEEE802.10)</td>
<td></td>
</tr>
<tr>
<td>Physical Layer</td>
<td></td>
</tr>
<tr>
<td>(spread-Spectrum, quantum crypto, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

Control/Management (configuration):

Network Security Tools:

- Monitoring/Logging
- Intrusion Detection

CSG254: Network Security

IPsec - IKE
SSL vs. IPsec

SSL:
- Avoids modifying “TCP stack” and requires minimum changes to the application
- Mostly used to authenticate servers

IPsec:
- Transparent to the application and requires modification of the network stack
- Authenticates network nodes and establishes a secure channel between nodes
- Application still needs to authenticate the users
IPsec Protocol Suite
(IETF Standard)

- Provides inter-operable crypto-based security services:
 - Services: confidentiality, authentication, integrity, and key management

- Protocols:
 - Authentication Header (AH): RFC2402
 - Encapsulated Security Payload (ESP): 2406
 - Internet Key Exchange (IKE)

- Environments: IPv4 and IPv6

- Modes:
 - Transport (between two hosts)
 - Tunnel (between hosts/firewalls)
Assumption:
- End nodes already established a shared session key:
 - Manually or IKE

Security Association:
- Each secure connection is called a security association (SA)
- For each SA: key, end-node, sequence number, services, algorithms
- SA is unidirectional and identified by:
 - (destination-address, SPI = Security Parameter Index)

Protocols:
- Authentication Header: integrity protection
- Encapsulated Security Payload: encryption and/or integrity
IP Packets

