
1

Authentication Protocols

Guevara Noubir
College of Computer and Information Science

Northeastern University
noubir@ccs.neu.edu

Network Security Authentication Protocols 2

Outline

  Overview of Authentication Systems
  [Chapter 9]

  Authentication of People
  [Chapter 10]

  Security Handshake Pitfalls
  [Chapter 11]

  Strong Password Protocols
  [Chapter 12]

Network Security Authentication Protocols 3

Who Is Authenticated?

  Human:
  Limited in terms of computation power and memory

  Machine:
  More powerful: long secrets, complex computation

  Hybrid:
  User is only authorized to execute some actions from a

restricted set of machines
  Users equipped with computation devices

2

Network Security Authentication Protocols 4

Password-Based Authentication

  Node A has a secret (password): e.g., “lisa”
  To authenticate itself A states the password
  No cryptographic operation because:

  Difficult to achieve by humans when connecting from dumb
terminals (less true today with authentication tokens)

  Crypto could be overly expensive in implementation time or
processing resources

  Export or legal issues

  Problems:
  Eavesdropping, cloning, etc.

  Should not be used in networked applications

Network Security Authentication Protocols 5

Offline vs. Online Password Guessing

  Online attack:
  How? try passwords until accepted
  Protection:

  Limit number of trials and lock account: e.g., ATM machine
  DoS problem: lock all accounts

  Increase minimum time between trials
  Prevent automated trials: from a keyboard, Turing tests
  Long passwords: pass phrases, initials of sentences, reject easy passwords
  What is the protection used by Yahoo? Hotmail? Gmail?

  Offline attack:
  How?

  Attacker captures X = f(password)
  Dictionary attack: try to guess the password value offline
  Obtaining X in a unix system: “ypcat passwd”
  Unix system: using the salt

  Protection:
  If offline attacks are possible then the secret space should be large

Network Security Authentication Protocols 6

L0pht Statistics (old)
  L0phtCrack against LM (LanMan – Microsoft)

  On 400 MHz quad-Xeon machine
  Alpha-numeric: 5.5 hours
  Alpha-numeric some symbols: 45 hours
  Alpha-numeric-all symbols: 480 hours

  LM is weak but was still used by MS for compatibility reasons up to
Windows XP, … NTLM, …

  Time-memory tradeoff technique (rainbow tables: Oechslin’03)
  Using 1.4GB of data can crack 99.9% of all alphanumerical passwords

hashes (237) in 13.6 seconds

  Side Note on choosing good passwords:
  Best practice from: SANS, MS, Red-Hat, etc.
  Long, with a mix of alphanumeric, lowercase, uppercase, and special

characters

3

Network Security Authentication Protocols 7

Password Length
  Online attacks:

  Can 4/6 digits be sufficient if a user is given only three trials?

  Offline attacks:
  Need at least: 64 random bits = 20 digits

  Too long to remember by a human!
  Or 11 characters from a-z, A-Z, 0-9, and punctuation marks

  Too long to remember by a human
  Or 16 characters pronounceable password (a vowel every two

characters)
  Conclusion:

A secret a person is willing to remember and type will not be as good as
a 64-bit random number

Network Security Authentication Protocols 8

Storing User Passwords
  Alternatives:

  Each user’s secret information is stored in every server
  The users secrets are stored in an authentication

storage node
  Need to trust/authenticate/secure session with the ASN

  Use an authentication facilitator node. Alice’s
information is forwarded to the authentication facilitator
who does the actual authentication

  Need to trust/authenticate/secure session with the AFN

  Authentication information database:
  Encryption
  Hashed as in UNIX (allows offline attacks)

Network Security Authentication Protocols 9

Other Issues Related to
Passwords

  Using a password in multiple places:
  Cascade break-in vs. writing the list of passwords

  Requiring frequent changes
  How do users go around this?

  A login Trojan horse to capture passwords
  Prevent programs from being able to mimic the login:

X11 (take the whole screen), read keyboard has “?”,
“Ctrl-Alt-Del”

  What happens after getting the password?
  Exit => alarm the user, freeze, login the user

4

Network Security Authentication Protocols 10

Initial Password Distribution

  Physical contact:
  How: go to the system admin, show proof of identity,

and set password
  Drawback: inconvenient, security treats when giving

the user access to the system admin session to set the
password

  Choose a random strong initial password (pre-
expired password) that can only be used for the
first connection

Network Security Authentication Protocols 11

Authentication Tokens

  Authentication through what you have:
  Primitive forms: credit cards, physical key
  Smartcards: embedded CPU (tamper proof)

