Controlled Evolution of Adaptive Programs

Ahmed Abdelmeged

Therapon Skotiniotis

Karl Lieberherr

College of Computer & Information Science
Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA.

{mohsen,skotthe,lieber}@ccs.neu.edu

ABSTRACT

Adaptive programming (AP) is a programming paradigm for
expressing structure-shy computations over semi-structured
data graphs. Structure-shyness means that adaptive pro-
grams hard code a minimal set of assumptions about the
structure of their input. Because of this, adaptive programs
are more susceptible to unsafe evolutions; evolutions that
jeopardize the correctness of adaptive programs yet go un-
caught. In this paper we study the evolution of adaptive
programs and present two complementary approaches for
controlling their unsafe evolution: a language for express-
ing application-specific constraints on the runtime behavior
of adaptive programs, and a stricter notion of compatibility
between the parts of an adaptive program, that does not
sacrifice the expressiveness of the AP paradigm.

Categories and Subject Descriptors

D.2.4 [SOFTWARE ENGINEERING]: Software/Pro-
gram Verification, Assertion checkers, Programming by con-
tract, Reliability; F.3.1 [LOGICS AND MEANINGS
OF PROGRAMS]: Specifying and Verifying and Reason-
ing about Programs, Assertions, Specification techniques;
D.3.3 [PROGRAMMING LANGUAGES]: Language

Constructs and Features; D.1.2 [PROGRAMMING TECH-

NIQUES]: Automatic Programming, Program modification,
Program verification

General Terms
Languages, Design, Reliability

Keywords

Adaptive Programming, Evolution, Assertion, Generic Pro-
gramming

1. INTRODUCTION

The key observation behind the development of the Adap-
tive Programming paradigm (AP) [I4] is that methods tend

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

IWPSE-Evol’ 09, August 24-25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-678-6/09/08 ...$10.00.

double area(Circle c¢)
{ return c.dimensions.radius 2 * PI;}

Listing 1: Structure Sensitive Area Function

double area(IHasRadius hR)
{ return hR.getRadius() "2 * PI;}

interface IHasRadius
{ double getRadius(); }

class Circle implements IHasRadius

double getRadius ()
{ return dimensions.radius;}

Listing 2: Decoupled Structure and Behavior

to hard code assumptions about the structure of their input
that are not inherently relevant to their “function”. For ex-
ample, the method area shown in Listing [[l hard codes the
assumption that the radius is wrapped in a dimensions
object which is a part of a Circle object.

The hard coded assumptions tighten the coupling between
a method and the structure of its input, leading to less
generic methods. This hinders the maintainability of pro-
grams, because evolving the structure of the input requires
changes to methods. Furthermore, the reduced genericity
forces developers to reuse methods via copy and paste, thus
complicating the process of evolving methods and making it
error prone.

One approach for restoring genericity, is to decouple the
method from the structure via the use of a behavioral in-
terface to the structurd]. For example, the method area
shown in ListingPldoes not make any assumptions about the
structure of its input, except for implementing the interface
IHasRadius. The downside of this approach, besides ver-
bosity, is that the structural assumption is still hard coded,
but in another method.

The approach taken by AP for writing generic methods
(called adaptive methods or adaptive programs) is to hard
code the minimal necessary structural assumptions about
the input. For example, the method area shown in Listing
works for any T provided that it can reach a field called
radius that can reach a double.

Following the law of Demeter

double area (T o)

{ AreaVisitor v = new AreaVisitor ();
ExecuteAdaptiveProgram (
"from * via [radius] to double”, o, v);
return v.area;}

class AreaVisitor extends Visitor
{ double area;

before (double host)

{ area = host"2 x PI;}}

Listing 3: Structure Shy Area Function

An adaptive method comprises three loosely coupled parts:
a traversal strategy, an input object, and a behavior. The
traversal strategy is a regular-expression-like specification
that selects a set of paths from the schema of the input
object. The traversal strategy should be the only place
where structural assumptions about the input schema are
hard coded. In this way, the traversal strategy plays the
role of an interface between the adaptive method and the
input schema. The behavior is a set of collaborating type
indexed methoddl. In this paper, we consider an abstract
incarnation of AP where input objects are instances of semi-
structured data graphs. An adaptive method is executed via
a depth first traversal of its input object. Along this traver-
sal, the appropriate methods in the behavior are invoked.

An adaptive method is considered legal if its strategy is
compatible with the input schema. That is, the input schema
meets all of the structural assumptions made by the strat-
egy. A strategy and an input schema are incompatible iff the
set of paths selected by the strategy from the input schema
is empty. The selection of the “correct” set of paths is an
important factor in the overall correctness of the adaptive
program. In this paper, we choose to focus on the correct-
ness of the selected paths, discarding other sources of incor-
rectness of adaptive programs. A strategy that selects the
correct set of paths is called a correct strategy.

It is worth mentioning that the strategy does not have to
fully specify every single detail of the traversal. This is the
reason why adaptive methods seamlessly adapt to evolutions
of their input schema [I5]. Also, the runtime overhead of
the traversal is often optimized by specializing the adaptive
method for a specific input schema [I4]. Finally, due to
their organization as traversals, adaptive programs are also
retargetable to different execution platforms [3] (e.g. single
and multi-core architectures).

