
The Scientific Community Game:
A Lens to Focus the Global Brain

Ahmed Abdelmeged
Northeastern University

mohsen@ccs.neu.com

Karl Lieberherr
Northeastern University
lieber@ccs.neu.edu

ABSTRACT
We define the Scientific Community Game (SCG, formerly called
the Specker Challenge Game) and we show basic game properties
which are key to making the game interesting. An example illus-
trates the concepts. SCG, the first generic model of the Popperian
Scientific Method on the web, models scientific communities and
has broad applications in teaching and research organization.

SCG is designed to be both educational for scholars, and to solve
problems that we don’t know how to solve yet. SCG provides a
systematic framework to develop and disseminate the world’s con-
structive claims in formal scientific domains. The development of
claims is both collaborative and self-evaluating, and SCG is an ef-
fective lens to focus the global brain on solving a specific problem.

A key contribution of the paper is the design of SCG, including
a CSP-model of payoff function design. The CSP-model allows us
to state and prove key properties of the game across all its instanti-
ations.

Keywords
Human computation, STEM innovation and education, epistemol-
ogy, dialogic games, Karl Popper, mechanism design, social wel-
fare, logic, defense strategies, games and quantifiers, virtual com-
munities.

1. INTRODUCTION
Popper, one of the most prominent philosophers of science of the

previous century, promoted in “Conjectures and Refutations” the
idea that each hypothesis should have a description how it could be
refuted, and that scientific knowledge grows through the introduc-
tion of refutable hypothesis followed by intensive testing of their
correctness.

We designed the Scientific Community Game (SCG) to encour-
age scholars to put as much effort and intelligence as possible into
proposing claims that are hard to falsify as well as into attempting
to refute those claims. The gamification of science that we propose
has several benefits: (1) We make scientific activity available to a
wider audience. Trying to refute a claim is a simple activity. (2) We
get psychological advantages: playing the game is fun and leads to

To be submitted for review to the Serious Games track of the conference
Foundations of Digital Games, 2013, Crete.

the discovery of what is known within the current group of players.
(3) We make it easy to expose claims to refutation attempts, which
leads to better science in the long run [24]. (4) The lab definition
mechanism of the SCG makes it easy to focus a group of people on
a specific problem. (5) Popper’s ideas become applicable to claims
in any formal science not only to complex scientific theories.

1.1 SCG in a Nutshell
In the SCG, a lab consists of a set of refutable claims [24]. Schol-

ars take on the roles of proponents and opponents of the claims in
the lab. Opponents attempt to refute claims against proponents. A
refutation attempt initiates an orderly dialog between the proponent
and opponent, which induces collaborative behavior. In the SCG,
successfully refuting a claim against the claim’s proponent does not
mean that the claim is false. It only means that the proponent might
not have the skills to defend the claim. The labs are self-evaluating
in that there is no need of a third party to evaluate the contributions
of the scholars: the proponent and opponent evaluate each other
fairly.

There are two classes of SCG users, lab designers and scholars
(players).

• Lab designers have a problem they want to focus scholars on
solving through specializing SCG. The role of lab designer
can be played by a researcher who needs a specific prob-
lem solved or an educator who wants her students to practice
what they were taught. Lab designers define a few sets and
functions that define the problem to be solved. As return
on their investment they get a lab where scholars are invited
to participate to solve the problem. Defining a lab can be
viewed as writing a program for the global brain [6].

• Scholars inhabit a lab, either because they are enticed by an
educator or because they have good skills to solve the prob-
lem defined by the lab. A scholar has the opportunity to influ-
ence the quality of the knowledge base and the quality of the
lab procedures. Scholars are evaluated in the lab based on the
quality of their contributions compared to the contributions
of their peers.

The role of scholar can be played by a human or an avatar
(software). The avatar variant works only for labs that are
sufficiently well understood.

1.2 SCG Applications
SCG has several applications, including:

1. problem solving and research in formal science. Funding
agencies, such as NSF, define, in collaboration with inter-
ested researchers, labs that define the problem to be solved.

1



Through playing the game, NSF builds a knowledge base of
refutable claims and refutation attempts. Furthermore, the
self-evaluating nature of SCG will fairly evaluate the contri-
butions of scholars and the collaborative nature will lead to
productive team work. Newcomers can contribute by partic-
ipating in a long-running lab (dozens of years).

2. teaching (traditional, online and massively open online) courses
in STEM areas. To teach a particular problem solving skill,
we design a lab for the problem. Playing SCG challenge
the students’ self-image about their ability to solve the lab’s
problem. Thus, encouraging students to acquire the desired
problem solving skill. The self-evaluating nature of SCG
helps lifting much of the evaluation from the teacher and al-
lows stronger students to give precisely targeted feedback to
weaker students.