  PIN protected memory card:
  Locks itself after few wrong trials

  Cryptographic challenge/response cards
  Crypto key inside the card and not revealed even if given the PIN
  PIN authenticates the user (to the card), the reader authenticates

the card

  Cryptographic calculator
  Similar to the previous card but has a display (or speaker)

Network Security Authentication Protocols 12

Address-Based Authentication
  Trust network address information
  Access right is based on users@address
  Techniques:

  Equivalent machines: smith@machine1 ≡ john@machine2
  Mappings: <address, remote username, local username>

  Examples:
  Unix: /etc/host.equiv, and .rhost files
  VMS: centrally managed proxy database for each <computer,

account> => file permissions

  Threats:
  Breaking into an account on one machine leads to breaking into

other machines accounts
  Network address impersonation can be easy in some cases. How?

5

Network Security Authentication Protocols 13

Cryptographic Authentication Protocols

  Advantages:
  Much more secure than previously mentioned

authentication techniques

  Techniques:
  Secret key cryptography, public key crypto, encryption,

hashing, etc.

Network Security Authentication Protocols 14

Other Types of Human Authentication

  Physical Access

  Biometrics:
  Retinal scanner
  Fingerprint readers
  Face recognition
  Iris scanner
  Handprint readers
  Voiceprints
  Keystroke timing
  Signature

Network Security Authentication Protocols 15

Passwords as Crypto Keys

  Symmetric key systems:
  Hash the password to derive a 56/64/128 bits key

  Public key systems:
  Difficult to generate an RSA private key from a password
  Jeff Schiller proposal:

  Password => seed for cryptographic random number generator
  Optimized by requesting the user to remember two numbers

  E.g. (857, 533): p prime number was found after 857 trials, and q after
533 trials

  Known public key makes it sensitive to offline attacks
  Usual solution:

  Encrypt the private key with the users password and store the
encrypted result (e.g., using a directory service)

6

Network Security Authentication Protocols 16

Eavesdropping &
Server Database Reading

  Example of basic authentication using public keys:
  Bob challenges Alice to decrypt a message encrypted with its public

key

  If public key crypto is not available protection against both
eavesdropping and server database reading is difficult:
  Hash => subject to eavesdropping
  Challenge requires Bob to store Alice’s secret in a database

  One solution:
  Lamport’s scheme allows a finite number of authentications

Network Security Authentication Protocols 17

Key Distribution Center

  Solve the scalability problem of a set of n nodes using secret key
  n*(n-1)/2 keys

  New nodes are configured with a key to the KDC
  e.g., KA for node A

  If node A wants to communicate with node B
  A sends a request to the KDC
  The KDC securely sends to A: EKA(RAB) and EKB(RAB, A)

  Advantage:
  Single location for updates, single key to be remembered

  Drawbacks:
  If the KDC is compromised!
  Single point of failure/performance bottleneck => multiple KDC?

Network Security Authentication Protocols 18

Multiple Trusted Intermediaries

  Problem:
  Difficult to find a single entity that everybody trusts

  Solution: Divide the world into domains
  Multiple KDC domains interconnected through shared

keys

  Multiple CA domains: certificates hierarchy

7

Network Security Authentication Protocols 19

Certification Authorities
  How do you know the public key of a node?
  Typical solution:

  Use a trusted node as a certification authority (CA)
  The CA generates certificates: Signed(A, public-key, validity information)
  Everybody needs to know the CA public key
  Certificates can be stored in a directory service or exchanged during the

authentication process
  Advantages:

  The CA doesn’t have to be online => more physical protection
  Not a performance bottleneck, not a single point of failure
  Certificates are not security sensitive: only threat is DoS
  A compromised CA cannot decrypt conversation but can lead to

impersonation
  A certification hierarchy can be used: e.g., X.509

Network Security Authentication Protocols 20

Certificate Revocation

  What if:
  Employer left/fired
  Private key is compromised

  Solution: similar to credit cards
  Validity time interval
  Use a Certificate Revocation List (CRL): X.509

  For example: lists all revoked and unexpired certificates

Network Security Authentication Protocols 21

Session Key Establishment

  Authentication is not everything
  What could happen after authentication?