1.1 Evolution of Adaptive Programs

Evolution of an adaptive program may include not only
changes to its input schema but also to its strategy as well as
its behavior. Figure is a Venn diagram that illustrates
the possible effects of evolution on adaptive programs. The
universe is all syntactically well formed adaptive programs.
The continuous circle contains all legal adaptive programs.
The dashed circle contains all correct adaptive programs for
some application specific correctness criteria that the adap-
tive programming system might be unaware of. For exam-
ple, running the adaptive area method shown in Listing

2The behavior can be also viewed as a set of collaborating
aspects where the type index of the method represents the
pointcut and the method body representing the advice.

with an input object that contains two fields with the name
radius can lead to an incorrect result despite the fact that
the input object satisfies the structural constraints imposed
by the adaptive method.

The arrows represent various kinds of evolutions of adap-
tive programs. Starting with a correct and legal adaptive
program, evolution can lead to either:

1. Another correct adaptive program. We call this kind
of evolution safe.

2. A legal but no longer correct adaptive program. We
call this kind of evolution unsafe or dangerous.

3. An illegal adaptive program. We call this kind of evo-
lution dllegal.

The universe of all adaptive programs The universe of all adaptive programs

3N

Y '1'/:’
&

(b) Proposed

[JLegal [lllegal 4 Correct

N

Q
X

\¢

lllegal lllegal

(a) Current

Figure 1: Evolution of Adaptive Programs

1.2 Problem

The problem that we tackle in this paper is the unsafe evo-
lution of adaptive programs. Further analysis reveals that
it is caused by the following two problems: first, the cor-
rectness criteria of an adaptive program is unknown to the
adaptive programming system. Judging the (in)correctness
of a certain adaptive program requires awareness of its spe-
cific correctness criteria. Developers who are not fully aware
of their application’s correctness criteria (e.g. new develop-
ers or developers in a big team) or developers not paying
enough attention to a complex enough correctness criteria
might unsafely evolve their adaptive programs. Since the
adaptive programming system is also unaware of the appli-
cation’s specific correctness criteria, it cannot detect unsafe
evolutions as well, and they can go uncaught. This is a prob-
lem of virtually every programming paradigm, here instanti-
ated in the context of the adaptive programming paradigm.

The second problem is that adaptive programming adopts
a very permissive approach for judging the “compatibility”
of its three parts, this can hide incorrectness. For example,
consider an adaptive program with a single method indexed
with a type that is not mentioned in its strategy at all. This
means that given an input schema that is identical to the
strategy, the strategy will select a non empty set of paths,
yet nothing is executed.

1.3 Contributions

This paper aims at controlling the unsafe evolutions of
adaptive programs. To that end, we propose solutions for
the two aforementioned problems. As for the first problem,
developers should be able to declare a correctness criteria for
their specific application. The declared correctness criteria

can only be based on the context(s) in which certain advice
executes and how often it does so. The inner shaded re-
gion shown in Figure contains those adaptive programs
that violate their correctness criteria and are hence deemed
illegal.

It is worth mentioning that declaring the correctness cri-
teria is not enough for closing the gap between correct and
legal programs; besides the fact that developers can declare
the wrong correctness criteria, the declared correctness cri-
teria remains only an approximation for the real correctness
criteria. The reason being that the real correctness criteria
might be based on the meaning of the entire computation in
another world. For example, the real “correctness criteria”
might be based on the wall-clock time between the execution
of two advices which is a poor fit for adaptive programming
simply because there is no notion of wall-clock time, per say,
in the adaptive programming model.

As for the second problem, we propose a stricter notion of
compatibility that encompasses all three parts of an adaptive
program and excludes those adaptive programs containing
some form of a “conceptual mismatch”, regardless of their
correctness. The tricky part here is preserving the expres-
siveness of the adaptive programming paradigm. Figure
illustrates the effect that a stricter notion of compatibility
might have on controlling unsafe evolutions of adaptive pro-
grams by shrinking the original continuous circle containing
legal adaptive programs to the inner one. The shaded re-
gion between the inner and outer continuous circle contain
those adaptive programs that became illegal as a result of
incorporating a stricter notion of compatibility.

1.4 Organization

The rest of this paper is organized as follows: Section
gives a background of AP through a running example that
we shall be using. In Section Bl we present a comprehensive
study of the evolution of adaptive programs with the goal
of identifying unsafe evolutions. In Section Bl we present a
language for declaring approximate correctness criteria. In
Section |l we present our stricter notion of compatibility. In
Section [l we examine the effect of our proposed solutions on
the evolution of adaptive programs. In Section [l we present
some of the related work. Section B concludes the paper.

2. ADAPTIVE PROGRAMMING

As a concrete example of an adaptive program, consider
the task of modeling a bus route. A bus route has one bus,
to start with. The bus has a driver and passengers. Our
task is to find the number of people, including the driver,
on board the bus.

Figure shows the schema for the input data graph
shown in Figure Figure shows a strategy which
says: go from a BusRoute object to a Person object via either
a Driver object or a Passengers objeclﬂ. Listing B shows
the behavior, which contains two methods (or advices): one
is attached to BusRoute, which initializes a global counter,
and the other is attached to Person, and it increments the
counter by 1.

Before we can execute our adaptive program, we must
turn the underspecified traversal specification (the strategy)
into a fully specified traversal specification that we call the

3The caret symbol (~) is used to denote the source node of
a strategy or a traversal graph.