3. software development for computational problems. A com-
putational task is defined by a lab where the role of a scholar
is played by an avatar (software). Competitions are held, and
the winning avatars will contain the best (within this group
of competing avatars) algorithms for the computational task.

1.3 Contributions
The main contribution of this paper is a definition of SCG, a

generic game for the Popperian Scientific Method [24]. The SCG
definition in this paper presents an abstraction of our publicly avail-
able implementation [1].

A second contribution of this paper is an analysis of SCG that
shows that it is consistent with its design goals, and it has several
desirable properties that make the game interesting.

1.4 Organization
This paper is organized as follows: In section 2 we define binary

SCG while in section 3 we introduce SCG competitions that build
on binary SCG. In section 4 we describe SCG from the perspective
of current game design models. In section 5 we analyze the binary
game and show that it has properties that make the game interest-
ing. In section 6, we present our experience with SCG. In section 7,
we present some of the related work. In section 8 we present some
of our future work. Section 9 concludes the paper.

2. BINARY GAME DEFINITION
We first define the binary SCG which is the building block for

competitions. The game is played between two scholars (players),
Alice and Bob, disputing the correctness and optimality of claims
about a particular domain. We define the binary SCG through its
extensive-form (or tree-form) representation which is a common
representation in game theory [16]. We start by giving some aux-
iliary definitions for Domain, Refutation Protocol, Lab, Claim and
Refutation Game that we eventually use for defining the Binary
SCG.

2.1 Domain
A Domain consists of:

1. a set Instance of (problem) instances,

2. a set Solution of (problem) solutions,

3. a predicate valid(i : Instance, s : Solution) : Boolean that
holds when the solution s is valid for the instance i, and

4. a function quality(i : Instance, s : Solution) : Real that re-
turns a real number representing the quality of the solution s
to the instance i.

When designing a domain the valid function should be as lax as
possible such that valid solutions for any problem can be found with
minimal to no intelligence. The reason is that failing to provide a
valid solution is used as an indicator that a player (which can be
an avatar) is out of order and that it should be kicked out of the
lab immediately. It should also be kept in mind when designing
the quality function that the game interprets higher quality as being
better.

Examples of domains include, the domain of CNF Satisfiability
where Instance is the set of CNF formulae, Solution is the set of
variable assignments to booleans. A solution s is valid for an in-
stance i if and only if s provides a boolean value for all variables
mentioned in i. A potential definition of quality(i,s) is the fraction
of clauses in i satisfied by s.

When there are multiple valid solutions for a given problem,
the quality function is used to discriminate between them. For
example, for the domain where Instance is the set of sequence
alignment and Solution is the set of all sequence alignment al-
gorithms such as Smith-Waterman and BLAST,. . . etc, we could
be concerned with full sequence alignment in which case, Smith-
Waterman might have a higher quality. If we are interested in trad-
ing some accuracy for speed, BLAST might be of a Higher quality.

2.2 Refutation Protocol
A refutation protocol is a sequence of actions to be taken by two

players, a proponent and an opponent of a particular claim, in order
to resolve a dispute about whether the claim holds or not. The
actions can be either to provide an instance or to provide a solution
to a particular instance. Protocols can be defined by the following
grammar:

ProtocolSpec = <steps> CommaList(Step).
Step = <actor> Actor <action> Action.
Actor = Proponent | Opponent.
Proponent = "P".
Opponent = "O".
Action = ProvideAction | SolveAction.
ProvideAction = "I" "[" <instanceId> int "]".
SolveAction = "S" "[" <solutionId> int "]"

"of" <instance> ProvideAction.

An example of a protocol is P : I[0], O : S[1] ofI[0] in which
the proponent provides an instance named I[0] and the opponent
provides a solution named S[1] for the instance I[0].

2.3 Lab and Claim
Labs play a central role in SCG. SCG games are played in the

context of a particular lab. A lab focuses the scientific discourse
of games played in it through defining a family of claims about a
particular domain. The claims in a lab have the same structure and
only differ in the claim parameter values. Labs require a great care
to define and effectively resemble a declarative specification of a
(human) computation [6] that separates true from false claims in
the lab and also finds the optimal claims in optimization labs.

A Lab consists of:

1. a Domain : d that gives a context for claims defined in the
lab;

2. a refutation protocol proto : Protocol, used to resolve dis-
putes regarding the correctness of claims;

3. a claim structure Claim consisting of:

(a) a number of claim parameters;

2



(b) an instance set predicate isp(i : d.Instance) : Boolean
defining a family of instance sets. Each set in the fam-
ily is a subset of d.Instance and is chosen by claim pa-
rameter values. The intuition is that a claim c asserts a
property about the set ∀i ∈ d.Instance : c.isp(i).

