
Crowdsourcing Formal Decision Making Using

Generalized Semantic Games

Ahmed Abdelmeged

April 17, 2013

Abstract

We are after a Wikipedia for formal scientific knowledge; a crowd-
sourcing system where formal science claims are expressed as interpreted
logical statements (a.k.a. claims). The crowd takes positions on claims
and objectively argues these positions through Semantic Games (SGs).
SGs are zero-sum, two-person games where players take two contradic-
tory positions on claims and exchange examples and counter-examples to
support their positions and dispute their opponent’s positions.

SGs provide an attractive basis for solving some key challenges that
face crowdsourcing systems. More concretely, 1) the challenge of defining
user contributions is to some extent solved by SGs because SG players
interact through a formal well-defined protocol. However, an SG is a bi-
nary interaction mechanism that needs to be scaled to the crowd. 2) SGs
provide a basis for solving the challenges of evaluating users and their con-
tributions because, under certain restrictions, SG winners are more likely
to be stronger than their opponents, and the contributions of SG win-
ners are more likely to be true than the contributions of their opponents.
However, the system either has to guarantee those restrictions or some-
how compensate for their absence. 3) SGs are fun to play, again under
certain restrictions, and thus help address the user retention challenge.
However, the challenge of combining user contributions is not addressed
by SGs. The system should combine the results of several SGs to better
evaluate users and their contributions.

Our proposed system can be applied to crowdsource the decision of a
formal science claim, the development of algorithms for solving formally-
specified computational problems as well as to educate and evaluate users.

We developed a proof of concept implementation that employs first-
order logic to express claims and two algorithms to evaluate users and
their contributions. We did not provide a particular Crowd Interaction
Mechanism (CIM), instead we provided an architectural principle to or-
ganize CIMs that alleviate some of the concerns related to the meaningful
evaluation of users.

With the help of the committee members, we propose the following
contributions: 1) to develop an SG-based Crowd Interaction Mechanism
(CIM). 2) to generalize SGs, beyond arguments based on examples and
counter-examples alone, to arguments that involve reductions (and other

1

relations between claims). 3) to develop an evaluation algorithm for users
and their contributions for generalized SGs.

Due to a funding crisis, our plan is to finish most of the work during
the first three months of the summer.

1 Introduction

Crowdsourcing has become an important problem solving approach that enables
us to tackle large scale problems that require human intelligence to solve. There
are two main reasons that human intelligence is required to solve a problem. 1)
The problem is underspecified such as image labeling [45] and the construction
of web page classifiers [23]. Humans are needed to partially specify what the
problem is. 2) The problem is formally specified but complex enough that we
have either no known solution procedure or a rather inefficient one. such as
programming, discovering protein folding [16], [8]. Humans are needed either
to solve the problem or to decide how to solve the problem.

We are after a wikipedia for formal scientific knowledge where a trusted
group of owners put out a set of formal science claims to the crowd to decide.
Like other crowdsourcing systems, there are five key challenges that our system
needs to address [19]:

1. What contributions can users make?

2. How to evaluate users and their contributions?

3. How to combine user contributions to solve the target problem?

4. How to recruit and retain users?

5. What is the Crowd Interaction Mechanism (CIM)?

The CIM essentially manages the context in which users make their contri-
butions. An example of a CIM is to enable users to contribute to a particular
wiki page only when they have an explicit permission from the page owner. The
design of a CIM often involves a trade-off between the meaning (i.e. output or a
quality of it) of the crowdsourcing system and the restrictions it puts on users’
behavior [21]. A CIM should also be simple and intuitive to users.

There are two approaches that a crowdsourcing system can take to objec-
tively evaluate formally specified user contributions without the help of other
humans. First, the system can check user contributions. FoldIt provides an
example where the system objectively evaluates user contributions. However,
this approach does not scale to any formally specified problem because checking
might either require huge computational resources or even be uncomputable.
Second, the system can require users to provide a proof of correctness of their
contributions that the system can efficiently check. However, this puts too much
burden on the user that only a much smaller crowd can handle.

There are two other approaches where the crowdsourcing system can rely
on users to evaluate the contributions of other users. First, the system can

2

solicit the solution from a group of users and then take the majority vote to be
the correct solution. However, there is no guarantee that the majority vote is
the correct vote. This approach is common in underspecified problems such as
image labeling and it completely ignores how did users reach the their solutions.
A better second approach is to let users with conflicting contributions resolve
the conflict through an argument. This approach is taken by the Wikipedia.

Our system models a formal science claim as an interpreted logical state-
ment (a.k.a. claim) and uses the Semantic Game (SG) of a claim as a formal
argument between two users taking contradictory positions on that claim. Ar-
guments made through SGs have an additional desirable property that they are
constructive (i.e. involve constructing mathematical objects). The mathemati-
cal objects constructed by SG winners can be of interest to both the owners as
well as to the loser as (s)he can learn from it.

1.1 Semantic Games

Logical games have a long history going back to Socrates. More recently, they
became a familiar tool in many branches of logic. Important examples are Se-
mantic Games (SGs) used to define truth, back-and-forth games used to com-
pare structures, and dialogue games to express (and perhaps explain) formal
proofs [36], [22], [28].

SGs are played between two players, the verifier and the falsifier 1. An
instructive way of viewing SGs is in their extensive form, which essentially is a
tree structure with the root labeled by the formula φ , the subsequent labeled
nodes representing the subformulas of φ, and the vertices labeled by the actions
of the players.

In the theory of SGs, logical statements interpreted in a computable struc-
ture (a.k.a. claims) derive their meaning from the games played by the rules
prompted by the logical connectives encountered in the claims [38]. The exis-
tence of a winning strategy for the verifier implies that the underlying logical
statement is indeed true and the existence of a winning strategy for the falsifier
implies that the underlying logical statement is indeed false.