‘ BusRoute H Bus ‘
¥

‘ Driver ‘ ‘Passengers‘

‘ABusRoute H Passengers ‘

; T] \
‘ Person H Persw ‘ Driver H Person ‘

(b) Strategy

{ busRouteObj }—w busObj

driverObyj passengersObj

(a) Input Schema

‘ Bus ‘ ‘ Bus ‘
i l PersonObj0
| Driver | | Passengers |

PersonObj1

personListObj

! !

| Person H Persw

(¢) Traversal Graph

PersonObj2 personListObj2

(d) Sample input data graph

Figure 2: Bus Route Example

class CountPeopleOnBoard
{ private int noOfPeopleOnBoard;
before (BusRoute busRoute)
{noOfPeopleOnBoard = 0;}
before(Person person)
{noOfPeopleOnBoard += 1;} }

Listing 4: Counting People on Board

traversal graph; Figure shows the traversal graph for
our example. It is computed by replacing every edge, from
a node S to a node T, in the strategy graph, with the max-
imal subgraph of the input schema that contains all nodes
reachable from S and that can reach T. For example, the
strategy edge from BusRoute to Driver is replaced with the
subgraph that contains BusRoute, Bus, and Driver. The
traversal graph nodes drawn with a thick line correspond to
the nodes from the strategy.

To execute our adaptive program on the data graph shown
in Figure (which satisfies the input schema) we also
need both the traversal graph and the behavior, as indi-
cated in Listing[ll The execution proceeds as follows: start-
ing with the object busRouteObj in the input data graph
as the current object and the singleton set containing the
source node (whose label is BusRoute which is the type of
the current object) in the traversal graph as the current
set of traversal graph nodes; we first execute any advices at-
tached to BusRoute in the behavior. In our example, there is
one such advice attached to BusRoute. Then, we go through
the children of the current object (busRouteObj in our ex-
ample). For each child object we identify the set of traversal
graph nodes that are both a child of any node in the current
set of traversal graph nodes and whose label is the same as
the type of the current child object. In our example, the
first (and only) child to consider is busObj and the set of
traversal graph nodes that satisfy both conditions contains
the two nodes in the traversal graph labeled Bus. In case the

ExecuteAdaptiveProgram (tgNodes, obj, beh)
{ type = obj.getType ();
advice = beh.getAdviceForType(type);
if (advice != Empty)
{ advice. fire(obj); }
foreach (child :obj.getChildren())
{ nextTgNodes = GetNextTgNodes (tgNodes,
child .getType ());
if (nextTgNodes!=EmptyList)
{ ExecuteAdaptiveProgram (nextTGNodes,
child, beh); } } }

GetNextTgNodes (currentTgNodes, label)
{ nextTgNodes = EmptyList;
foreach (tgNode: currentTgNodes)
{ nextTgNodes.append(
tgNode. getChildren(label)); }
return nextTGNodes; }

Listing 5: Adaptive Program Execution

set of traversal graph nodes is empty we proceed to the next
child object. When all children are considered, we simply
return. In case the set of traversal graph nodes is not empty,
we recursively execute the above procedure. Listing Bl shows
the pseudocode for executing an adaptive program.

To see how this program can adapt to a change in the
input schema, consider adding a coordinator for the Bus-
Route. Figure Bl shows the evolved schema. We observe
that the traversal graph for our adaptive program remains
the same. Therefore, the runtime behavior of our program
remains unchanged.

BusRoute Bus

‘ Driver ‘ ‘Passengers‘

) 4 ‘ ‘
‘CoordinatorH Person H Persw

Figure 3: Bus Route Schema with a Coordinator

Another change to the input schema that our adaptive
program can seamlessly handle is to add an Operator node
between Bus and Driver. FigureElshows the evolved schema.
Although the traversal graph changes in response to this
evolution, the change does not result in any change to the
runtime behavior of our adaptive progranﬂ. The reason is
that Operator is not advised.

3. EVOLUTION OF ADAPTIVE PROGRAMS

In this section, we study the effect of evolution on the run-
time behavior of adaptive programs. Listing B shows that
the runtime behavior of an adaptive program depends, not
only on its traversal graph (hence on the input schema and
the strategy graph) and its behavior, but also on a specific
input data graph. This brings up an interesting question:
how do we represent the runtime behavior of an adaptive

4 Judging the runtime behavior of an adaptive program only
by the trace of advice execution events.

‘ BusRoute }—»{ Bus ‘
/\

‘ Operator ‘ ‘Passengers‘

) J
‘CoordinatorH Person ‘

Figure 4: Bus Route Schema with a Coordinator
and an Operator

program for all possible input data graphs? Having an-
swered this question, we delve into a study of the different
classes of impact that evolution might have on the runtime
behavior of a correct and legal adaptive program.

3.1 Runtime Behavior Representation

Two key observations can be made from Listing Bl about
the runtime behavior of an adaptive program. The first ob-
servation is that all tgNodes are labeled with the type of
the obj. This invariant is preserved in the recursive call and
must be satisfied at the first invocation of ExecuteAdap-
tiveProgram. Therefore, an advice can only be executed if
the type it is attached to shows up in the traversal graph.
Furthermore, an advice attached to type T can be executed
in the context of another advice attached to type S only if
the traversal graph has nodes labeled S and T and T is reach-
able from S. The second observation is that line 5 where
advices are executed is the only line whose execution can
be externally observed. Therefore, only invocations of Exe-
cuteAdaptiveProgram at objects with advised types can be
externally observed.