(c) a refutation predicate p(I : d.Instance[], S : d.Solution
[]) : Boolean defines the property that the claim as-
serts about the family of sets defined by isp. The pro-
tocol together with the refutation predicate are well-
formed, if every ProvideAction is used by at least one
later SolveAction or the refutation predicate and ev-
ery SolveAction refers (through the step number) to
a ProvideAction. The output of every SolveAction
must be used in the refutation predicate.

(d) a predicate stronger(c2 : Claim) : Boolean defin-
ing a partial order on claims in the lab.

(e) a function distance(c2 : Claim) : Real defining the
distance between two claims in the lab provided that
the one of the claims is stronger than the other.

Consider a lab with the following protocol instance P : I[0], O :
S[1] of I[0]. A claim c in this lab intuitively means: “I, the propo-
nent, can give an instance I[0] where c.isp(I[0]) holds, such that
for any solution S[1] of I[0] given by you, the opponent, where
valid(I[0],S[1]) holds, the refutation predicate p(I, S) holds.”. This
claim can also be expressed as a mathematical statement about
the underlying domain as: “There exists an instance I[0] where
c.isp(I[0]) holds, such that for all solutions S[1] of I[0] where
valid(I[0],S[1]) holds, the refutation predicate p(I, S) holds.”. In
order to support this claim, the proponent has to deliver I[0] and
opponent has to deliver S[1] in a resource constrained environment.

If we append the following protocol step to the end of the above
protocol P : S[2] of I[0] and define the refutation predicate to
be: p(I, S) = (Lab.d.quality(S[2], I[0])≥ Lab.d.quality(S[1],
I[0])), we get a very different kind of claim. It says that proponent
is at least as good as opponent in solving instances in the given lab.
Which is a statement about the performance of players rather than
about the underlying domain.

2.3.1 Classification of Claims and Labs
We define a claim to be true if it has a support strategy for the

proponent. This means that, for true claims, the proponent can
always avoid refutations. We define a claim to be false if it has a
refutation strategy for the opponent, i.e., the opponent can always
succeed in refuting. We define a claim to be indeterminate if it has
neither a defense nor a refutation strategy.

We classify labs into optimization, standard,and bivalent labs.
Optimization labs have no restrictions. Standard labs are where
claims are not comparable for strength (i.e. the stronger predicate
is defined to be false). Bivalent labs are a special case of standard
labs with no indeterminate claims.

2.4 Refutation Game
To attempt a refutation of a given claim c, both the proponent

pro and the opponent opp of the claim enter into a refutation game
refute(c : Claim, pro : Scholar, opp : Scholar).

The refutation game consists of an exchange of instances and
solutions as defined by the protocol c.Lab.proto where the propo-
nent P and opponent O in the protocol are bound to the scholars
pro and opp respectively. The exchanged instances must be in the
set ∀i ∈ c.d.Instance : c.isp(i). A solution S[n] for instance
I[m] must be valid for that instance. i.e. c.d.valid(I[n], S[m])
must hold. The refutation predicate is used to decide the winner

of the refutation game. If the c.p(I, S) holds, the proponent has
successfully supported the claim and wins. Otherwise, the oppo-
nent has successfully refuted the claim and wins. I , S refer to the
instances and solutions exchanged during the refutation game. As
a general rule, solutions are all kept secret until protocol evalua-
tion. When a scholar provides a solution she does not know about
solutions provided by the other scholar.

2.5 Binary SCG
The first move is performed by the scholar taking the role of the

proponent, and it is to propose a claim c from the claims in the lab.
By doing so, the proponent asserts that c is a true claim that there is
no other claim in the lab that is stronger. In Figure 1, the first move
is denoted by a thick dashed blue line to indicate that it summarizes
a tree with single edge branches, an edge for each possible claim c.

The second move is performed by the opponent, and it is to de-
cide whether to:

1. dispute the correctness of c, denoted disputeD(c), or to

2. dispute the optimality of c. In this case, the opponent must
provide a stronger claim c′. This decision is denoted strength-
enD(c, c’), or to

3. agree with c, denoted agreeD(c).

Based on the second move, the proponent and the opponent enter
into a different refutation game, which is denoted by a thick solid
red line to indicate that it summarizes a tree with branches of arbi-
trary length. This is consistent with our design goal of encouraging
refutation attempts. If the second move is disputeD(c), the refuta-
tion game is refute(c, proponent, opponent ). If the second move
is strengthenD(c, c’), the refutation game is refute(c′, opponent,
proponent ). If the second move is agreeD(c), the refutation game
is refute(c, opponent, proponent ). Even though, there is no dis-
pute, the two players engage in a refutation game to test whether
the opponent is indeed able to support c or it is only trying to avoid
entering into a dispute with the proponent over c.

Scholars must make their moves within a given resource (time,
space, . . . etc) limit. The winner of the binary SCG, is the scholar
that achieve the highest payoff. Payoff is discussed in section 2.5.1.