Players need to solve computational problems in the course of playing SGs.
For example, the falsifier of the prime(7) = ∀k s.t. 1 < k < 7 : ¬divides(k, 7)
needs to compute the factors of 7. Similarly, claims can be used to logically
specify computational problems. For example, consider the problem of finding
the factors of a given natural number factors(n). This problem can be logically
specified using the claim ∀n∃s : ∀k : divides(k, n)⇔ k ∈ s. In SGs derived from
this claim, the verifier needs to correctly solve factors(n) in order to win.

A computational problem can be logically specified as a claim about the
relation between either (1) the input properties and the output properties, or (2)
the input properties and the output finding process properties such as resource
consumption.

1Other names have been also used in the literature such as I and Nature, Proponent and
Opponent, and Alice (female) and Bob (male).

3

2 Thesis

Our thesis is that semantic games of interpreted logic statements provide a
useful foundation for building successful crowdsourcing systems for deciding
formal science claims.

2.1 Rationale and Limitations of Semantic Games

SGs provide an attractive basis for solving some key challenges that face crowd-
sourcing systems. A successful SG-based system builds on SGs and overcomes
their limitations, most notably that SGs define a binary interaction mechanism
that needs to be scaled to a CIM. Below we provide a more detailed account of
the strengths and weaknesses of SGs.

2.1.1 User Contributions

During the course of playing an SG, users make two kinds of formal contribu-
tions: positions and supporting actions. These two kinds of contributions can
be extracted from SG traces as follows:

The trace of an SG can be represented as a directed line graph where nodes
represent the state of the SG and edges represent transitions. The state is a tuple
consisting of a claim and a pair of players, the player taking the verifier position
and the player taking the falsifier position. For example, the tuple 〈c, p1, p2〉
represents a state where p1 is the player taking the verifier position and p2 is the
player taking the falsifier position on claim c. A labeled transition represents
a supporting action while an unlabeled transition represents an implied action.
Implied actions are automatically carried out by the system. An example of
implied actions is given by: 〈¬c, p1, p2〉 −→ 〈c, p2, p1〉. Supporting actions are
either attacks or defenses, and they involve an additional parameter that one
of the users must provide. For example, the transition 〈∀x : p(x), p1, p2〉

x0−→
〈p(x0), p1, p2〉 is an attack made by p2, where x0 is a counter example provided
by p2.

Apart from playing SGs, users can still contribute by improving their own SG
playing strategies. Players, by improving their strategies, are able to spot more
problems in the positions taken by their opponents in future games. Because
users have to follow a well defined formal protocol to play an SG, this enables
users to automate the execution of their strategies into avatars. Algorithms
used in avatars are themselves yet another potential formal contribution (see
Section 2.2).

2.1.2 Evaluating Users

SGs provide an objective and self-sufficient approach to assess the relative
strength of users. Simply put, the winner of an SG is considered stronger than
the loser. This approach is fundamentally different from the current evaluation
schemes used in crowdsourcing systems such as: gold standards, trusted workers
and probabilistic oracles, and disagreement-based schemes [26].

4

Disagreement-based schemes evaluate the absolute strength of users based on
how often the user’s contribution is “correct” where a “Correct” contribution is
defined to be similar to the “majority vote”. SG-based evaluation is indepen-
dent of the “correctness” of user contributions. Instead SG-based evaluation
can objectively judge one contribution to be “better” than the other. It is worth
noting that the “better” contribution is not always necessarily similar to the
“majority vote”.

SG-based evaluation is said to be self-sufficient because, unlike gold standard
evaluation, it is not based on a set of pre-populated test cases. Instead, the two
users test each other.

It is important to evaluate users’ strength based on their performance in a
large number of SGs. The näıve approach of summing the number of SGs the
user won is unlikely to be fair due to several concerns that give one group of
players an advantage over another group of players. A comprehensive list of
these concerns is given by:

1. Users can be at an advantage (or at a disadvantage) if they participate
in more SGs where they are at an advantage (or at a disadvantage). A
player is at an advantage (or at a disadvantage) in an SG if either the claim
(CONCERN 1.a) or the position (CONCERN 1.b) is only forced on
their adversary (or only forced on them).

2. Users can be at an advantage (or at a disadvantage) if they participate in
more (or fewer) than the average number of SGs played by their counter-
parts (CONCERN 2).

3. Users can be at an advantage (or at a disadvantage) if they participate in
more SGs against other weaker (or stronger) users (CONCERN 3).

4. If a group of users can form a coalition with the goal of artificially increas-
ing the strength of a particular user through losing against that user on
purpose, then the winning user is at an advantage (CONCERN 4).

As we mentioned before, it would not be effective to address the first concern
by ensuring that in every game, neither of the players is at an advantage (or
a disadvantage). Instead, the system has to adopt a non-local view on fairness
and ensure that none of the players in the crowd is at an advantage (or a
disadvantage) considering all played SGs. The second and third concerns can be
addressed through either restricting the algorithm by which the system decides
which SGs to be played, or through a more sophisticated approach to assess the
user strength, or through both approaches. Anonymity can be used to defend
against the fourth concern.

2.1.3 Evaluating User Contributions

Based on the outcome of an SG, we cannot safely assume that certain contri-
butions are “correct”. Therefore, the best we can do is to judge certain user

5

contributions to be potentially correct. We consider contributions to be poten-
tially correct if we have no reason to believe they are potentially incorrect.

By definition, the contributions of an SG loser are “Incorrect”. Other reasons
to believe that certain contributions are potentially incorrect include:

1. The position taken by the winner was forced (CONCERN 5).

2. There is no mechanism to discourage “cheating” (i.e. knowingly making
“incorrect” contributions) either because their adversary is weak enough
not to discover the “cheat”, or to lose on purpose against their opponent
(CONCERN 6).

Anonymity can be used to discourage “cheating”. It is also possible to hold the
positions taken by users against themselves in future SGs.

2.1.4 Combining User Contributions

It is possible to collect the potentially correct contributions of all winners of SGs
into a contribution database. The crowd beliefs about claims can be assessed
from the contribution database. It is possible that “incorrect” contributions
make it to the contribution database (CONCERN 7). Therefore, it is neces-
sary to have a periodic mechanism to clean the contribution database in order
to enable more accurate assessment of the crowd beliefs.