The first observation tells us that the traversal graph con-
tains all the necessary information for representing the run-
time behavior of its adaptive program. The second obser-
vation tells us that the traversal graph contains some extra
information that is irrelevant to the observable runtime be-
havior of its adaptive program. Based on this information
we conclude that smoothing out non-advised nodes from the
traversal graph yields us the most appropriate representa-
tion of the runtime behavior of an adaptive program. We
call this representation the smoothed traversal graph.

The smoothed traversal graph is a multi-graph that con-
tains only the advised nodes from the traversal graph. For
every distinct, direct path connecting an advised traversal
graph node S to another advised traversal graph node T, an
edge is added from S to T in the smoothed traversal graph. A
path in the traversal graph is represented by its set of edges
rather than its sequence of nodedl. A path is called direct
if it contains exactly two advised nodes: one at its source
and one at its target. A direct path connecting an advised
traversal graph node S to another advised traversal graph
node T represents a situation in which the advice attached
to T executes right after the advice attached to S.

5This is actually a representation of a family of paths rather
than single paths. A loop in our representation corresponds
to an infinite number of paths. Every node along the path
must be the source of only one forward edge and any number
of backward edges

"BusRoute Eﬂ Person

Figure 5: The Smoothed Traversal Graph

Figure Bl shows the smoothed traversal graph for the bus
route example mentioned in section It contains the two
advised nodes: BusRoute and Person. All other nodes are
smoothed out. It also contains three edges connecting the
two nodes representing the three different situations that
the advice attached to person can execute right after the
advice attached to BusRoute. The three paths representing
these situations are:

e { (BusRoute, Bus), (Bus, Driver), (Driver, Person)}.

e { (BusRoute, Bus), (Bus, Passengers), (Passengers,
Personlist), (PersonList, Person)}.

e { (BusRoute, Bus), (Bus, Passengers), (Passengers,

PersonlList), (PersonList, PersonList), (PersonList,

Person)}.

(a) BusRoute

‘ABusRoute }—»{ Person ‘

(b) Person

Figure 6: Advice Execution Contexts

The contexts in which an advice is executed are also ev-
ident from the smoothed traversal graph. The contexts in
which an advice attached to type T executes are fully repre-
sented by the maximal subgraph of the smoothed traversal
graph containing only those nodes that can reach a node
labeled T. For example, the contexts in which the advice at-
tached to BusRoute executes, contain a single node labeled
BusRoute and is shown in Figure The contexts in which
an advice attached to Person executes contain the two nodes
BusRoute and Person and is shown in Figure

3.2 Impactsof Evolution on Adaptive programs

The impact of evolution on the smoothed traversal graph
falls into one of the following three categories:

3.2.1 No Impact

Our first evolution example of adding a Coordinator to
the BusRoute falls into this category. As we mentioned be-
fore, the traversal graph remains unchanged. Hence the
smoothed traversal graph shown in Figure Bl remains un-
changed too.

Our second evolution example of adding an Operator node
between Bus and Driver falls into this category as well. Be-
cause even though an Operator node is inserted between Bus
and Driver in the traversal graph, the newly inserted node
gets smoothed out because it is not advised, we end up with
the same smoothed traversal graph as before evolution.

In general, evolving the input schema by adding non ad-
vised nodes, smoothing out a non advised node, or reorder-
ing two non advised nodes does not impact the runtime be-
havior of the adaptive program either because the changes
do not make their way to the traversal graph (as in the first

example), or they get smoothed out (as in the second exam-
ple). Evolutions leading to this kind of impact are consid-
ered safe because they do not change the runtime behavior
of the program, on which correctness is based.

3.2.2 Minor Impact

Suppose that we were to allow many buses on the same
route. The evolved input schema is shown in Figure an
unadvised node BusList is inserted, which has a self loop.
Technically, this allows an infinite number of ways to reach
a Bus object from a BusRoute object; by going through one,
two, three, or any other number of BusList objects, whereas
previously there was only one way to do so.

‘ BusRoute H Busm Bus ‘

Driver Passengers

‘ Person H PersonList

(a) Bus Route with Many Buses (b) Smoothed
Traver-
sal
Graph

Figure 7: Bus Route with Many Buses

On the other hand, we observe that a Person object re-
mains accessible only in the context of either a Driver object
or a Passengers object and that both Driver and Passen-
gers objects are only accessible in the context of a BusRoute
object. This is essential for the advice executing at Person
(Listing Hl) because it relies on the fact that the no0OfPeo-
pleOnBoard counter is initialized by the advice executing at
BusRoute.