Figure 1: SCG Binary Game Tree.

3



2.5.1 Payoff function
Payoff is determined by: (1) the decision of the opponent in the

second move. (2) the value of a refutation predicate which has
as parameters the values collected along the current path back to
the root. Including either the proposed claim c or the strengthened
claim c′, as well as instances I and solutions S provided during the
refutation game.

We use the following notation to describe the payoff function:
c.p(I, S)?(Pt, Ot), (Pf, Of) If c.p(I, S) is true, Pt is the payoff
for the proponent and Ot is the payoff for the opponent. If c.p(I, S)
is false, Pf is the payoff for the proponent and Of is the payoff for
the opponent.

1. If the opponent decision is disputeD(c), the payoff is c.p(I,
S) ? (1, −1) : (−1, 1). The rationale is that if the predicate
holds, the proponent has successfully supported c and gets
a point for that. The proponent failed to refute c and loses
a point. If the predicate is false, the opponent has failed to
support c and loses a point. The opponent has successfully
refuted the c and gets a point.

2. If the opponent decision is strengthenD(c, c’), the payoff is
c′.p(I, S) ? (−d, d) : (1, −1). where d = c.distance(c,
c′). The rationale is that if the predicate holds, the opponent
gets rewarded because she successfully supported her pro-
posed stronger claim c′. The payoff is proportional to the
amount of strengthening as specified by the distance func-
tion to encourage more strengthening. If the predicate does
not hold, the proponent has successfully refuted the stronger
claim and gets rewarded with a point. The strengthening was
not successful.

3. If the opponent decision is agreeD(c), the payoff is c.p(I,
S)? (0, 0) : (1, −1). The rationale is that if the predi-
cate holds, the opponent has successfully supported the claim
and nobody gets a point because no dispute has taken place.
Agreement is successful. If the predicate does not hold, the
opponent has failed to support the claim and loses a point.
Agreement is not successful.

2.6 Example
Fig. 2 (top left) provides a summary of the Domain structure.

Fig. 2 (top right) provides an example of a Domain, the Gale-
Shapley worst case domain. In this domain, Instance is the set
of natural numbers, Solution is the set of preferences which is the
input to the Gale-Shapley matching algorithm. A solution s is valid
for an instance i if and only if s is syntactically well formed and it
gives preferences for i men and women. The quality of a solution s
to an instance i is the number of iterations of the while loop in the
Gale-Shapley matching algorithm when supplied the preferences s
as input.

Fig. 2 (middle left) provides a summary of the Lab structure and
provides an example Lab (middle right), the Gale-Shapley worst
case lab. Claims in this lab have two parameters n and q. n is
the number of men and women. q is the number of iterations of
the Gale-Shapley matching algorithm that can be achieved by giv-
ing a preference for n men and women. The instance set predicate
of the claim selects only one instance, namely the instance where
the number of men and women is the same as the claim parame-
ter n. The refutation protocol is that the opponent should provide
an instance I[0] satisfying the instance set predicate of the claim
(there is only a singleton instance) and the proponent should pro-
vide a preference S[1] for I[0]. The refutation predicate holds if
S[1] causes the Gale-Shapley matching algorithm to iterate at least

q times. The stronger predicate holds if the current claim has a
higher value for the q parameter. The distance function distance
is defined as the difference between the q parameter of the current
and the given claim. Several other examples in the style of Fig. 2
are in the supplementary materials [2].

Figure 2: SCG Structure.

3. BEYOND BINARY SCG

3.1 Matches and Tournaments
To alleviate potential first-move-advantage in binary SCG, we

propose that players engage in matches rather than binary games.
A match consists of a number of rounds of binary SCG where play-
ers switch the roles of opponent and proponent. Tournaments (e.g.
round-robin, knock-out, Swiss-style) enable more than two play-
ers to engage in a single competition. Round-robin tournaments
are more suitable for avatars playing SCG because they involve
n.(n − 1) matches where n is the number of players. Swiss-style
tournaments are more suitable for humans playing SCG because it
involves fewer games.

3.2 Reputation Score
In real scientific communities, scientists build up their reputation

based on their work and the breakthroughs they achieve. Likewise,
in SCG, we propose to compute reputation scores, achieved in a
particular lab, for scholars based on their performance in competi-
tions held in that lab as well as on their breakthroughs.

3.2.1 Breakthroughs
Being the first in a scientific community is crucial for the rep-

utation of a scholar. Therefore, the SCG as a faithful model of a
scientific community, also deals with being the first.

The breakthrough metric is computed after a competition or a
series of competitions as a retrospective. For each important event,
a time stamp is stored. Important events are: refutation, support
and strengthening. We assume that we have the set of claims be-
lieved to be true (BelievedTrue) or false (BelievedFalse) or optimal
(BelievedOptimal).