Apart from estimating the crowd beliefs, SG losers get precise feedback on
how they can improve their SG playing strategies. Furthermore, users can then
build on the crowd beliefs. For example, suppose that the winners were mostly
taking the verifier position on the claim ∀k : divides(k, 3571) ⇔ k ∈ {1, 3571},
then this likely-to-be-true claim can be used as a test case for factorization
algorithms.

2.1.5 Recruiting and Retaining Users

Participating in an SG can provide users with an intrinsically rewarding experi-
ence. The exact intrinsic rewarding experience is user dependent. For example,
some participants can find the act of game play against an adversary to be fun.
Others can enjoy the educational (or collaborative) nature of SGs that comes
from the fact that the winner of an SG gives the loser very targeted feedback.

We believe that the following three factors that enhance the intrinsically
rewarding experience that SGs provide to users:

1. Choosing claims that both players find interesting (CONCERN 8).

2. Allowing users to choose their positions on claims (CONCERN 9).

3. Matching players with similar levels of strength (CONCERN 10).

6

Neither intrinsic nor extrinsic reward is absolutely superior 2 3. However,
most certainly, a crowd would have users that prefer both kinds of rewards.
Therefore, it is still useful to include other encouragement and retention schemes
(CONCERN 11) such as instant gratification, providing ways to establish,
measure, and show different qualities of the users, establishing competitions
and providing ownership situations [19].

2.2 Applications

Besides using an SG-based crowdsourcing system for deciding formal science
claims, it is also possible to use it to for teaching, software development and
formal science.

2.2.1 Teaching

The collaborative and self-evaluating nature of SGs is useful in teaching (es-
pecially MOOCs) where teaching other students helps boost one’s evaluation.
The winner against a non-forced opponent teaches the opponent a lesson.

2.2.2 Software Development

The mandatory use of formal specification of claims and the orderly nature of
the semantic games enables the system to be used as a crowdsourcing system for
algorithms for computational problems as well. Because users can “automate
themselves” as avatars (programs). The strongest avatars would have good al-
gorithms either for generating tests for other avatars or solving a computational
problem or both.

2.2.3 Formal Science

Although scientists in formal sciences are often interested in finding proofs to
their claims, it remains helpful to test those claims first with the help of the
crowd. Testing can provide them with useful insights. For example, testing can
reveal a corner case where the claim does not hold. Reformulating the original
claim to avoid such corner cases could be helpful in finding proofs [7]. It is worth
mentioning that the phrase “formal science” is not limited to mathematics and
logic. It also applies to scientific uses of formal simulation models.

3 Initial Investigation

To support our thesis, we designed and partially implemented [1] a proof of
concept SG-based crowdsourcing system. Our system constitutes a redesign

2For example, consider using Amazon Mechanical Turk (AMT) to label all images indexed
by Google. Would that be as cost effective as the ESP game? A second example is building
the Wikipedia. Would it be as cost effective to build the Wikipedia using AMT?

3Extrinsic reward is believed to be superior in motivating automatic (motor) tasks, while
intrinsic value would be superior in motivating intelligent (cognitive) tasks [39], [27], [24].

7

from scratch of the Scientific Community Game (SCG) [10], [9], [32] which has
been evolving since 2007. Below, we describe our newly designed system and
report on our experience of using earlier iterations of SCG for teaching.

3.1 System Overview

In a nutshell, our system uses first-order logic to express claim families (See
Appendix A for more details), and uses the semantic games of first-order logic
formulas defined by Hintikka’s Game-Theoretic-Semantics [30] (See Appendix B
for more details).

To ensure that claims are never forced on users, our system uses labs. Labs
define special interest groups of users. A lab is created by an owner (one kind of
user) and consists of a family of claims. Scholars (another kind of user) choose
to join the labs they find interesting. The system only allocates users to SGs
of claims from the labs they joined. This enhances the users’ experience while
participating in SGs (CONCERN 8) and guarantees that users are never at a
disadvantage regardless of the method used to chose the underlying claims for
SGs (CONCERN 1.a).

Rather than making scholars participate in SGs directly, the CIM in our
system makes users participate in Contradiction-Agreement Games (CAGs).
Although CAGs are composed of SGs, CAGs can be played by two players
taking the same position on the underlying claims. This enhances the users’
experience (CONCERN 9). Furthermore, CAGs are specifically designed to
provide a fair evaluation (CONCERN 1.b) and to identify potentially correct
contributions (CONCERN 5). CAGs are described in Section 3.2. Currently,
our system has a per-lab CIM. Lab owners are required to provide their CIM
mechanisms taking into account to match scholars with close enough strength.
This is critical to enhance the users’ experience (CONCERN 10) and fairness
(CONCERN 3).

Our system uses an algorithm to evaluate the users’ strength as fairly as pos-
sible. Our algorithm is designed to address the fairness concerns (CONCERN
2,3). The algorithm is described in Section 3.3. To estimate crowd beliefs, our
system uses a simple formula that is presented in Section 3.4. To discourage
“cheating” (CONCERN 4,6), our system relies on anonymity. Currently, our
system does not provide a mechanism for cleaning the contributions database
(CONCERN 7) nor any encouragement and retention schemes (CONCERN
11) other than the fun that scholars get from participating in SGs.

3.2 The Contradiction-Agreement Game

CAGs remove the restriction that scholars must take contradictory positions on
claims. In case scholars take contradictory positions, CAG reduces to one SG.
Otherwise, CAG reduces to two testing SGs. In a test SG, one of the scholars,
the tester, is forced to take the opposite position of the position it chose. The
two scholars switch their testing roles between the two games. Even though
the tester is forced to take a particular position, CAG-based evaluation remains

8

Game forced winner payoff potentially correct
(p1, p2) contribution

Agreement T1 p2 p1 (0, 0) p1

p2 p2 (0, 1) –

Agreement T2 p1 p1 (1, 0) –
p1 p2 (0, 0) p2

Contradiction – p1 (1, 0) p1

– p2 (0, 1) p2

Table 1: The Contradiction-Agreement Game

fair. It also remains possible to get potentially correct contributions out of the
testing games when the winner is not the forced tester.