In other words, even though the contexts in which both
advices execute remain unchanged, the advice attached to
Person is executed in more situations than before. This is
evident in the evolved smoothed traversal graph shown in
Figure there are six incoming edges to Person com-
pared to only three incoming edges before evolution. The
six edges correspond to the following traversal graph paths:

e { (BusRoute, BusList), (BusList, Bus), (Bus, Driver),
(Driver, Person)}

{ (BusRoute, BusList), (BusList, BusList), (BusList,
Bus), (Bus, Driver), (Driver, Person)}

e { (BusRoute, BusList), (BusList, Bus), (Bus, Pas-
sengers), (Passengers, Personlist), (Personlist,
Person)}

e { (BusRoute, BusList), (BusList, BusList), (BusList,
Bus), (Bus, Passengers), (Passengers, PersonList),
(PersonList, Person)}

e { (BusRoute, BusList), (BusList, Bus), (Bus, Pas-
sengers), (Passengers, Personlist), (PersonList,
PersonList), (Personlist, Person)}

e { (BusRoute, BusList), (BusList, BusList), (BusList,
Bus), (Bus, Passengers), (Passengers, PersonlList),
(PersonList, PersonList), (PersonList, Person)}.

Instructor

Driver H Person ‘
Passengers H Persw

Figure 8: Bus Route with a Simulator

‘ BusRoute H Simulator

‘ BusList Bus

Another example of a minor impact is to add a Simulator
(to train drivers) with a Driver and an Instructor to the
BusRoute. Again, this evolution does not change any of the
contexts in which an advice executes. However, the situ-
ations in which the advice attached to Person increase as
the number of ways of going from a BusRoute to a Driver
increase.

In general, an evolution that results in a change to the
number of ways that a node can reach another node in the
smoothed traversal graph without changing any advice exe-
cution context constitutes a minor impact to the smoothed
traversal graph

An evolution leading to a minor impact is not always safe.
For example, one can argue that our first example of minor
impacts is safe because we will be counting the number of
people on board of all buses in the route and that is the cor-
rect thing to do. On the other hand, in the second example,
we will also be counting the drivers who are only training
and not on board of any real bus and hence can be deemed
unsafe. Therefore, evolutions leading to minor impacts to
the smoothed traversal graph need to be controlled.

3.2.3 Drastic Impact

Simply speaking, a drastic impact involves a change to
at least one advice execution context. Similar to evolutions
leading to minor impacts, those drastic impacts can be either
safe, unsafe, or even illegal (we shall discuss illegal evolu-
tions in Section [l). Therefore, evolutions leading to drastic
impacts need to be controlled.

As an example of a safe evolution leading to a drastic
impact, suppose that we need to keep two separate counts:
the number of passengers on board of any bus as well as a
the number of drivers on duty. Listing [f shows the behavior
we use to keep the two counts. The set of advised nodes in
the new behavior include Passenger, Driver, and Person
meaning that nodes labeled with these three types will not
be smoothed out in the smoothed traversal graph.

As an example of an unsafe evolution leading to a drastic
impact, consider adding a Coordinator to the input schema
as shown in Figure B and at the same time changing the
strategy to also pick the path from the BusRoute via Coor-
dinator to Person. This evolution violates the hidden as-
sumption that the advice attached to Person makes about
its context; that it will be executed the first time in the
context of either a Driver object or a Passengers object

(Listing).

4. CONTROLLING ADAPTIVE PROGRAM
EVOLUTION

In this section we present a language for asserting the
correctness of adaptive programs based on advice execution

class CountPassengersAndDrivers

{ private int noOfPassengersOnBoard = 0;
private int noOfDriversOnDuty = 0;
private boolean driverSeen;
private boolean passengerSeen;

before(Driver driver)

{ driverSeen = true;
passengerSeen = false; }

before(Passenger passenger)

{ passengerSeen = true;
driverSeen = false; }

before(Person person)
{ if (driverSeen)
{ noOfDriversOnDuty +=1;
driverSeen = false; }
if (passengerSeen)
{ noOfPassengersOnBoard +=1I;
passengerSeen = false; } } }

Listing 6: Counting Passengers and Drivers

Assertion = ”execute” (Context | Cardinality)

Context = Direct | Forbidden | Required

Direct = "directly” ”in” AdvisedTypex

Forbidden = "not” ”in” AdvisedTypex

Required = ”in” AdvisedTypex
AlternativeTypesx

AlternativeTypes = 7[” AdvisedTypex 7]”

AdvisedType = IDENTIFIER

Cardinality = Predicate ”in” AdvisedType
Predicate = Simple | Composite

Composite = 7(” Predicate Op Prediate ”)”
Simple = Rel INTEGER

Op — 77and77 | 7701.77

Rel — 77>77 | 77<77 | 77::77 | 77<:77 | 77>:77 | 77!:77

Listing 7: Language for Asserting the Correctness
of Adaptive Programs

context(s) and frequency. Context correctness assertions can
be employed for controlling evolutions leading to drastic im-
pacts. Cardinality correctness assertions can be employed
to control evolutions leading to minor impacts.

4.1 Syntax

Listing [shows an EBNF grammar of the proposed lan-
guage of assertions. An assertion annotates one advice. This
way the assertion gets associated with one advised type. On
the other hand, each advice can be annotated with any num-
ber of assertions. There are two types of assertions: Con-
textAssertions for controlling evolutions leading to drastic
impacts, and CardinalityAssertions for controlling evolu-
tions leading to minor impacts.

Context assertions are further split into three kinds: di-
rect context assertions, forbidden context assertions, and
required context assertions.

A direct context assertions is parameterized by a set of
required types, and used to assert that the traversal visits
one these required types right before the type to which the
assertion is associated (i.e., no other advised type is visited
in between).