For each claim in BelievedTrue or BelievedOptimal, we find the
first scholar who proposed the claim and supported it. That scholar
gets one point added to the breakthrough component of their repu-
tation.

4



For each claim in BelievedFalse, we find the first scholar who
successfully refuted the claim. That scholar gets one point added
to the breakthrough component of their reputation.

For each claim in BelievedTrue, but not in BelievedOptimal, we
find the first scholar who successfully strengthened the claim and
supported the strengthened claim. That scholar gets one point added
to the breakthrough component of their reputation.

3.3 Histories and Open Publication
By publishing number of times a particular claim gets supported

and refuted and the reputations of players supporting or refuting
these claims, SCG creates social welfare.

When a lab gets into a stable state (a sub-optimal equilibrium
where breakthroughs cease to happen for particular period of time),
it is time to publish the current, maybe imperfect refutation and
support strategies. If the scholars are avatars, their software is pub-
lished. If the scholars are humans, an informal description of their
techniques is published.

This levels the playing field and sets the stage for the next ad-
vancements. It is important to reward the scholars for their previous
investment and not force them too early to publish their techniques.

4. DISCUSSION
In this section we show how binary SCG can be seen from the

perspective of current game design models.

4.1 Five Element Game Ontology
Using the five element game ontology by Jose Zagal and Michael

Mateas et al. [28]: interface, rules, goals, entities, and entity manip-
ulation we give an overview of the SCG. The entities manipulated
by the scholars are instances in Instance, solutions in Solution and
claims in Claim in the context of a Lab and the reputation (payoff
points) that a scholar accumulates. The interface for a scholar con-
sists of the actions: propose a claim, decide to refute, strengthen or
agree with a claim, to provide an instance and to solve an instance.
The rules of the SCG are the rules of the Scientific Method: you
must follow the refutation approach defined by Lab. You also must
follow the scientific discourse prescribed by the extensive form rep-
resentation of the game. The goal of the game is to make the refuta-
tion protocol predicate true or false, depending on the role you play
(proponent or opponent of a claim). The entity manipulation in-
cludes solving instances with a certain quality and creating claims
and instances. Gameplay is segmented into binary games and com-
petitions and into increasingly more complex claims which become
harder and harder to defend.

4.2 Triadic Game Design
Using the model of Triadic Game Design [11] by Casper Harteveld,

we break down the SCG into a Reality, Meaning and Play com-
ponent. Triadic Game Design describes an approach to serious
game design and the SCG defines a large family of serious games.
The Reality component of the SCG models a scientific commu-
nity based on the Popper-style Scientific Method [24]. The Mean-
ing component consists of cleaning the knowledge base of false
or non-optimal claims by developing new constructions which are
better than the constructions of others. The Play component of the
SCG consists of competition, collaboration and finding a treasure
(a new construction).

4.3 Exploratory-Performatory Games
According to Jonas Linderoth [21] games challenge two aspects

of human nature: our ability to choose appropriate actions and our

ability to perform appropriate actions. [21] views gaming as a cycle
between interrelated exploratory and performatory actions.

What are the exploratory and performatory actions in the SCG?
Exploratory actions are: (1) proposing a claim which means choos-
ing from a set of claims. (2) Choosing an action: dispute, agree or
strengthen a given claim. Performatory actions are: (1) the propo-
nent should defend the proposed claim. (2) If an opponent decides
to refute, he should succeed in refuting, etc. In the SCG we also
have a cycle of interrelated exploratory and performatory actions.
Indeed, this cycle is the dominant activity in the SCG.

5. BINARY SCG ANALYSIS
In this section, we characterize blameable moves in the binary

SCG game tree. We argue that blame is both fair and is consistent
with the design goal of encouraging scholars to put as much effort
and intelligence as possible into proposing claims that are hard to
falsify as well as into attempting to refute those claims. We show
that the payoff is sound, fair, and competitive with respect to the
blame assignment. These three properties are important for SCG to
be interesting. For space reasons, we deal in this subsection only
with bivalent labs.

5.1 Blame Assignment
First, we divide the branches of the SCG game tree into 8 differ-

ent sets based on 3 properties. Then, we assign blame to these sets.
Figure 3 presents these sets. The three properties are: (1) whether
the proponent proposed a true claim or not. This is represented in
Figure 3 by the column claim. A value of T means the proposed
claim is true. A value of F means the proposed claim was false.
(2) the decision made by the opponent. This is represented in Fig-
ure 3 by the column dec. A value of a means agree and a value
of d means dispute. There is no strengthening in bivalent labs. (3)
the outcome of the refutation game and the winner. This is repre-
sented in Figure 3 by the column out. The outcome is either s for
“support" or r for “refutation” and the winner is either P for the
“proponent” or O for the “opponent”.