  E.g., connection hijacking, message modification, replay, etc.
  Solution use crypto => need a share key between communicating

entities because public encryption/decryption is expensive
  Practically authentication leads to the establishment of a shared key for

the session
  A new key for each session:

  The more data an attacker has on a key the easier to break
  Replay between sessions
  Give a relatively “untrusted” software the session key but not the long-term key
  Good authentication protocol can establish session keys that provide forward

secrecy

8

Network Security Authentication Protocols 22

Delegation

  Give a limited right to some third entity:
  Example: printserver to access your files, batch process

  How?
  Give your password?
  ACL
  Delegation

Network Security Authentication Protocols 23

Security Handshake Pitfalls
  Developing a new encryption algorithm is believed to be

an “art” and not a “science”
  Security protocols build on top of these algorithms and

have to be developed into various types of systems

  Several Cryptographic Authentication Protocols exist
however:
  Several protocols were proven to have flaws
  Minor modifications may lead to flaws
  Use in a different context may uncover flaws or transform a non-

serious flaw into a serious one

Network Security Authentication Protocols 24

Login Only: Shared Secrets

  Sending the password on the clear is not safe: use shared secrets
  Challenge response: B sends R and A has to reply f(KAB, R). Weaknesses:

  Authentication is not mutual
  If the subsequent communication is not protected: hijacking treat
  Offline attack by an eavesdropper using R and f(KAB, R)
  An attacker who successfully reads B’s database can impersonate A

  Cascade effect if the same password is used on multiple servers
  Variants:

  B sends: KAB{R}, and A replies R
  Requires reversible cryptography which may be limited by export legislation
  Dictionary attacks if R is a recognizable value (padded 32 bits) don’t need eavesdropping

  A sends KAB{timestamp} (a single message)
  Requires: clock synchronization
  Problems with impersonation:

  within the clock skew: remember timestamp
  at another server: include B in message

9

Network Security Authentication Protocols 25

Login Only: One-Way Public Key

  Shared secrets are vulnerable if B’s database is compromised
  Public key protocols:

  A send the signature of R using its public key: [R]A

  Advantage:
  B’s database is no longer security sensitive to unauthorized disclosure

  Variant: B sends {R}public-A, A has to recover R and send it back
  Problem:

  You can trick A into signing a message or decrypting a message

  General solution: never use the same key for two purposes

Network Security Authentication Protocols 26

Mutual Authentication: Shared Secret

  Basic protocol: 5 messages,
  Optimized into 3 rounds but becomes subject to the Reflection attack:

  C impersonates A by initiating two sessions to B [both single/multiple servers]
  Solutions:

  Use different keys for A -> B authentication and B->A authentication
  For example: KB-A = KA-B +1

  Use different challenges:
  For example: challenge from the initiator be an odd number, while challenge from the

responder be an even number, concatenate the name of the challenge creator to the
challenge

  Another problem: password guessing without eavesdropping
  Solution: 4 messages protocol where the initiator proves its identity first
  Alternative two messages protocol using timestamp and timestamp+1 for R1

and R2

Network Security Authentication Protocols 27

Mutual Authentication: Public Keys

  Three messages protocol:
  A -> B: A, {R2}B
  B -> A: R2, {R1}A

  A -> B: R1

  Problems:
  Knowing the public keys

  Solutions:
  Store Bob’s public key encrypted with Alice’s password in some

directory
  Store a certificate of Bob’s public key signed by Alice’s private key

10

Network Security Authentication Protocols 28

Integrity/Encryption for Data
  Key establishment during authentication

  Use f(KA-B){R} as the session key where R is made out of
R1 and R2
  Example: f(KA-B) = KA-B +1
  Why not use KA-B{R+1} instead of f(KA-B)?

  Rules for the session key:
  Different for each session
  Unguessable by an eavesdropper
  Not KA-B{X}

Network Security Authentication Protocols 29

Two-Way Public Key Based
Authentication + Key Setup

  First attempt:
  A sends a random number encrypted with the public key of B
  Flaw: T can hijack the connection using her own R

  Second attempt:
  A sends [{R}B]A: encrypt using public key of B and then private key of A
  If someone records the conversation and then gets access to B key it can

recover R
  Third attempt:

  Both A and B participate through R1 and R2 shares: session key R1 ⊕ R2

  Fourth alternative:
  Use Diffie-Hellman key establishment protocol and each entity signs its

contribution

Network Security Authentication Protocols 30

One-Way Public Key Based
Authentication

  Context:
  Only one of the parties has a public key (e.g., SSL server)
  First the server is authenticated
  If needed the user is authenticated (e.g., using a password)

  First solution:
  A sends a random number encrypted with B’s public key
  The random number is used as a session key
  Problem: if an attacker records the communication and later on

breaks into A it can decode the whole communication

  Second solution:
  Use Diffie-Hellman with B signing his contribution

11

Network Security Authentication Protocols 31

Privacy and Integrity
  Privacy:

  Use a secret key algorithm to encrypt the data

  Integrity:
  Generate a Message Authentication Code (MAC)

