Email Security

Guevara Noubir
Network Security
Northeastern University
Email

- One of the most widely used applications of the Internet but still relatively insecure
 - Designed without security concerns

- How does email work?
- How to provide important security services
 - Confidentiality, authentication, integrity, etc.

- Spam resiliency
How Email Works

• Architecture
 – Mail User Agent (MUA): client
 – Mail Sending Agent (MSA): server on sender side
 – Mail Transfer Agent (MTA): server on sender/recipient side
 – Mail Delivery Agent (MDA): responsible for deliver to recipient’s MUA

• Operation
 – Client submits message MUA <-> MSA
 • telnet mail.ccs.neu.edu 25
 – MSA sends message to MTA; forwarded to recipient MTA
 • Recipient MTA found through DNS system (dig @8.8.8.8 ccs.neu.edu MX)
 – MUA retrieves email using POP3 or IMAP protocols
Security Services: Issues & Solutions

• Confidentiality
 – Traffic not encrypted can be redirected and intercepted (See MITM lab)

• Authentication/Integrity
 – Messages can be fabricated, modified, trust in DNS system

• Additional services:
 – Non-repudiation, proof of submission, proof of delivery, anonymity, message flow confidentiality

• Solutions
 – @Transport Layer: SSL/TLS between sender client/local server/destination server/recipient
 • Implications?
 – @Application Layer: end-to-end confidentiality and integrity protection
 • Authentication of sending user vs. authentication of sending mail transfer agent
 • Examples: PGP, S/MIME, DKIM
 • Implications?
End-to-End Confidentiality

• With symmetric keys

• With asymmetric keys (public key cryptography)

• Single destination, multiple destinations, mailing lists
End-to-end Authentication/Integrity

• With symmetric keys

• With asymmetric keys (public key cryptography)
Additional Security Services

• Non-repudiation
 – With asymmetric keys (public key cryptography)
 – With and without plausible deniability

• Proof of submission
 – With cooperation of MSA/MTA (stronger than regular mail service)

• Proof of delivery
 – Requires cooperation of recipient
 – Not possible to provide a receipt if and only if recipient got the message

• Anonymity
 – Mixing? easier solutions today
PEM, S/MIME, PGP

• PEM, S/MIME PGP allow additional security services

• Privacy Enhanced Mail (RFC 1421- 1424)
 – Provides a way to integrate confidentiality, authentication/integrity services within mail system
 – Not used much today because of CA, evolved into S/MIME

• PEM message
 -----BEGIN PRIVACY-ENHANCED MESSAGE-----
 .
 .
 -----END PRIVACY-ENHANCED MESSAGE-----

• Types of data
 – ordinary, unsecured
 – integrity-protected, unmodified (MIC-CLEAR)
 – integrity-protected, encoded (MIC-ONLY)
 – encrypted, integrity-protected, encoded (ENCRYPTED)

• Single root certification authority
Secure/Multipurpose Internet Mail Extension

- MIME specifies a standard way of encoding arbitrary data in email (e.g., picture attachments)
 - S/MIME specifies the security related header
 - Incorporated into MIME => no additional encoding
- Any sequence of sign & encrypt is supported
 - Each as a recursive MIME encapsulation
- Has more options than PEM
- ASN.1 header encoding
- No prescribed certification hierarchy
- Has a good prospect of deployment for commercial & organizational usage
Pretty Good Privacy (PGP)

• Similar to S/MIME
 – with a more complex history

• Major difference: web of trust graph
 – Partial trust, multiple paths

• Issues
 – In theory would be safer than PEM
 – Difficult to operate in practice
Spam

- For years spam has been a major problem of email
 - Estimated to be 94% of emails
 - From a nuisance to a threat

- How?
 - Harvesting/buying addresses
 - Sending through open relays, proxies, creating webmail accounts (circumventing CAPTCHAs), malware, spambots, hijacking IP blocks

- Why? Spam economics
 - Even with a currently estimated conversion rate of 10^{-7} still interesting
Anti-Spam

- Current solutions:
 - Black/white listing IP addresses (e.g., zombie computers, addresses that sent spam to honeypots, ISP willingly hosting spammers)
 - Signatures/content matching rules
 - HashCash: add header
 X-Hashcash: 1:20:101130:noubir@ccs.neu.edu::HdG5s/(oiuU7Ht7b:ePa
 - Distributed Checksum Clearinghouse: message fuzzy checksum is sent to DCC to check how many times it appeared
 - Sender Policy Framework: specify who can send email from a domain (relies on TXT/SPF DNS record)
 dig @8.8.8.8 neu.edu ANY
 - Example of software combining these techniques: spamassassin
Sending MTA Authentication

• DomainKeys Identified Mail (DKIM RFC 4871, 2007)
 – DomainKeys initiated by Yahoo!, today a IETF standard DKIM

• The sending MTA adds a signature to the message
 – MIME header
 – Public key can be retrieved through DNS system

    ```
    dig @8.8.8.8 s1024._domainkey.yahoo.com any
    dig @8.8.8.8 gamma._domainkey.gmail.com any
    ```

• Example:

  ```
  DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
  d=gmail.com; s=gamma;
  h=domainkey-signature:mime-version:received:received:date:message-id
  :subject:from:to:content-type;
  bh=cvC34ODyPB/uEHubbDQQmwxfqZboGjW5gpY4W6Duze=;
  b=ASsElEtXCmM/x3aL38Efni9xDrBd1eaaBqd24f7XS49pRZhXX/7Vak9+LyLLcN89eGZ7Zsi7swV2xIl3zJTiGrGif0bfQdf7Lv1P12g53nczhBBRa8McBVtdK9+ImAZByg8o
  oEM4INNjMvdhXi9MVXtntkvmSTMWitAJxZgQQ=
  ```

 DomainKey-Signature: a=rsa-sha1; c=nofws;

  ```
  d=gmail.com; s=gamma;
  h=mime-version:date:message-id:subject:from:to:content-type;
  b=JFWiE0YlmWxu+Sg4OJ9Ef5k3rjbZQ5ldGEyaFyvKJYR8NkoGrNoPIUq5f29ld8P0AD
  Lg058evTVeuWxvfPQfa7K65J9AjEQt5U8d9zBKFfxRAz1h5nr7k2kCLRMnhbqVTkiOIS
  OUfxIQeMgfbYz0ydCgerEnfGrEKMQIYax+dpo=
  ```
Summary

• Email application was designed, and deployed
 – without security in mind
 – over an insecure Internet
 – not well understood threats

• Several security services have been proposed
 with varying levels of acceptance
 – Transport layer security
 – Application level security
 • End-to-end, MTA authentication, etc.

• Still vulnerable e.g., DNS poisoning