Figure 3 has two blame columns cB, and oB with values that are
either P for the “proponent” or O for the “opponent”. In the cB
column, we blame the proponent for proposing a false claim (rows
1, 3, 5, 7). This is consistent with our design goal of encouraging
scholars to put effort and intelligence into proposing claims that are
hard to falsify. This blame is fair because it is in the hands of the
proponent to avoid. In the oB column, we blame the player that has
lost the refutation game when it is fair to do so. This is consistent
with our design goal of scholars to put effort and intelligence into
attempting to refute claims. The blame in this column is fair be-
cause it is in the hands of both players to avoid. The opponent gets
blamed for failing to refute a claim it disputed (rows 3, 4) and for
failing to support a claim it agreed with (rows 5, 6). The proponent
gets blamed for failing to support a claim it proposed (rows 7, 8).
The proponent does not get blamed for failing to refute a claim it
proposed (rows 1, 2).

5.2 Payoff Function
In the design of the SCG payoff function there are three forces at

work that need to be balanced. We would like the payoff function
to be fair, sound and competitive.

5.2.1 Incomplete Knowledge and Fairness
Unfortunately, it is not always decidable whether a claim is true

or false. Therefore, the payoff has to be the same for branches
(rows of Figure 3) that only differ in the claim property (namely,
rows {1, 2}, {3, 4}, {5, 6} and {7, 8}). For the payoff to be fair, it

5



has to give scholars the benefit of the doubt (i.e. the payoff function
has to only penalize a scholar for a group of rows where the scholar
is blamed in every row of the group). For example, it is unfair to
blame either the proponent or the opponent for rows {1, 2} because
none of the players are blamed in row 2. The payoff function shown
in Figure 3 is fair.

5.2.2 Soundness
For the payoff to be sound, there must be a chance that a scholar

gets eventually penalized if it makes a blameable move. For ex-
ample, suppose that the proponent proposed a false claim. There
are 4 possible branches that start with the proponent proposing a
false claim, and they correspond to rows 1, 3, 5, 7 in Figure 3. To
be sound, the payoff function must penalize the proponent in one
of these rows. The payoff function shown in Figure 3 penalizes
the proponent in row 7. The payoff function shown in Figure 3 is
sound.

5.2.3 Competitiveness
For the payoff to be competitive, it must encourage competition

until the last move (i.e. the last move must matter to the payoff).
In our case, the last move consists of playing the refutation game.
The payoff function must encourage scholars to win the refutation
game. For example, the payoff function should favor the proponent
in row 5 more than it does in row 1. Because, both rows only differ
in the refutation game winner which is the proponent for row 5 and
the opponent for row 1. The payoff function shown in Figure 3 is
competitive.

Figure 3: Blame and Payoff Table

5.3 Payoff Function Design using CSP
To study the space of payoff functions, we introduce a constraint

satisfaction problem that expresses the constraints implied by the
fairness, soundness and competitiveness properties. Figure 3 intro-
duces eight variables for formulating the constraints for the payoff
function: paso, oaso, etc. The variable names come from the de-
cision and outcome column.

To penalize the proponent we add the constraint that its payoff
must be negative. We say that the difference between the proponent
and opponent payoffs is the amount that the payoff function favors
the proponent with.

The constraints for the fairness property are: paso ≥ 0, and
oaso ≥ 0, and pdsp ≥ 0, and parp ≥ 0, and odro ≥ 0..

The constraints for soundness we give separately for oB-soundness
(soundness based on blame in the oB column) and cB-soundness
(soundness based on blame in the cB column). The constraints for
the oB-soundness property are: odsp < 0, and oarp < 0, and
pdro < 0..

For cB-soundness, there is one constraint which is: ((pdro <
0) ∨ (parp < 0) ∨ (pdsp < 0) ∨ (paso < 0)).

The constraints for competitiveness are: parp−oarp > paso−
oaso and pdsp− odsp > pdro− odro.

Any variations of the payoff function must satisfy all constraints
introduced above for the game to be fair, sound and competitive.
The above constraints are also useful when only a subset of the
properties is desired.

6. EXPERIENCE WITH THE SCG
The SCG has evolved since 2007. We have used the SCG in soft-

ware development courses at both the undergraduate and graduate
level and in several algorithm courses. Detailed information about
those courses is available from the second author’s teaching page.

6.1 Software Development
The most successful graduate classes were the ones that devel-

oped and maintained the software for SCG Court [1] as well as
several labs and their avatars to test SCG Court. Developing labs
for avatars has the flavor of defining a virtual world for artificial
creatures. At the same time, the students got detailed knowledge of
some problem domain and how to solve it. A fun lab was the High-
est Safe Rung lab from [15] where the best avatars needed to solve
a constrained search problem using a modified Pascal triangle.