  No clean solution for merged privacy and integrity:
  Use two keys (may be one derived from the other)
  Use a weak checksum then encrypt
  Use two different algorithms for encryption/integrity (e.g., AES) and MAC (e.g., HMAC/

SHA1)
  Replays:

  Use sequence number to avoid replays, or
  Include info about previous message

  Reflection: replay the message in a different direction
  Different range for each direction
  Use a direction bit
  Use a direction dependent integrity algorithm

  Key rollover: change keys periodically during the communication

Network Security Authentication Protocols 32

Needham-Schroeder
Authentication 1978

  Basis for Kerberos and many other authentication
protocols

  Uses NONCE (Number ONCE):
1.  A → KDC: N1, A, B
2.  KDC → A: KA{N1, B, KAB, ticket-to-B}; ticket-to-B=KB{KAB, A}
3.  A → B: ticket-to-B, KAB{N2}
4.  B → A: KAB{N2-1, N3}
5.  A → B: KAB{N3-1}

–  Why N1? T has stolen the old key of B and previous
request from A to KDC requesting to communicate with B

–  Why B in second message?
–  Reflection attack?

Network Security Authentication Protocols 33

Expanded Needham-Schroeder

  Vulnerability of basic protocol:
  T steals A’s key and can impersonate A even after A

changes it’s key (ticket stays valid)

  Proposed solution [Need87]
  Before talking to the KDC B gives A a nonce that has to

be included in the ticket => 7 messages protocol

12

Network Security Authentication Protocols 34

Otway-Rees Authentication 1987

1.  A → B: NC, A, B, KA{NA, NC, A, B}
2.  B → KDC: KA{NA, NC, A, B}, KB{NB, NC, A, B}
3.  KDC → B: NC, KA{NA, KAB}, KB{NB, KAB}
4.  B → A: KA{NA, KAB}
5.  A → B: KAB{ anything recognizable}

Network Security Authentication Protocols 35

NONCES
  Potential properties:

  Non-repeated, unpredictable, time dependent
  Context dependent

  A nonce may have to be unpredictable for some
challenge response protocols (with no session key
establishment)
  Sequence number doesn’t work for challenge response:

KAB{R}

  One solution is to use cryptographic random
number generators

Network Security Authentication Protocols 36

Random Numbers

  If the random number generation process is weak
the whole security system can be broken

  Pure randomness is very difficult to define
  Usually we differentiate:

  Random: specialized hardware (e.g., radioactive particle
counter)

  Pseudorandom: a deterministic process determined by
its initial state

  For testing purpose: hashing a seed using a good hashing
function can work

  For security purpose: long seed, good hashing function
(FIPS186)

13

Network Security Authentication Protocols 37

Performance Considerations

  Metrics:
  Number of cryptographic operations using a private key
  Number of cryptographic operations using a public key
  Number of bytes encrypted/decrypted using a secret key
  Number of bytes to be cryptographically hashed
  Number of messages transmitted

  Notes:
  Private key operations are usually more expensive than public key

operations

  Some optimization techniques:
  Caching information such as tickets

Network Security Authentication Protocols 38

Authentication Protocols Checklist
  Eavesdrop:

  Learn the content, learn info to impersonate A/B later or to another replica, offline
password guessing

  Initiating a conversation pretending to be A:
  Impersonate A, offline password guessing, delayed impersonation, trick B to sign/

decrypt messages
  Lie in wait at B’s network address and accept connections from A:

  Immediate/delayed impersonation of B or A, offline password guessing, trick A to
sign/decrypt messages

  Read A/B’s database:
  Sit actively/passively on the net between A and B (router):

  Offline password guessing, learn the content of messages, hijack connections, modify/
rearrange/replay/reverse direction of message

  Combinations:
  Even after reading both A and B databases T shouldn’t be able to decrypt recorded

conversations
  Even after reading B’s database and eavesdropping on an authentication exchange it

shouldn’t be possible to impersonate A to B

Network Security Authentication Protocols 39

STRONG PASSWORD PROTOCOLS

14

Network Security Authentication Protocols 40

Context & Solutions
  Context:

  A wants to use any workstation to log into a server B
  A has only a password
  The workstation doesn’t have any user-specific information (e.g., users’s

trusted CAs, or private keys)
  The software on the workstation is trustworthy

  Potential solutions:
  Transmit the password in the clear
  Use Diffie-Hellman key establishment (vulnerable to B impersonation)
  Use SSL (relies on trust anchors: trusts configuration and certificates)
  Challenge response authentication using a hash of the password as a

key (vulnerable to dictionary attacks)
  Use Lamport’s hash or S/KEY
  Use a strong password protocol (secure even if the shared secret could

be broken by an offline dictionary attack

Network Security Authentication Protocols 41

Lamport’s Hash: One Time Password

  Allows authentication
  Resistant to eavesdropping and reading Bob’s database
  Doesn’t use public key cryptography