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>04</td>
</tr>
<tr>
<td>HLen</td>
<td>08</td>
</tr>
<tr>
<td>TOS</td>
<td>01</td>
</tr>
<tr>
<td>Length</td>
<td>09</td>
</tr>
<tr>
<td>Flags</td>
<td>03</td>
</tr>
<tr>
<td>Offset</td>
<td>01</td>
</tr>
<tr>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>SourceAddr</td>
<td></td>
</tr>
<tr>
<td>DestinationAddr</td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td></td>
</tr>
<tr>
<td>Pad (variable)</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

```plaintext
0 4 8 16 19 31

<table>
<thead>
<tr>
<th>Version</th>
<th>HLen</th>
<th>TOS</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04</td>
<td>08</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol</td>
<td>Checksum</td>
<td></td>
</tr>
<tr>
<td>SourceAddr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DestinationAddr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td>Pad (variable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
AH Formatting

AH Protocol Number = 51

Transport mode

Tunnel mode

<table>
<thead>
<tr>
<th>Next Header</th>
<th>Length (8)</th>
<th>Reserved (16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Parameters Index (32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence Number Field (32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication Data (N*32)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SN: for replay detection
ESP Formatting

ESP Protocol Number = 50

Transport mode

Tunnel mode
ESP Header

- Security Parameters Index (32)
- Sequence Number Field (32)
- Initialization Vector (variable)
- Payload Data (variable)
 - Padding (0-255 bytes)
 - Pad Length (8)
 - Next Header
- Authentication Data

Auth/Integrity coverage

Confidentiality coverage
Issues

- NAT boxes:
 - IPsec tunnel mode doesn’t easily work

- Firewalls
 - IPsec encrypts information used by firewalls to filter traffic (e.g., port number)

- AH mutable/immutable/predictable fields:
 - Some fields get modified by the intermediate routers and can’t be protected by the AH
 - Mutable: type of service, flags, fragment offset, TTL, header checksum
 - Why is PAYLOAD-LENGTH considered immutable (even if packets can be fragmented)? Why not fragment offset. Inconsistency!
 - Mutable but predictable fields are included in the AH computation using their expected value at the destination (e.g., destination address even when using source routing)
IPsec: Internet Key Exchange

- **Goal:**
 - Mutual authentication and establishment of a shared secret session key using:
 - Pre-shared secret key or public signature-only key, or public encryption key
 - Negotiation of features and cryptographic algorithms

- **Specification documents:**
 - ISAKMP (Internet Security Association and Key Management Protocol): RFC 2408
 - IKE: RFC 2409
 - DOI (Domain Of Interpretation): RFC 2407
Photuris

- Photuris goal: signed Diffie-Hellman exchange
 1. $A \rightarrow B: C_A$
 2. $B \rightarrow A: C_A, C_B'$ crypto offered
 3. $A \rightarrow B: C_A, C_B g^a \pmod p$, crypto selected
 4. $B \rightarrow A: C_A, C_B', g^b \pmod p$
 5. $A \rightarrow B: C_A, C_B g^{ab} \pmod p$\{A, signature on previous messages\}
 6. $B \rightarrow A: C_A, C_B, g^{ab} \pmod p$\{B, signature on previous messages\}

- Role of C_A, C_B, and messages
- Additional features: SPI selection
- Why not sign messages 3 & 4...?
Simple Key-Management for Internet Protocol (SKIP)

- Uses long term Diffie-Hellman keys
- Parties assumed to know each other public keys (i.e., $g^a \mod p$) or exchange certificates
- Session key $X = g^{ab} \mod p$ is established in 0 messages
- Each packet is encrypted using data key S and each packet contains: $X\{S\}$
 - Same S can be used for several packets
- Later on PFS was added by periodically forgetting the keys and doing a new DH
ISAKMP (RFC2408)

- Proposed by NSA as a framework and accepted by IETF
 - Runs over UDP and allows to exchange fields to create a protocol
- IKE (RFC2409) based on OAKLEY & SKEME using ISAKMP syntax

- IKE phases:
 1. Mutual authentication and session key establishment (also called ISAKMP SA or IKE SA)
 2. AH/ESP SAs establishment

 Each source/destination/port has its own SA/keys otherwise ESP traffic not using integrity could be decrypted...
Phase 1 IKE

Two modes:

- Aggressive mode: mutual authentication and session key establishment in three messages
 - $A \rightarrow B$: $g^a \mod p$, A, crypto proposal
 - $B \rightarrow A$: $g^b \mod p$, crypto choice, proof I’m B
 - $A \rightarrow B$: proof I’m A

- Main: additional features such as hiding end-points identities and negotiating crypto DH algorithm
 - $A \rightarrow B$: crypto suite I support
 - $B \rightarrow A$: crypto suite I choose
 - $A \rightarrow B$: $g^a \mod p$
 - $B \rightarrow A$: $g^b \mod p$
 - $A \rightarrow B$: $g^{ab} \mod p$ \{A, proof I’m A\}
 - $B \rightarrow A$: $g^{ab} \mod p$ \{B, proof I’m B\}
Phase 1 IKE

- Key types:
 - Pre-shared secret key
 - Public encryption key: fields are separately encrypted using the public key
 - Optimized public encryption key: used to encrypt a random symmetric key, and then data is encrypted using the symmetric key
 - Public signature key: used only for signature purpose