6.2 Algorithms
The most successful course (using [15] as textbook) was in Spring

2012 where the interaction through the SCG encouraged the stu-
dents to solve difficult problems. Almost all homework problems
were defined through labs and the students posted both their ex-
ploratory and performatory actions on piazza.com. We used a mul-
tiplayer version of the SCG binary game which created a bit of an
information overload. Sticking to binary games would have been
better but requires splitting the students into pairs. The informal use
of the SCG through Piazza (piazza.com) proved successful. All ac-
tions were expressed in JSON which allowed the students to use a
wide variety of programming languages to implement their algo-
rithms.

The students collaboratively solved several problems such as the
problem of finding the worst-case inputs for the Gale-Shapley al-
gorithm (see the section Example above).

We do not believe that, without the SCG, the students would have
created the same impressive results. The SCG effectively focuses
the scientific discourse on the problem to be solved.

The SCG proved to be adaptive to the skills of the students. A
few good students in a class become effective teachers for the rest
thanks to the SCG mechanism.

7. RELATED WORK
The SCG has not grown in a vacuum. We make connections to

several related areas.

7.1 Crowd Sourcing and Human Computation
There are several websites that organize competitions. What is

common to many of those competitions? We believe that the SCG

6



provides a foundation to websites such as TopCoder.com or kag-
gle.com.

The SCG makes a specific, but incomplete proposal of a pro-
gramming interface to work with the global brain [6]. What is cur-
rently missing is a payment mechanism for scholars and an algo-
rithm to split workers into pairs based on their background.

The SCG is a generic version of the “Beat the Machine” ap-
proach for improving the performance of machine learning systems
[5].

Scientific discovery games, such as FoldIt and EteRNA, are vari-
ants of the SCG. [7] describes the challenges behind developing
scientific discovery games. [4] argues that complex games such as
FoldIt benefit from tutorials. This also applies to the SCG, but a
big part of the tutorial is reusable across scientific disciplines.

7.2 Logic and Imperfect Information Games
Logic has long promoted the view that finding a proof for a claim

is the same as finding a defense strategy for a claim.
Logical Games [22], [12] have a long history going back to Socrates.

The SCG is an imperfect information game which builds on Paul
Lorenzen’s dialogical games [14].

7.3 Foundations of Digital Games
A functioning game should be deep, fair and interesting which

requires careful and time-consuming balancing. [13] describes tech-
niques used for balancing that complement the expensive playtest-
ing. This research is relevant to SCG lab design. For example, if
there is an easy way to refute claims without doing the hard work,
the lab is unbalanced.

7.4 Architecting Socio-Technical Ecosystems
This area has been studied by James Herbsleb and the Center

on Architecting Socio-Technical Ecosystems (COASTE) at CMU
http://www.coaste.org/. A socio-technical ecosystem supports straight-
forward integration of contributions from many participants and al-
lows easy configuration.

The SCG has this property and provides a specific architecture
for building knowledge bases in (formal) sciences. Collaboration
between scholars is achieved through the scientific discourse which
exchanges instances and solutions. The structure of those instances
and solutions gives hints about the solution approach. An interest-
ing question is why this indirect communication approach works.

The NSF workshop report [25] discusses socio-technical inno-
vation through future games and virtual worlds. The SCG is men-
tioned as an approach to make the scientific method in the spirit
of Karl Popper available to CGVW (Computer Games and Virtual
Worlds).

7.5 Online Judges
An online judge is an online system to test programs in program-

ming contests. A recent entry is [23] where private inputs are used
to test the programs. Topcoder.com includes an online judge ca-
pability, but where the inputs are provided by competitors. This
dynamic benchmark capability is also expressible with the SCG:
The claims say that for a given program, all inputs create the cor-
rect output. A refutation is an input which creates the wrong result.

7.6 Educational Games
The SCG can be used as an educational game. One way to create

adaptivity for learning is to create an avatar that gradually poses
harder claims and instances. Another way is to pair the learner with
another learner who is stronger. [3] uses concept maps to guide
the learning. Concept maps are important during lab design: they

describe the concepts that need to be mastered by the students for
succeeding in the game.

7.7 Formal Sciences and Karl Popper
James Franklin points out in [10] that there are also experiments

in the formal sciences. One of them is the ‘numerical experiment’
which is used when the mathematical model is hard to solve. For
example, the Riemann Hypothesis and other conjectures have re-
sisted proof and are studied by collecting numerical evidence by
computer. In the SCG experiments are performed when the refuta-
tion protocol is elaborated.

Karl Popper’s work on falsification [24] is the father of non-
deductive methods in science. The SCG is a way of doing science
on the web according to Karl Popper.