SGs with forced scholars can cause unfairness in two different ways:

1. Winning against a forced scholar is not the same as winning against an
unforced scholar. Giving both winners a point for winning would be unfair.

2. The forced scholar is at a disadvantage.

To overcome these two problems, we adopt the rule that the scholar winning an
SG scores a point only if its adversary is not forced. Although, this solves the
two problems, it, oddly enough, puts the winner at a disadvantage because it
has no chance of scoring a point. Luckily, considering both test games together,
the evaluation (i.e. payoff) is fair because both scholars have an equal chance
of scoring. Furthermore, scholars remain properly incentivised to win under the
payoff. This is important to ensure the fairness of user evaluation as well as the
potential correctness of the contributions of the unforced winners. Our readers
can verify these properties by inspecting Table 1 which summarizes CAGs. The
columns of the table indicate the name of the SG being played, the forced
scholar (if any), the SG winner, and whether the contribution of the winner is
potentially correct (assuming that “cheating” is somehow discouraged).

3.2.1 CAG Desirable Properties

CAG encourages innovation because forced scholars can score while their ad-
versary cannot. This provides an incentive for forced players to win SGs even
though they are forced to take positions that are often contradictory to their
own intuition as well as to the crowd beliefs. Also, CAGs ensure that some
form of progress is taking place either as an update to the player scores or that
a potentially correct contribution has been made. Furthermore, in the first case,
the loser is receiving targeted feedback and in the second case, the community
benefits from the potentially correct contribution.

9

3.3 Evaluating User Strength

We devised an algorithm to evaluate user strength based on CAG scores. The
algorithm weighs the scores by the strength of the adversary and calculates the
strength of the scholar as the ratio of wins over the sum of wins and losses in
order to even out the difference in the number of played CAGs (CONCERN
2) as well as the difference in the strength of adversaries (CONCERN 3).

Informally, the algorithm starts with an estimate of 1 for the strength of all
players. Then it computes the weighted wins and losses for each player based
on the payoffs and the strength of their adversaries. Then it computes strength
as the fraction of weighted wins divided by the sum of weighted wins and losses.
The last two steps are iterated to a fixpoint.

Formally, we denote the sum of payoffs that scholar S1 gets from scholar S2

by Payoff(S1, S2). The strength of user S is denoted by Str(S). The algorithm
is given by:

Str(−1)(Si) = 1

Wins(k)(Si) =
∑

Payoff(Si, Sj) ∗ Str(k−1)(Sj)

Losses(k)(Si) =
∑

Payoff(Sj , Si) ∗ (1− Str(k−1)(Sj))

Total(k)(Si) = Wins(k)(Si) + Losses(k)(Si)

Str(k)(Si) =

{
Wins(k)(Si)/Total(k)(Si), if Total(k) 6= 0
0.5, otherwise.

Ideally, we would like the strengths produced by the algorithm to be con-
sistent with the payoffs (i.e. ∀S1, S2 : Payoff(S1, S2) ≥ Payoff(S2, S1) ⇒
Str(S1) ≥ Str(S2)). However, the relation R(S1, S2) = Payoff(S1, S2) ≥
Payoff(S2, S1) is not necessarily transitive while the relationQ(S1, S2) = Str(S1) ≥
Str(S2) is. However, we conjecture that the strengths produced by our algo-
rithm minimize such inconsistencies.

However, the the algorithm possesses the following weaker soundness prop-
erties:

1. A scholar Si that beats the score of another scholar Sj on their mutual
games as well as on games with all other scholars Sk will have a higher
strength. ∀i, jPayoff(Si, Sj) > Payoff(Sj , Si)∧∀k 6= i, j : Payoff(Si, Sk) ≥
Payoff(SJ , Sk) ∧ Payoff(Sj , Sk) ≤ Payoff(Si, Sk)⇒ Str(Si) ≥ Str(Sj).

2. A scholar that only won(lost) games will have a strength of 1(0). For-
mally, ∀i∀jPayoff(Si, Sj) = 0 ∧ ∃jPayoff(Sj , Si) > 0 ⇒ Str(Si) = 0, and
∀i∀jPayoff(Sj , Si) = 0 ∧ ∃jPayoff(Si, Sj) > 0 ⇒ Str(Si) = 1. A scholar
that has not won or lost any games will have a strength of 0.5. Formally,
∀i∀jPayoff(Sj , Si) = 0 ∧ Payoff(Si, Sj) = 0⇒ Str(Si) = 0.5.

10

3.4 Evaluating Crowd Beliefs

We consider the positions taken by non-forced CAG winners to be providing
the community with an evidence that these positions are correct. We take the
strength of the losing user as the weight of such evidence. For each claim c
we let cT be the sum of the weights of all evidences that c is true, cF be the
sum of the weights of all evidences that c is false. The believed likelihood that
c is true is CT /(CT + CF). Similarly, the believed likelihood that c is false is
CF /(CT + CF).

3.5 Experience with SCG

We report on our experience using SCG in teaching algorithms classes [2]. The
most successful course (using [29] as textbook) was in Spring 2012 where the
interaction through the SCG encouraged the students to solve difficult problems.
Almost all homework problems were defined through labs, and the students
posted both their exploratory and preformatory actions [35] 4 on Piazza [3].
We used a multi player version of the SCG binary game which created a bit of
an information overload. Sticking to binary games would have been better but
requires splitting the students into pairs. The informal use of the SCG through
Piazza proved successful. All actions were expressed in JSON which allowed
the students to use a wide variety of programming languages to implement
their algorithms.

The students collaboratively solved several problems such as the problem of
finding the worst-case inputs for the Gale-Shapely stable matching algorithm.

We do not believe that, without the SCG, the students would have created
the same impressive results. The SCG effectively focuses the scientific discourse
on the problem to be solved.

The SCG proved to be adaptive to the skills of the students. A few good
students in a class become effective teachers for the rest thanks to the SCG
mechanism.

