1. Software Engineering and Software Life cycle.
 - Activities from initial concept to final phase of phasing out and replacement.
 - 2 parties to consider: Customer who use the product and designer who provides the product.
 - Waterfall-Model:
 i. Requirement specification: What the system is expected to provide.
 ii. Architectural design: How the system is expected to provide?
 iii. Detailed design: From the above high-level design, individual components are explicitly designed.
 iv. Coding and unit testing: Each individual components designed are coded and tested.
 v. Integration and testing: the above components are integrated and tested later.
 vi. Maintenance: involves correction of errors after the product release.
 - Validation and Verification: To ensure the high-level requirements of the customer are internally consistent.
 - Validation and verification proofs: Verification is concerned only within mathematical world but validation is concerned with both real-world requirements associated with corresponding mathematical world equivalence.
 - Management and contractual issues: wider aspects must be considered, like time constraints, marketability of system, availability of skilled personnel’s, etc.. There should be timely agreement between customer and designer.
 - Interactive system and life cycle: In these systems, the life cycles are iterative. All the components must be designed again to complement each other.
 - It also must depend on the observational quantities and such must be used to refine the components iteratively.
 - User-centered design.
- Usability Engineering: Is a User-centered design. The actual user-system interaction must be considered.
- Usability measures: These also must be considered iteratively in software life cycle.
- Problems with Usability Engg: Early Usability metrics must be explicitly conducted for the usable systems. But this depends on user behavior during different situations which designer initially is not aware of.
- Prototyping:
 (a) Throw away: prototype is built and tested. The knowledge gained are implemented and this prototype is then discarded.
 (b) Incremental: Final product is built as a series of components.
 (c) Evolutionary: Initial prototype is not discarded, but serves as a basis for next iteration.
- Potential problems:
 (a) Time: This takes time and throwing away these seems expensive.
 (b) Planning: Most don’t have experience in this field.
 (c) Non-functional features
- Techniques of prototyping:
 (a) Storyboards: snapshots of interface in interactive scene.
 (b) Functionality simulations: to demonstrate limited functionalities. These are simulated. These could be throw-away.
 (c) HyperTalk: using high-level special-purpose programming language.
- Drawbacks of iterative designs:
 (a) Real management issues.
 (b) Initial assumptions for the prototypes are usually wrong.
 (c) Must realize the reason behind the errors instead of finding the symptoms.
- Design rationale:
 (a) Design space analysis: set of questions related to major issues.
(b) Psychological design rationale: explicit consequences of design for the user.

INTERACTION PARADIGMS

- Terms of interaction: accomplish goals in a specific domain. An intention is an action to achieve this goal.
- Evaluation cycle:
 (a) Establish goals
 (b) Forming intentions
 (c) Specifying actions.
 (d) Executing these.
 (e) Perceiving the state.
 (f) Interpreting the state.
 (g) Evaluate the state.
- Interaction framework:
 (a) System
 (b) User
 (c) Input
 (d) Output
- User begins the cycle by formulation of goals and tasks to achieve these. This is by Input. This is transformed by system. System produces new state to user as output.
- Ergonomics:
 ♦ Study of physical characteristics of the interaction (Human Behavior).
 ♦ Arrangement: Functional (related functions and displays must be together).
 ♦ Arrangement: sequential (must reproduce the order of interaction)
 ♦ Arrangement: frequency (most frequent must be most accessible)
 ♦ Physical Environment: (arrangement of machines, displays and size of the users)
 ♦ Health Issues: (physical positions, Temperature, Lighting, Noise and time)
 ♦ Color: They must be distinct.
- Interaction styles:
 (a) Command Line Interface: instructions to the computer directly. Difficult to remember.
 (b) Menus: Options are displayed. Hierarchically ordered.
 (c) Natural Language: Ambiguity. Restricted to domains.
 (d) Query dialog: easy to use but limited functionalities.
 (e) Form-fills and spreadsheets: Useful for data entry and data retrieval.
 (f) WIMP: stands for windows, icons, menus and pointers. Used by Mac, Windows and Unix.
 (g) Point and click interfaces: Hypertext and web-browsers.
 (h) 3D interfaces: VR and 3D WIMP. 3D workspaces (windows in front are larger)

- Understanding experience: constraints of designer
 (a) Ergonomic
 (b) Physical
 (c) Legal and safety
 (d) Aesthetic
 (e) Economic.