
Controlled Evolution of
Adaptive Programs

By:
Ahmed Abdelmeged
Therapon Skotiniotis

Karl Lieberherr

Debate Question

 What makes a program both easy
and safe to evolve?

Our Answer:
Structure-Shyness

Minimize the coupling between
the program's behavior* and

structure. In other words,
Schema Obliviousness.

* One or more collaborating methods.

Example (1)

double volume(Cylinder c)
{ return PI * c.dimensions.radius^2
* c.dimensions.height; }

● Structure sensitive behavior:

– Makes five structural assumptions: Cylinder,
dimensions, radius, height, PI.

– Three are relevant to the method's “function”: PI,
radius, height.

Example (2)

● Structure-shy behavior:

class VolumeCalculator
{ double volume = PI;
 double for_radius(double host)
 { volume *= host ^ 2; }
 double for_height(double host)
 { volume *= host; } }

– Minimal structural assumptions.
– Requires specialization/binding to specific execution

contexts.
– Implicit structural assumptions.

● There is at most one radius, height.

Evolving Structure-Shy
Programs Is Easy

● Structure-shy behavior is generic:
– The structure-shy volume behavior can execute,

without changes, against any structure
containing at most one radius and at most one
height.

● Structure-shy behavior seamlessly adapts to
structural evolution.

● Structure-shy behavior is reusable in more
contexts.
– Less reuse via copy-and-paste.

Evolving Structure-Shy
Programs Can Be Dangerous

● Problem 1: Evolving the structure might
violate implicit assumptions made by the
behavior.
– “Express” and check these implicit assumptions.
– Infer some implicit assumptions using static

analysis.

Evolving Structure-Shy
Programs Can Be Dangerous

● Problem 1: Evolving the structure might
violate implicit assumptions made by the
behavior.
– “Express” and check these implicit assumptions.
– Infer some implicit assumptions using static

analysis.

● Problem 2: A small change to the program
might have a “drastic” effect on its meaning.
– Increase the “syntactic distance” between legal

programs by adopting a stricter notion of legality.

Contribution

● “Solve” these two problems in the context of
one concrete paradigm for writing structure-
shy programs: Adaptive Programming.

Adaptive Programs: Overview

● Adaptive programs are organized as advised
depth first traversals over semi-structured
data objects.

Adaptive Programs: Example

● An adaptive program comprises:
– An input object: to be traversed - The context.

Visitor v = new VolumeCalculator();
ExecuteAdaptiveProgram(input, v, “from * to double”);

class VolumeCalculator extends Visitor{
 double volume = PI;
 void before_radius (double host) { volume *= host ^ 2; }
 void before_height (double host) { volume *= host; }}

Cylinder input = new Cylinder(new Dimensions(3.0, 1.0));

– A set of advices: fired along the traversal – The
Behavior.

– A traversal strategy: picks a set of paths to be
traversed - Specializes methods to a context.

Adaptive Programs: Execution

● Construct an automaton from the input
schema and the strategy.
– Traversal graph.

● Traverse the input object guided by the
automaton.
– Before traversing a child, make sure that it won't

drive the automaton to a state with no tokens.
● Fire advices as the traversal proceeds.

Constructing Traversal Graphs

A

B C

D

A

B C

Y

X

D

E

Strategy

Input Schema

Traversal Graph

?

Constructing Traversal Graphs

A

B C

D

A

B C

Y

A

B C

D

X

D

E

Strategy

Input Schema

Traversal Graph

Constructing Traversal Graphs

A

B C

D

A

B C

Y

A

B C

D

X

D

E

Strategy

Input Schema

Traversal Graph

X

Constructing Traversal Graphs

A

B C

D

A

B C

Y

A

B C

D

X

D

E

Strategy

Input Schema

Traversal Graph

X X

Constructing Traversal Graphs

A

B C

D

A

B C

Y

A

B C

D

X

D

E

Strategy

Input Schema
Traversal Graph

X X

Y

Constructing Traversal Graphs

A

B C

D

A

B C

Y

A

B C

D

X

D

E

Strategy

Input Schema
Traversal Graph

X X

Y Y

Smoothing out Traversal
Graphs

A

B C

D

Traversal Graph

X X

Y Y

A

D

Smoothed out
Traversal Graph

Only A,D are advised

● Represents the set of all possible advice
execution traces.

Evolving Adaptive Programs:
Implicit Assumptions

● Evolving the input schema or the traversal
strategy or the set of advices can result in:
– No impact

● Same smoothed out traversal graph.
● Adding Color to Cylinder.

– Minor impact
● Change to the number of times an advice executes.
● Adding an inner radius.

– Drastic impact
● Change to an advice execution context.

– Other impacts:
● The time between advice execution.

Controlling Minor Impacts

● Annotate advices with a cardinality
constraint.
– The method before_radius is executed only

once in the context of a Cylinder.
– <= 1 in Cylinder.
– There is exactly one path leading from a
Cylinder to a radius in the smoothed out
traversal graph.

– > | < | == | <= | >= | != .

Controlling Drastic Impacts

● Method A executes in the context of B and
either C or D:
– in B [C D].

● Method A never executes in the context of B:
– not in B.

● Method A executes directly after method B.
– directly in B.

Evolving Adaptive Programs:
Stricter Notion of legality (1)

● Behavior must be compatible with the
traversal graph:
– All Advised nodes must be mentioned in the

strategy.
– Every strategy graph node is either advised or

can reach an advised node.
● Strategy must be compatible with the input

schema:
– Strategy must look-like the input schema.
– Strategy must be identical to the input schema

after smoothing out non-strategy nodes.

Evolving Adaptive Programs:
Stricter Notion of legality (2)

A

B C

D

A

B C

Y

A

B C

D

X

D

E

Strategy

Input Schema

Smoothed Input
Schema

Evolving Adaptive Programs:
Stricter Notion of legality (3)

A

B C

D

A

B C

Y

A

B C

D

X

D

E

Strategy

Input Schema

Smoothed Input
Schema

● How would the traversal graph look like?

Conclusion

● Structure-Shy programs are easy, but
dangerous to evolve.

● Structure-Shy programs can be made safer
by checking implicit assumptions and
enforcing strict notion of compatibility.

● Adaptive programming is a traversal based
paradigm for writing structure-shy programs.

Questions, Comments?