⇒ 8 variants of IKE phase 1: 2 modes x 4 key types

- Proof of Identity:
 - Required in messages 2-3 aggressive mode and 5-6 main mode
 - Proves the sender knows the key associated with the identity
 - Depends on the key type
 - Hash of identity key, DH values, nonces, crypto choices, cookies
 - Alternative: MAC of previous messages
Phase 1 IKE

- Negotiating cryptographic parameters
 - A specifies suites of acceptable algorithms:
 - \{(3DES, MD5, RSA public key encryption, DH),
 (AES, SHA-1, pre-shared key, elliptic curve), \ldots\}
 - The standard specifies a MUST be implemented set of algorithms:
 - Encryption=DES, hash=MD5/SHA-1, authentication=pre-shared key/DH
 - The lifetime of the SA can also be negotiated

- Session keys:
 - Key seed: SKEYID
 - Signature public keys: SKEYID = prf(nonces, \(g^x \mod p \))
 - Encryption public keys: prf(hash(nonces), cookies)
 - Pre-shared secret key: prf(pre-shared secret key, nonces)
 - Secret to generate other keys: SKEYID_d = prf(SKEYID, (g^x, cookies, 0))
 - Integrity key: SKEYID_a = prf(SKEYID, (SKEYID_d, (g^x, cookies, 1)))
 - Encryption key: SKEYID_e = prf(SKEYID, (SKEYID_a, (g^x, cookies, 2))

- Message IDs:
 - Random 32-bits serves the purpose of a SN but in an inefficient manner because they have to be remembered
IKE Phase 1: Public Signature Keys, Main Mode

Description:
- Both parties have public keys for signatures
- Hidden endpoint identity (except for …?)

Protocol:
- \(A \rightarrow B: CP \)
- \(B \rightarrow A: CPA \)
- \(A \rightarrow B: g^a \mod p, \text{nonce}_A \)
- \(B \rightarrow A: g^b \mod p, \text{nonce}_B \)
- \(K = f(g^{ab} \mod p, \text{nonce}_A, \text{nonce}_B) \)
- \(A \rightarrow B: K\{A, \text{proof I'm A, [certificate]}\} \)
- \(B \rightarrow A: K\{B, \text{proof I'm B, [certificate]}\} \)

Questions:
- What is the purpose of the nonces?
- Can we make to protocol shorter (5 messages)? At what expense?
IKE Phase 1:
Public Signature Keys, Aggressive Mode

- Protocol:
 - $A \rightarrow B$: $CP, \ g^a \mod \ p, \ \text{nonce}_A, \ A$
 - $B \rightarrow A$: $CPA, \ g^b \mod \ p, \ \text{nonce}_B, \ B, \ \text{proof I’m B}, \ [\text{certificate}]$
 - $A \rightarrow B$: proof I’m $A, \ [\text{certificate}]$
IKE Phase 1:
Public Encryption Keys, Main Mode, Original

Protocol:
- $A \rightarrow B$: CP
- $B \rightarrow A$: CPA
- $A \rightarrow B$: $g^a \mod p$, ${\text{nonce}_A}_B$, ${A}_B$
- $B \rightarrow A$: $g^b \mod p$, ${\text{nonce}_B}_A$, ${B}_A$

$$K = f(g^{ab} \mod p, \text{nonce}_A, \text{nonce}_B)$$

- $A \rightarrow B$: K[proof I’m A]
- $B \rightarrow A$: K[proof I’m B]
IKE Phase 1:
Public Encryption Keys, Aggressive Mode, Original

Protocol:
- $A \rightarrow B$: CP, $g^a \mod p$, $\{\text{nonce}_A\}_B$, $\{A\}_B$
- $B \rightarrow A$: CPA, $g^b \mod p$, $\{\text{nonce}_B\}_A$, $\{B\}_A$, proof I’m B
- $A \rightarrow B$: proof I’m A
IKE Phase 1:
Public Encryption Keys, Main Mode, Revised

Protocol:
- $A \rightarrow B$: CP
- $B \rightarrow A$: CPA

\[K_A = \text{hash}(\text{nonce}_A, \text{cookie}_A) \]

- $A \rightarrow B$: \{nonce$_A$\}_B, K_A\{ga mod p\}, K_A\{A\}, [K_A\{A's cert\}]

\[K_B = \text{hash}(\text{nonce}_B, \text{cookie}_B) \]

- $B \rightarrow A$: \{nonce$_B$\}_A, K_B\{gb mod p\}, K_B\{B\}.

\[K = f(g^{ab} \mod p, \text{nonce}_A, \text{nonce}_B, \text{cookie}_A, \text{cookie}_B) \]

- $A \rightarrow B$: K\{proof I’m A\}
- $B \rightarrow A$: K\{proof I’m B\}
IKE Phase 1:
Public Encryption Keys, Aggressive Mode, Revised

Protocol:

- $K_A = \text{hash}(\text{nonce}_A, \text{cookie}_A)$
- $A \rightarrow B$: CPA, $\{\text{nonce}_A\}_B$, $K_A\{g^a \mod p\}$, $K_A\{A\}$, [$K_A\{A's \text{ cert}\}$]
- $K_B = \text{hash}(\text{nonce}_B, \text{cookie}_B)$
- $B \rightarrow A$: CPA, $\{\text{nonce}_B\}_A$, $K_B\{g^b \mod p\}$, $K_B\{B\}$, proof I’m B
- $K = f(g^{ab} \mod p, \text{nonce}_A, \text{nonce}_B, \text{cookie}_A, \text{cookie}_B)$
- $A \rightarrow B$: $K\{\text{proof I’m A}\}$
IKE Phase 1:
Shared Secret Keys, Main Mode

- Assumption A and B share a secret J.
- Protocol:
 - $A \rightarrow B$: CP
 - $B \rightarrow A$: CPA
 - $A \rightarrow B$: $g^a \mod p$, nonce$_A$
 - $B \rightarrow A$: $g^b \mod p$, nonce$_B$
 - $K = f(J, g^{ab} \mod p, nonce_A, nonce_B, cookie_A, cookie_B)$
 - $A \rightarrow B$: K\{proof I’m A\}
 - $B \rightarrow A$: K\{proof I’m B\}
IKE Phase 1:
Shared Secret Keys, Aggressive Mode

- **Protocol:**
 - $A \rightarrow B$: $CP, g^a \mod p, \text{nonce}_A, A$
 - $B \rightarrow A$: $CPA, g^b \mod p, \text{nonce}_B, B, \text{proof I’m } B$
 - $A \rightarrow B$: proof I’m A
IKE: Phase 2

- Also known as “Quick Mode”: 3- messages protocol
 - $A \rightarrow B$: $X, Y, CP, traffic, SPI_A, nonce_A^e, [g^a \mod p]_{optional}$
 - $B \rightarrow A$: $X, Y, CPA, traffic, SPI_B, nonce_B, [g^b \mod p]_{optional}$
 - $A \rightarrow B$: X, Y, ack

- All messages are encrypted using SKEYID_e, and integrity protected using SKEYID_a (except X, Y)

- Parameters:
 - X: pair of cookies generated during phase 1
 - Y: 32-bit number unique to this phase 2 session chosen by the initiator
 - CP: Crypto Proposal, CPA: Crypto Proposal Accepted
 - DH is optional and could be used to provide PFS
 - Nonces and cookies get shuffled into SKEYID to produce the SA encryption and integrity keys