4 Proposed Further Investigation

Our proposed work includes further development to the current system, its
underlying model, as well as to evaluate our system.

4.1 Model Development

4.1.1 Claim Family Relations and Meta Labs

SGs utilize only valid implications such as ∀x : p(x)⇒ p(x0) and p(x0)⇒ ∃x :
p(x). However, there are other implications between claim families that are

4Choosing a claim and a position are exploratory actions, supporting actions are perfor-
matory actions.

11

often utilized in formal proofs. For example, consider the following two claim
families:

1. Size of minimum graph basis: a basis of a directed graph G is defined
as set of nodes such that any node in the graph is reachable from some
node in the basis. Formally, MinBasisSize(G ∈ Digraphs, n ∈ N) =
BasisSize(G,n)∧∀k s.t. k < n : ¬BasisSize(G, k) where BasisSize(G ∈
Digraphs, n ∈ N) = ∃s ∈ P(nodes(G)) s.t. |s| = n : ∀m ∈ nodes(G) ∃p ∈
paths(G) : last(p) = m ∧ first(p) ∈ s.

2. Number of source nodes of a DAG : a source node is a node with no incom-
ing edges. Formally, #src(D ∈ DAGs,m ∈ N) = ∃s ∈ P(nodes(D)) s.t. |s| =
m : ∀v ∈ nodes(D) : inDegree(v) = 0⇔ v ∈ s.

The relation between the two claim families MinBasisSize(G ∈ Digraphs, n ∈
N) and #src(D ∈ DAGs,m ∈ N) can be described by ∀G ∈ Digraphs, n ∈ N :
MinBasisSize(G,n) = #src(SCCG(G), n) where SCCG refers to Tarjan’s the
Strongly Connected Component Graph algorithm.

Like other claims, claims about relations between claim families can be stud-
ied in a regular lab in our system. However, we see a potential to further utilize
these claims to cross check crowd beliefs across labs and to translate user contri-
butions across labs. To harness this potential, we propose to add meta labs to
our system. More specifically, we propose to answer the two following questions:

1. How can our system further utilize relations between claim families beyond
regular claims?

2. How to express meta labs so that it is possible to further utilize them in
an automated way?

4.1.2 Generalized Claims

Users can lose SGs involving optimization problems even if their solutions can
be almost optimal. For example, consider the following claim:

∀p ∈ Problem : ∃s ∈ Solution : ∀t ∈ Solution : better(quality(s, p), quality(t, p))

It is enough for the falsifier to provide a slightly better solution to win. As
remedy, it is possible to bias the situation towards the verifier by requiring the
falsifier to provide a solution that is well better than the solution provided by
the verifier in order to win. The following claim illustrates this solution:

∀p ∈ Problem : ∃s ∈ Solution : ∀t ∈ Solution : within10%(quality(s, p), quality(t, p))

It is also possible to generalize the claims such that the larger the quality gap
is, the more of a payoff the winner gets. For example, assuming the distance
function returns a number between −1 and 1, the following generalized claim
illustrates this solution:

∀p ∈ Problem : ∃s ∈ Solution : ∀t ∈ Solution : distance(quality(s, p), quality(t, p))

12

We propose to develop a systematic approach for computing the payoff in SGs
for generalized claims.

4.2 System Development

We propose to turn the current implementation [1] into a web based application.
We also propose to further develop the claim language and the CIM and the
encouragement and retention scheme.

4.2.1 Claim Language

There are certain game related concerns that cannot be expressed in the current
claim language. Furthermore, the current language is not as user friendly as it
could be. To overcome these two problems, we propose to make the following
enhancements to the claim language:

1. make the claim language support second order logical sentences. This
enables the claim language to express properties about the resource con-
sumption of algorithms. For example, AlgoRunTime(c, nmin, nmax) =
∃a ∈ Algo : ∀i ∈ Input s.t. nmin ≤ size(i) ≤ nmax : correct(i, a(i)) ∧
RunTime(a(i)) <= c ∗ size(i).
Second order logical sentences can also express the dependence (or inde-
pendence) of atoms through Skolem functions. Other approaches to ex-
press the dependence concerns is through either the dependence friendly
logic or the independence friendly logic [44].

2. add a let binder for efficiency. For example, to avoid computing a(i) twice
in AlgoRuntime.

3. add syntactic forms, in addition to Formula, to provide a more user
friendly support of different kinds of computational problems (such as
search, optimization, counting problems). For example, to enable users to
write: sat(f) = maxJ csat(f, J), instead of: sat(f, x) = ∃J s.t. csat(f, J) =
x : ∀H : csat(f,H) ≤ csat(f, J)

4. add an abstraction facility.

4.2.2 Crowd Interaction Mechanism

We propose to implement the following CIM. Lab owners establish Swiss-style
CAG tournaments between scholars in the lab in order to drive interactions in
the lab. Swiss-style tournaments have the property of matching players with
similar strength and therefore enhancing the users’ experience (CONCERN
10) as well as fairness (CONCERN 3). Claims can be chosen by one of the
following approaches:

1. CAG matches: CAG matches consist of an even number of CAGs. Each
scholar chooses the claim for exactly half of the CAGs. Claims must be
chosen from the lab’s claim family.

13

2. Owner dictated : the lab owner provides an algorithm for selecting claims
to achieve a particular purpose. For example, if the purpose is to clean the
contribution database, then the algorithm would select claims underlying
scholar contributions in the contribution database. The purpose could also
to solve a particular subset of open problems or to solve a computational
problem in a particular approach, delegating subproblems to the crowd.
For example, the purpose could be to plot the relationship between a
particular claim family parameter and the correctness of the claim.