A forbidden context assertion is parameterized by a set of
forbidden types, and used to assert that none of these for-

bidden types is visited before the type to which the assertion
is associated.

A required context assertions is parameterized by a set of
required types and a set of sets of alternative types, and used
to assert that the traversal visits all of the required types
and only one type from each set of alternative types before
the type to which the assertion is associated is visited.

A cardinality assertion is parameterized by a “from” node,
and used to assert that the number of ways for reaching the
type to which the assertion is associated from the “from”
type satisfies a certain predicate. Predicates can be formed
from comparison operators and logical connectives.

4.2 Semantics

The meaning of an assertion is the set of adaptive pro-
grams for which it is defined and holds. Since the assertions
we defined above are based on the runtime behavior of the
adaptive program, it is enough to check them against the
smoothed traversal graph.

4.2.1 Checking Direct Context Assertions

A direct context assertion c is associated with an advised
type c.type and has a set of required nodes c.required. For
checking a direct context assertion we use:

getLeadingTypes(c.type) C c.required

The metafunction get LeadingTypes(t) goes through all nodes
labeled with ¢ in the smoothed traversal graph, and for each
node, it finds the set of labels of its predecessors. Finally,
the union of all these sets is returned.

4.2.2 Checking Forbidden Context Assertions

A forbidden context assertion c is associated with an ad-
vised type c.type and has a set of forbidden nodes c. forbidden.
For checking a forbidden context assertion we use:

Vp € getPaths(”,c.type) : c.forbidden N getTypes(p) = 0

The metafunction getPaths(t1,t2) is used to retrieve the
set of all paths connecting the smoothed traversal graph
node labeled 1 to the smoothed traversal graph node labeled
t2. The caret symbol (*) denotes the root of the smoothed
traversal graph. Paths are represented as sets of edges. the
metafunction getTypes(p) is used to retrieve the set of types
mentioned in a path p.

4.2.3 Checking Required Context Assertions

A required context assertion c is associated with an ad-
vised type c.type and has a set of required nodes c.required
and a set c.alternatives of set of alternative types. For
checking a required context assertion we use:

Vp € getPaths(”,c.type) : c.required C getTypes(p)
AVa € c.alternatives : |getTypes(p) N a.types| = 1

4.2.4 Checking Cardinality Assertions

A cardinality assertion c is associated with an advised
type c.type, a from type c.from, and a predicate c.pred.
For checking a cardinality assertion we use:

c.pred(|getPaths(c. from,c.type)|)

5. STRICTER COMPATIBILITY NOTION

In this section we present a stricter notion of compatibil-
ity between the parts of an adaptive program. The proposed
notion has four criteria: two of them are intended to elim-
inate conceptual mismatches between the strategy and the
input schema. The other two are intended to eliminate con-
ceptual mismatches between the strategy and the behavior.
The trickiest part of defining the new notion is preserving
the expressiveness of the adaptive programming paradigm.

5.1 Establishing Compatibility Between the Strat-

egy and the Input Schema

Criterion 1: The positive core of the strategy must be
identical to the smoothed input schema.

The positive core of the strategy contains the set of all
desired paths. It is obtained from the strategy by dropping
all bypassing constraints. Figure [shows an example of a
strategy with a bypassing constraint.

The smoothed input schema is the graph obtained from
the input schema by smoothing out all nodes that are not
mentioned in the strategy. To smooth out a node n from
a graph, every predecessors of n is connected to all of n’s
successors. Then n is removed along with all of its incident
edges.

This criteria can be violated in two ways: the smoothed
input schema has either fewer nodes and/or edges, or it has
more edges than the positive core of the strategy.

As an example illustrating the first way of violating this
criterion, consider an evolution to the input schema shown
in Figure that drops the Driver node altogether. This
means that the developer who wrote the strategy “thinks”
that a Person object is accessible from a BusRoute object
through a Driver object, which is not true from the point of
view of the input schema developer. In fact, strategies and
input schemas that are incompatible in the old sense [I3]
violate the first criterion this way. This is the reason why
the new compatibility criteria are stricter than the old one.

It is always possible to transform an adaptive program
with this kind of conceptual mismatch into another adap-
tive program without this kind of conceptual mismatch while
keeping with the same runtime behavior. Simply, by drop-
ping those strategy edges (and nodes) that do not appear in
the smoothed input schema.

As an example illustrating the second way of violating
this criterion, consider an evolution to the example shown
in Figure B in which one of the developers decided that a
bus driver can also be seen as a passenger too thus evolving
the input schema to the one shown in Figure @

In this example, the strategy developer thinks that Driver
objects are not contained in Passengers objects, which is
not true according to the input schema. Eliminating this
conceptual mismatch involves computing the traversal graph,
smoothing out nodes not mentioned in the strategy, and fi-
nally adding bypassing constraints that bypass all of the
nodes mentioned in the strategy provided that the bypass-
ing constraints are not superfluous themselves.

Criterion 2: Fvery bypassed node on an edge from S to
T in the strategy must appear on at least one path connecting
S to T in the input schema. Furthermore, there must be at
least one path connecting S to T in the input schema such
that it does not go through any node that is bypassed on the
edge from S to T in the strategy.