  B’s database:
  Username (e.g., A),
  n (integer decremented at each authentication)
  hashn(password)

  Initialization:
  Set n to a reasonably large number (e.g., 1000)
  The user registration software computes: xn = hashn(password)

and sends xn and n to B

Network Security Authentication Protocols 42

Lamport’s Hash (Cont’d)
  Authentication:

  A connects to a workstation and gives her username and password
  The workstation sends A’s username to B
  B sends back n
  The workstation computes hashn-1(password) and sends it to B
  B computes the hash of the received value and compares it with the

stored value of hashn(password)
  If equal: decrement n and store the last received value
  When n gets to 1, A needs to reset its password (in a secure way)

  Enhancement: Salt
  x1 = hash(password | salt)
  Advantage:

  Use the same password on multiple servers
  Makes dictionary attacks harder (similar to Unix)
  Do not have to change the password when n reaches 1 (just change the salt)

15

Network Security Authentication Protocols 43

Pros and Cons
  Advantages:

  Not sensitive to eavesdropping, or reading B’s database

  Disadvantages:
  Limited number of logins
  No mutual authentication, difficulty to establish a common key, or prevent man-in-

the-middle
  One can use this scheme followed by a Diffie-Hellman key establishment: but this is

vulnerable to connection hijacking
  Small n attack:

  T impersonates B’s address and sends back a small value of n (e.g., 50)
  If the real value of n at B is 100 => T can impersonate A 50 times

  Use in the “human and paper” environment:
  Print the list and give it to A (the user won’t go back on the list)
  Use 64 bits out of 128 MD5 hash function
  Resiliency to small n attack
  What if you lose the list!

  Deployed in S/Key (Phil Karn) RFC 1938

Network Security Authentication Protocols 44

Strong Password Protocols
  Goal:

  Prevent off-line attacks
  Even if eavesdropping or impersonating addresses

  Basic Form: Encrypted Key Exchange (EKE) [Bellovin &
Merritt]
  A and B share a weak secret W (derived from A’s password)
  A and B encrypt their DH contributions using W
  Why is it secure? because W{ga mod p} is just a random number

and for any password W their could exist a r = ga
 such that W{r}

  Variants:
  Simple Password Exponential Key Exchange (SPEKE): use g = W
  Password Derived Moduli (PDM): Use p = f(W)

Network Security Authentication Protocols 45

Subtle Details
  A simple implementation may lead to flaws
  EKE:

  If p is a little more that a power of 2
  ga has to be less than p

  The attacker can try a password and if GUESS{W{ga mod
p}} is higher that p then discard guess

  A password from a space of 50’000 can be guessed after
about 20 exchanges

  Solution?
  SPEKE:

  Small problem if W is not a perfect square mod p

16

Network Security Authentication Protocols 46

Augmented Strong Password Protocol

  Goal:
  If an attacker steals B‘s database but doesn’t succeed with an

offline attack he cannot impersonate A

  How:
  avoid storing W in B’s database but only something derived from

W

  Augmented PDM:
  B stores “A”, p, 2W mod p

  A sends 2a mod p
  B sends: 2b mod p, hash(2ab mod p, 2bW mod p)
  A sends hash’ (2ab mod p, 2bW mod p)

Network Security Authentication Protocols 47

Augmented Strong Password Protocol

  RSA variant:
  B stores: “A”, W, A’s public key, Y = W ’{A’s private

key}
  A sends: A, W{ga mod p}
  B sends: W{gb mod p}, (gab mod p){Y}, c
  A replies: [hash(gab mod p, c)]sign-A

Network Security Authentication Protocols 48

Secure Remote Protocol (SRP)

  Invented by Tom Wu 1998, RFC2945
  B stores gW mod p
  A choose a and sends: “A”, ga mod p
  B choose b, c1, 32-bit number u, and sends gb+gw mod

p, u, c1

  => Share key is: K = gb(a+uW) mod p
  A sends: K{c1}, c2

  B sends: K{c2}

  How is the common key computed on both ends?

17

Network Security Authentication Protocols 49

Credentials Download Protocols

  Goal:
  A can only remember a short password
  When using a workstation A needs its environment

(user specific information)
  The user specific information could be downloaded from

a directory if A knew its private key
  Strong Password protocols can help

  Protocol based on EKE:
  B stores: “A”, W, Y = W’{A’s public key}
  A sends: “A”, W{ga mod p}
  B sends: gb mod p, (gab mod p){Y}