3. Battleship style: use a claim that both scholars had previously contributed
a position on.

A distinctive feature of this CIM is that scholars never choose their ad-
versaries. This is important to discourage “cheating” (CONCERN 4,6). A
second feature is that CIM memoizes winning positions taken by scholars and
never asks scholars to provide these positions in subsequent CAGs until scholars
fail to defend these positions. The contribution database plays the role of the
cache for winning positions. This is important to discourage “cheating” (CON-
CERN 6). It is also important that the CIM allows scholars to revise their
previously established contributions to avoid losing future CAGs

4.2.3 Encouragement and Retention Scheme

We suppose that scholars will aspire to have the highest scores on meaningful
performance measures. The system can establish the scores for players and
provide few different views, such as a leaderboard, for scholars to encourage
score based competition. In addition to strength, we propose to develop the
following complementary measures:

1. Breakthrough contribution : When required to do so, scholars might pro-
vide well known claims that they know how to defend. The purpose of
developing a measure for breakthrough contributions is to encourage schol-
ars to propose new claims and take positions opposing to the crowd beliefs.

2. Learning : Learning is an indirect contribution of scholars. We propose to
assess learning through the change in scholar’s strength as well as through
scholar’s revisions to its own established contributions.

3. Crowd preference : Scholars might be able to spot certain attractive prop-
erties of a particular contribution. The idea is to enable scholars to “like”
contributions and essentially count the “likes” the contributions of a par-
ticular scholar gets.

Another potential encouragement and retention scheme that we want to
explore is to have an underlying theme where scholars are represented by cus-
tomizable virtual avatars. This enhances the engagement as scholars can become
invested in customizing their avatars besides it makes it easier for scholars to
be embodied in CAGs by their avatar.

14

4.3 Evaluation

We propose to conduct a two part evaluation of effectiveness of our system in
leveraging the problem solving ability of the crowd. The first part consists of
evaluating the quality of the algorithms produced by the crowd to solve non-
trivial computational problems. We propose to compare those algorithms to
the best known algorithms. Examples include the max cut problem and the
highest safe rung problems. The second part consists of comparing the quality
of the algorithms produced by the crowd through our system to algorithms
produced through traditional crowdsourcing competitions. Examples include
the genome-sequencing-problem [4].

We propose to also use our crowdsourcing system to evaluate a number of
its components and their properties.

5 Plan

Our plan is to spend about 3 months on developing the model and the system.
During these 3 months we plan to submit a paper about the developed model
and system either to the First AAAI Conference on Human Computation and
Crowdsourcing [5] or to Ninth Annual AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment [6]. Then to spend another 3 months to
do the evaluation and write the dissertation.

5.1 Time Line

Milestone 1: Mid May : Finish the development of an improved user strength
assessment and claim truth likelihood using information networks. Milestone
2: End of May: Finish the first iteration of the CIM and get the system on
the web. Milestone 3: Mid June : Finish the first iteration of generalized SGs.
Milestone 4: End of June: Experiments. The writing is a parallel effort to end
in august. Defense: End of August.

References

[1] Website. https://github.com/amohsen/fscp.

[2] Website. http://www.ccs.neu.edu/home/lieber/teaching.html.

[3] Website. http://www.piazza.com.

[4] Algorithm development through crowdsourcing.
http://catalyst.harvard.edu/services/crowdsourcing/algosample.html.

[5] The first aaai conference on human computation and crowdsourcing.
http://www.humancomputation.com/2013/.

15

[6] Ninth annual aaai conference on artificial intelligence and interactive digital
entertainment. http://www.aiide.org/.

[7] The polymath blog. Website. http://polymathprojects.org/.

[8] EteRNA. Website, 2011. http://eterna.cmu.edu/.

[9] Ahmed Abdelmeged and Karl J. Lieberherr. The Scientific Commu-
nity Game. In CCIS Technical Report NU-CCIS-2012-19, October
2012. http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/SCG-
definition-NU-CCIS-2012.pdf .

[10] Ahmed Abdelmeged and Karl J. Lieberherr. FSCP: A Plat-
form for Crowdsourcing Formal Science. In CCIS Technical Re-
port, February 2013. http://www.ccs.neu.edu/home/lieber/papers/SCG-
crowdsourcing/websci2013submissionFSCP.pdf.

[11] Erik Andersen. Optimizing adaptivity in educational games. In Proceedings
of the International Conference on the Foundations of Digital Games, FDG
’12, pages 279–281, New York, NY, USA, 2012. ACM.

[12] Erik Andersen, Eleanor O’Rourke, Yun-En Liu, Rich Snider, Jeff Lowder-
milk, David Truong, Seth Cooper, and Zoran Popovic. The impact of
tutorials on games of varying complexity. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12, pages 59–
68, New York, NY, USA, 2012. ACM.

[13] J. Attenberg, P.G. Ipeirotis, and F. Provost. Beat the machine: Challenging
workers to find the unknown unknowns. In Workshops at the Twenty-Fifth
AAAI Conference on Artificial Intelligence, 2011.

[14] Abraham Bernstein, Mark Klein, and Thomas W. Malone. Programming
the global brain. Commun. ACM, 55(5):41–43, May 2012.

[15] Bryan Chadwick. DemeterF: The functional adaptive programming library.
Website, 2008. http://www.ccs.neu.edu/home/chadwick/demeterf/.

[16] Seth Cooper, Adrien Treuille, Janos Barbero, Andrew Leaver-Fay, Kathleen
Tuite, Firas Khatib, Alex Cho Snyder, Michael Beenen, David Salesin,
David Baker, and Zoran Popović. The challenge of designing scientific
discovery games. In Proceedings of the Fifth International Conference on
the Foundations of Digital Games, FDG ’10, pages 40–47, New York, NY,
USA, 2010. ACM.

[17] Seth Cooper, Adrien Treuille, Janos Barbero, Andrew Leaver-Fay, Kathleen
Tuite, Firas Khatib, Alex Cho Snyder, Michael Beenen, David Salesin,
David Baker, and Zoran Popović. The challenge of designing scientific
discovery games. In Proceedings of the Fifth International Conference on
the Foundations of Digital Games, FDG ’10, pages 40–47, New York, NY,
USA, 2010. ACM.

16

[18] Peter J. Denning. Is computer science science? Commun. ACM, 48(4):27–
31, April 2005.