‘ BusRoute H Bus ‘

Driver gpassengers
‘ Person H Persow

Figure 9: Bus Route with Drivers as Passengers

As an example illustrating the conceptual mismatch aris-
ing when this criterion is violated, suppose that the strategy
shown in Figure was restricted to the one shown in Fig-
ure [[M by adding a Bypassing PersonList constraint to the
edge connecting Driver to Person. The meaning of the re-
stricted strategy is: go from Driver to Person without going
through any PersonList objects.

In this example, the strategy developer thinks that there
might be a PersonList on the way from Driver to Per-
son, which is not true according to the input schema. This
conceptual mismatch can be eliminated by dropping the su-
perfluous bypassing constraint.

‘ABusRoute H Passengers ‘
Bypassing l

PersonList
‘ Driver H Person ‘

Figure 10: Restricting the Strategy Shown in Fig-

5.2 Establishing Compatibility Between the Strat-

egy and the Behavior

Criterion 3: All Advised nodes must be mentioned in the
strategy.

The rationale behind this criterion is that advising types
that are not mentioned in the strategy graph means that the
strategy is too general for the behavior. No guarantees can
be made about the execution context of advices for types
that are not mentioned in the strategy graph. These ad-
vices are not even guaranteed to execute in the first place.
Eliminating this kind of conceptual mismatch involves com-
puting the traversal graph, then smoothing out nodes that
are neither mentioned in the strategy nor advised.

Criterion 4: Fvery strategy graph node is either advised
or can reach an advised node.

The rationale behind this criterion is that the existence
of strategy nodes that are neither advised nor lead to ad-
vised nodes means that the strategy is too specific for the
behavior and can be generalized to allow more compatible
input schemas by dropping those strategy nodes causing the
violation.

6. EVALUATION

Adopting the new notion of compatibility tightens the cou-
pling between the three parts of an adaptive program. It is
now more likely that evolving one of the components can
trigger a series of changes in the other components. The

tighter coupling does not sacrifice the genericity of adap-
tive programs because the excluded adaptive programs con-
tain some form of a conceptual mismatch. Also, assertions,
when used wisely, can cut mostly on unsafe evolutions. Fur-
thermore, the new notion of compatibility does not sacrifice
the expressiveness of the adaptive programming paradigm
because for every excluded adaptive program, there is an
equivalent adaptive program that is not excluded.

Suppose that we want to add a new advice to the behav-
ior. This might trigger a change in the strategy graph if the
newly advised type does not show up in the strategy, other-
wise the third criterion will be violated. Likewise, dropping
an advice from the behavior might violate the fourth crite-
rion. Moreover, adding or removing an advice might disturb
the context of other advices leading to violated assertions.

Evolving the strategy by dropping a node might violate
the third criterion if the dropped node was advised. Drop-
ping a bypassing constraint might either: violate a cardi-
nality assertion because a new path is picked from the input
schema, or disturb the context of an existing advice because
the new path acts as a short cut to the type that advice is
attached to. Dropping an edge might violate the first crite-
rion.

Evolving the strategy by adding a node might violate the
fourth criterion if the newly added node does not lead to
an advised type. Adding a bypassing constraint might vio-
late the second criterion if it excludes all paths in the input
schema connecting two nodes that are connected by an edge
in the strategy. Adding a bypassing constraint might also
violate a cardinality constraint, disturb the context of other
advices. Adding an edge to the strategy might violate a
cardinality constraint, act as a short cut to an advised type
thus disturbing the context, or lead to the violation of the
first criterion because the newly added edge does not have
a corresponding path in the input schema.

Evolving the input schema by adding non advised nodes
or edges can violate a cardinality constraints, disturb the
context of an advice, or violate the first criterion. Dropping
nodes or edges might also violate a cardinality constraint,
disturb the context of an advice, or violate the first criterion.

7. RELATED WORK

The problem we addressed in this paper is similar in essence
to the Fragile Pointcut Problem [I7] in the Aspect Oriented
Programming community. There are two main difference be-
tween the two problems: first, in AOP, the join point model
contains the set of all events that occur during program ex-
ecution. A pointcut expression in AOP selects a subset of
join points. In our case, the join point model contains the
set of all paths in the input schema[l. A strategy selects a
subset of these join points. Second, in AOP, the selection is
mostly name based, whereas in AP, the selection is mostly
structure based. Still, existing approaches for solving the
fragile pointcut problem (e.g., model based pointcuts [}, [[8]

5There are two instantiations of AOP concepts in AP: dy-
namic and static. In the dynamic instantiation, the join
point model is the set of all ¢raversal events (e.g., arriving
at a node). Method signatures serve as pointcut expressions
and method bodies serve as advices. In the static instantia-
tion, the join point model is the set of all input schema paths.
The strategy serves as a pointcut expression. Pointcuts are
enhanced by injecting traversal methods along them.

and pointcut expression recovery [d]) can be used to com-
plement our approach.

There are a number of generic programming technolo-
gies T2, [T0, [6]. To the best of our knowledge, the most rel-
evant work was done in the Strategic Programming (SP) and
AP communities. In the SP community, a basic notion of
compatibility is checked during the specialization of strate-
gic programs [5], [II] provides a study of programming
errors in SP, proposes refinements to SP which resembles
our stricter notion of compatibility. In the AP community,
Demeter Interfaces [16] focuses on establishing compatibil-
ity between the input schema and the constraints imposed
by the traversal strategy. The DemeterF [I] type system [4]
focuses on establishing compatibility between the traversal
strategy and the set of collaborating methods comprising the
behavior. A related, but different form of a stricter compat-
ibility notion presented in section 5 and a simpler form of
correctness assertion presented in section 4, is introduced in
9.