[19] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing
systems on the world-wide web. Commun. ACM, 54(4):86–96, April 2011.

[20] James Franklin. The formal sciences discover the philosophers’ stone. Stud-
ies in History and Philosophy of Science, 25(4):513–533, 1994.

[21] Casper Harteveld. Triadic Game Design. Springer, 2011.

[22] Wilfrid Hodges. Logic and games. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2009 edition, 2009.

[23] P. Ipeirotis, F. Provost, V. Sheng, and J. Wang. Repeated labeling using
multiple noisy labelers. This work was supported by the National Science
Foundation under GrantNo. IIS-0643846, by an NSERC P, Vol, 2010.

[24] Panagiotis G. Ipeirotis and Praveen K. Paritosh. Managing crowdsourced
human computation: a tutorial. In Proceedings of the 20th international
conference companion on World wide web, WWW ’11, pages 287–288, New
York, NY, USA, 2011. ACM.

[25] Alexander Jaffe, Alex Miller, Erik Andersen, Yun-En Liu, Anna Karlin,
and Zoran Popovic. Evaluating competitive game balance with restricted
play, 2012.

[26] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. Eval-
uating the crowd with confidence. Technical report, Stanford University,
August 2012.

[27] D. Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011.

[28] Laurent Keiff. Dialogical logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2011 edition, 2011.

[29] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2005.

[30] J. Kulas and J. Hintikka. The Game of Language: Studies in Game-
Theoretical Semantics and Its Applications. Synthese Language Library.
Springer, 1983.

[31] Karl Lieberherr. The Scientific Community Game. Website, 2009.
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html.

[32] Karl J. Lieberherr, Ahmed Abdelmeged, and Bryan Chadwick. The
Specker Challenge Game for Education and Innovation in Construc-
tive Domains. In Keynote paper at Bionetics 2010, Cambridge,
MA, and CCIS Technical Report NU-CCIS-2010-19, December 2010.
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-
2010.pdf.

17

[33] Karl J. Lieberherr and Ernst Specker. Complexity of Partial Satisfaction.
Journal of the ACM, 28(2):411–421, 1981.

[34] Karl J. Lieberherr and Ernst Specker. Complexity of Partial
Satisfaction II. Elemente der Mathematik, 67(3):134–150, 2012.
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-
SAT2.pdf.

[35] Jonas Linderoth. Why gamers don’t learn more: An ecological approach
to games as learning environments. In Lankoski Petri, Thorhauge Anne
Mette, Verhagen Harko, and Waern Annika, editors, Proceedings of DiGRA
Nordic 2010: Experiencing Games: Games, Play, and Players, Stockholm,
January 2010. University of Stockholm.

[36] Mathieu Marion. Why Play Logical Games. Website, 2009.
http://www.philomath.uqam.ca/doc/LogicalGames.pdf .

[37] Jordi Petit, Omer Giménez, and Salvador Roura. Jutge.org: an educational
programming judge. In Proceedings of the 43rd ACM technical symposium
on Computer Science Education, SIGCSE ’12, pages 445–450, New York,
NY, USA, 2012. ACM.

[38] Ahti Pietarinen. Games as formal tools vs. games as explanations. Technical
report, 2000.

[39] D.H. Pink. Drive: The Surprising Truth About What Motivates Us. Canon-
gate Books, 2011.

[40] Karl Raimund Popper. Conjectures and refutations: the growth of scientific
knowledge, by Karl R. Popper. Routledge, London, 1969.

[41] Walt Scacchi. The Future of Research in Computer Games and Vir-
tual Worlds: Workshop Report. Technical Report UCI-ISR-12-8, 2012.
http://www.isr.uci.edu/techreports/UCI − ISR− 12− 8.pdf.

[42] Robert Sedgewick. The Role of the Scientific Method in Programming.
Website, 2010. http://www.cs.princeton.edu/ rs/talks/ScienceCS.pdf .

[43] Tero Tulenheimo. Independence friendly logic. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Summer 2009 edition, 2009.

[44] J. Väänänen. Dependence Logic:. London Mathematical Society Student
Texts. Cambridge University Press, 2007.

[45] Luis von Ahn and Laura Dabbish. Labeling images with a computer game.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, pages 319–326, New York, NY, USA, 2004. ACM.

[46] Kevin J. S. Zollman. The communication structure of epistemic communi-
ties. Philosophy of Science, 74(5):574–587, 2007.

18

Appendix A Claim Language

A claim is an interpreted statement in first-order predicate logic. A claim con-
sists of an underlying structure M , a predicate formula φ potentially containing
free variables, an assignment g for the free variables in φ.

A Formula is either a simple Predicate, a Compound formula, a Negated
formula, or a Quantified formula. A Compound formula consists of two sub-
formulas, left and right and a Connective which is either an And or an Or
connective. A Quantified formula consists of a Quantification and a subfor-
mula. A Quantification consists of a Quantifier, two identifiers represent-
ing the quantified variable name and type, and an optional Predicate further
restricting the values the quantified variable can take. A Quantifier can be
either a ForAll, an Exists, or Free which we use to declare free variables in
a formula. Figure 1 shows the grammar for a formula expressed using the class
dictionary notation [15].

Formula = Pred i ca te | Compound | Negated | Quant i f i ed .
Pred i ca te = <name> i d ent ” (” <args> CommaList (ident) ”) ” .
Compound = ” (” < l e f t > Formula

<connect ive> Connective
<r i ght > Formula ”) ” .

Negated = ” (” ” not” <formula> Formula ”) ” .
Connective = And | Or .
And = ”and” .
Or = ” or ” .

Quant i f i ed = <q u a n t i f i c a t i o n > Q u a n t i f i c a t i o n <formula> Formula
.

Q u a n t i f i c a t i o n = ” (” <q u a n t i f i e r > Qu an t i f i e r
<var> i d ent
” in ” <type> i d ent
<qPred> Option (Q u a n t i f i c a t i o n P r e d i c a t e) ”) ” .

Q u a n t i f i c a t i o n P r e d i c a t e = ”where” <pred> Pred i cate .
Qu an t i f i e r = ForAll | Ex i s t s | Free .
ForAll = ” f o r a l l ” .
Ex i s t s = ” e x i s t s ” .
Free = ” f r e e ” .

Figure 1: Formula Language

Appendix B Semantic Games

Given a claim c and two scholars, a verifier ver and a falsifier fal. Let M be
the underlying structure of c, let φ be the formula and g be c’s assignment to
the free variables in φ. We define the semantic game of ver and fal centered

19

around c SG(c,ver, fal) to be G(φ,M, g, ver, fal) which is a two-player, zero-
sum game defined as follows:

1. If φ = R(t1, ..., tn) and M, g |= R(t1, ..., tn), ver wins; otherwise fal wins.

2. If φ =!ψ, the rest of the game is as in G(ψ,M, g, fal, ver).

3. If φ = (ψ ∧ χ), fal chooses θ ∈ {ψ, χ} and the rest of the game is as in
G(θ,M, g, ver, fal).

4. If φ = (ψ ∨ χ), ver chooses θ ∈ {ψ, χ} and the rest of the game is as in
G(θ,M, g, ver, fal).

5. If φ = (∀x : p(x))ψ, fal chooses an element a from M such that p(a)
holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If fal fails to do so, it loses.

6. If φ = (∃x : p(x))ψ, ver chooses an element a from M such that p(a)
holds, and the rest of the game is as in
G(ψ,M, g[x/a], ver, fal). If ver fails to do so, it loses.

The definition of G is adopted from the Game Theoretic Semantics (GTS) of
Hintikka [30], [43]. We slightly modified Hintikka’s original definition to handle
the quantification predicate in our language.

Appendix C Related Work

C.1 Crowdsourcing and Human Computation

There are several websites that organize competitions. Examples include, Top-
Coder.com and Kaggle.com. We believe that we provide a foundation to such
websites.

We provide a specific, but incomplete proposal of a programming interface to
work with the global brain [14]. Our approach can be seen as a generic version
of the “Beat the Machine” approach for improving the performance of machine
learning systems [13] as well as other scientific discovery games, such as FoldIt
and EteRNA. [17] describes the challenges behind developing scientific discovery
games. [12] argues that complex games such as FoldIt benefit from tutorials.
This also applies to our system, but a big part of the tutorial is reusable across
scientific disciplines.

C.2 Logic and Imperfect Information Games

Logic has long promoted the view that finding a proof for a claim is the same
as finding a defense strategy for a claim. Logical Games [36], [22] have a long
history going back to Socrates. The SCG is an imperfect information game
which builds on Paul Lorenzen’s dialogical games [28].

20

C.3 Foundations of Digital Games

A functioning game should be deep, fair and interesting which requires careful
and time-consuming balancing. [25] describes techniques used for balancing
that complement the expensive playtesting. This research is relevant to SCG
lab design. For example, if there is an easy way to refute claims without doing
the hard work, the lab is unbalanced.

C.4 Architecting Socio-Technical Ecosystems

This area has been studied by James Herbsleb and the Center on Architecting
Socio-Technical Ecosystems (COASTE) at CMU http://www.coaste.org/. A
socio-technical ecosystem supports straightforward integration of contributions
from many participants and allows easy configuration.

Our proposed system has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collaboration between schol-
ars is achieved through the scientific discourse which exchanges instances and
solutions. The structure of those instances and solutions gives hints about the
solution approach. An interesting question is why this indirect communication
approach works.

The NSF workshop report [41] discusses socio-technical innovation through
future games and virtual worlds. The SCG is mentioned as an approach to
make the scientific method in the spirit of Karl Popper available to CGVW
(Computer Games and Virtual Worlds).

C.5 Online Judges

An online judge is an online system to test programs in programming contests.
A recent entry is [37] where private inputs are used to test the programs. Top-
coder.com includes an online judge capability, but where the inputs are provided
by competitors. This dynamic benchmark capability is also expressible using
our approach: The claims say that for a given program, all inputs create the
correct output. A refutation is an input which creates the wrong result.

C.6 Educational Games

Our proposed system can be used as an educational tool. One way to create
adaptivity for learning is to create an avatar that gradually poses harder claims
and instances. Another way is to pair the learner with another learner who is
stronger. [11] uses concept maps to guide the learning. Concept maps are im-
portant during lab design: they describe the concepts that need to be mastered
by the students for succeeding in the game.

C.7 Formal Sciences and Karl Popper

James Franklin points out in [20] that there are also experiments in the formal
sciences. One of them is the ‘numerical experiment’ which is used when the

21

mathematical model is hard to solve. For example, the Riemann Hypothesis
and other conjectures have resisted proof and are studied by collecting numerical
evidence by computer. In our case, experiments are performed during the play
of SGs.

Karl Popper’s work on falsification [40] is the father of non-deductive meth-
ods in science. Our approach is a way of doing science on the web according to
Karl Popper.

C.8 Scientific Method in CS

Peter Denning defines CS as the science of information processes and their
interactions with the world [18]. Our approach makes the scientific method
easily accessible by expressing the hypotheses as claims. Robert Sedgewick in
[42] stresses the importance of the scientific method in understanding program
behavior. Using our system, we can define labs that explore the fastest practical
algorithms for a specific algorithmic problem.

C.9 Games and Learning

Kevin Zollman studies the proper arrangement of communities of learners in
his dissertation on network epistemology [46]. He studies the effect of social
structure on the reliability of learners.

In the study of learning and games the focus has been on learning known,
but hidden facts. In our case, learning is about learning unknown facts, namely
new constructions.

C.10 Origins

We started this line of work with the Scientific Community Game (SCG). A
preliminary definition of the SCG was given in a keynote paper [32]. [31] gives
further information on the SCG. The original motivation for the SCG came
from the two papers with Ernst Specker: [33] and the follow-on paper [34].
Renaissance competitions are another motivation: the public problem solving
duel between Fior and Tartaglia, about 1535, can easily be expressed with the
SCG protocol language.

22