8. CONCLUSION AND FUTURE WORK

In this paper we presented a study of adaptive program
evolution and two complementary approaches for controlling
unsafe evolution of adaptive programs. We plan to introduce
adaptive programming as a technology for event based pro-
cessing of XML [2].

9. ACKNOWLEDGMENTS

We would like to thank Bryan Chadwick and our anony-
mous reviewers for all their valuable feedback. This work is
supported in part by Grantham Mayo Van Otterloo, LLC.

10. REFERENCES

[1] DemeterF.
http://www.ccs.neu.edu/home/chadwick/demeterf/.

[2] The SAX Project. http://www.saxproject.org/

[3] B. Chadwick and K. Lieberherr. Functional Adaptive
Programming. Technical Report NU-CCIS-08-75,
CCIS/PRL, Northeastern University, Boston, October
2008.

[4] B. Chadwick and K. Lieberherr. A type system for
functional traversal-based aspects. In FOAL ’09:
Proceedings of the 2009 workshop on Foundations of
aspect-oriented languages, pages 1-6, New York, NY,
USA, 2009. ACM.

[5] A. Cunha and J. Visser. Transformation of
structure-shy programs: applied to xpath queries and
strategic functions. In PEPM ’07: Proceedings of the
2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation,
pages 11-20, New York, NY, USA, 2007. ACM.

[6] J. Gibbons. Datatype-generic programming. In
R. Backhouse, J. Gibbons, R. Hinze, and J. Jeuring,
editors, Spring School on Datatype-Generic
Programming, volume 4719 of Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[7] J. Jeuring and P. Jansson. Polytypic programming. In
2nd Int. School on Advanced Functional Programming,
pages 68—114. Springer-Verlag, 1996.

[8] A. Kellens, K. Mens, J. Brichau, and K. Gybels.
Managing the evolution of aspect-oriented software

(10]

(11]

(12]

(19]

with model-based pointcuts. In D. Thomas, editor,
ECOOP, volume 4067 of Lecture Notes in Computer
Science, pages 501-525. Springer, 2006.

R. Khatchadourian, P. Greenwood, A. Rashid, and

G. Xu. Pointcut rejuvenation: Recovering pointcut
expressions in evolving aspect-oriented software.
Technical Report COMP-001-2008, Revised March
2009, May 2009, Lancaster University, Lancaster, UK,
Aug. 2008.

R. Lammel and S. P. Jones. Scrap your boilerplate: A
practical design pattern for generic programming. In
Proc. of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI 2003,
pages 26-37. ACM Press, 2003.

R. Lammel, S. Thompson, and M. Kaiser.
Programming errors in traversal programs over
structured data. ENTCS, 2008. To appear in
Proceedings of LDTA 2008.

R. Lammel, E. Visser, and J. Visser. Strategic
programming meets adaptive programming. In AOSD
’03: Proceedings of the 2nd international conference
on Aspect-oriented software development, pages
168-177, New York, NY, USA, 2003. ACM.

K. Lieberherr, B. Patt-Shamir, and D. Orleans.
Traversals of object structures: Specification and
efficient implementation. ACM Trans. Program. Lang.
Syst., 26(2):370-412, 2004.

K. J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996. 616 pages, web
book at www.ccs.neu.edu/research/demeter.

J. Ovlinger and M. Wand. A language for specifying
recursive traversals of object structures. SIGPLAN
Not., 34(10):70-81, 1999.

T. Skotiniotis, J. Palm, and K. J. Lieberherr. Demeter
interfaces: Adaptive programming without surprises.
In European Conference on Object-Oriented
Programming, pages 477-500, Nantes, France, 2006.
Springer Verlag Lecture Notes.

M. Storzer and C. Koppen. Pcdiff: Attacking the
fragile pointcut problem, abstract. In Furopean
Interactive Workshop on Aspects in Software, Berlin,
Germany, September 2004.

Z. Yang and T. Zhao. Improve pointcut definitions
with program views. In SPLAT ’07: Proceedings of the
5th workshop on Software engineering properties of
languages and aspect technologies, page 9, New York,
NY, USA, 2007. ACM.

T. Skotiniotis. Modular Adaptive Programming. PhD
dissertation, Northeastern University, in preparation,
2009.

http://www.ccs.neu.edu/home/chadwick/demeterf/
http://www.saxproject.org/

	Introduction
	Evolution of Adaptive Programs
	Problem
	Contributions
	Organization

	Adaptive Programming
	Evolution of Adaptive Programs
	Runtime Behavior Representation
	Impacts of Evolution on Adaptive programs
	No Impact
	Minor Impact
	Drastic Impact

	Controlling Adaptive Program Evolution
	Syntax
	Semantics
	Checking Direct Context Assertions
	Checking Forbidden Context Assertions
	Checking Required Context Assertions
	Checking Cardinality Assertions

	Stricter Compatibility Notion
	Establishing Compatibility Between the Strategy and the Input Schema
	Establishing Compatibility Between the Strategy and the Behavior

	Evaluation
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