7.8 Scientific Method in CS
Peter Denning defines CS as the science of information processes

and their interactions with the world [8]. The SCG makes the sci-
entific method easily accessible by expressing the hypotheses as
claims. Robert Sedgewick in [26] stresses the importance of the sci-
entific method in understanding program behavior. With the SCG,
we can define labs that explore the fastest practical algorithms for
a specific algorithmic problem.

7.9 Games and Learning
Kevin Zollman studies the proper arrangement of communities

of learners in his dissertation on network epistemology [29]. He
studies the effect of social structure on the reliability of learners.

In the study of learning and games the focus has been on learning
known, but hidden facts. The SCG is about learning unknown facts,
namely new constructions.

7.10 CSP-based Game Design
CSP is increasingly being used in the procedural content gen-

eration (PCG) community, although not in industry. For example,
Tanagra[27] uses a numerical constraint solver to guarantee level
playability. In addition, Magy El-Nasr used constraint solving for
lighting and adaptive systems for games [9].

7.11 Origins of SCG
A preliminary definition of the SCG was given in a keynote paper

[18]. [17] gives further information on the Scientific Community
Game. The original motivation for the SCG came from the two
papers with Ernst Specker: [19] and the follow-on paper [20]. Re-
naissance competitions are another motivation: the public problem
solving duel between Fior and Tartaglia, about 1535, can easily be
expressed with the SCG protocol language.

8. FUTURE WORK
We see a significant potential in putting the refutation-based Sci-

entific Method into the cyberinfrastructure and make it widely avail-
able. We plan to, iteratively, improve our current implementation
based on user feedback.

We see an interesting opportunity to mine the game histories and
make suggestions to the scholars how to improve their skills to pro-
pose and defend claims. If this approach is successful, the SCG will
make contributions to computer-assisted problem solving.

9. SUMMARY AND CONCLUSIONS
The SCG provides a simple interface to a community that uses

the (Popperian) Scientific Method. The SCG provides for effective
customization of the generic scientific machinery by using lab def-
initions. Since the SCG models a scientific community it is a broad

7



enabling tool for innovation and learning and deserves a central
place in the world’s cyberinfrastructure and serious games world.
We believe that the game design approach we outline in this paper
has many applications to other games. We start with a game goal
and translate it into a blame assignment for moves that are incon-
sistent with the design goal. Then we derive a payoff function that
is fair, sound and competitive. Such a systematic approach elimi-
nates a lot of game testing because we know that many properties
are formally guaranteed.

Acknowledgments: We would like to thank Bryan Chadwick,
Magy Seif El-Nasr, David Lazer, Rory Smead, Abraham Bernstein
and Gillian Smith for their input and feedback on the paper.

10. REFERENCES
[1] A. Abdelmeged and K. J. Lieberherr. SCG Court: Generator

of teaching/innovation labs on the web. Website, 2011.
http://sourceforge.net/p/generic-scg/
code-0/110/tree/GenericSCG/ .

[2] A. Abdelmeged and K. J. Lieberherr. The scientific
community game: supplementary materials. Website, 2012.
http://www.ccs.neu.edu/home/lieber/
papers/SCG-definition/supplementary/ .

[3] E. Andersen. Optimizing adaptivity in educational games. In
Proceedings of the International Conference on the
Foundations of Digital Games, FDG ’12, pages 279–281,
New York, NY, USA, 2012. ACM.

[4] E. Andersen, E. O’Rourke, Y.-E. Liu, R. Snider,
J. Lowdermilk, D. Truong, S. Cooper, and Z. Popovic. The
impact of tutorials on games of varying complexity. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’12, pages 59–68, New York, NY,
USA, 2012. ACM.

[5] J. Attenberg, P. Ipeirotis, and F. Provost. Beat the machine:
Challenging workers to find the unknown unknowns. In
Workshops at the Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[6] A. Bernstein, M. Klein, and T. W. Malone. Programming the
global brain. Commun. ACM, 55(5):41–43, May 2012.

[7] S. Cooper, A. Treuille, J. Barbero, A. Leaver-Fay, K. Tuite,
F. Khatib, A. C. Snyder, M. Beenen, D. Salesin, D. Baker,
and Z. Popović. The challenge of designing scientific
discovery games. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games, FDG ’10,
pages 40–47, New York, NY, USA, 2010. ACM.

[8] P. J. Denning. Is computer science science? Commun. ACM,
48(4):27–31, Apr. 2005.

[9] M. S. El-Nasr and I. Horswill. Automating lighting design
for interactive entertainment. Comput. Entertain.,
2(2):15–15, Apr. 2004.

[10] J. Franklin. The formal sciences discover the philosophers’
stone. Studies in History and Philosophy of Science,
25(4):513–533, 1994.

[11] C. Harteveld. Triadic Game Design. Springer, 2011.
[12] W. Hodges. Logic and games. In E. N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Spring 2009 edition,
2009.

[13] A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and
Z. Popovic. Evaluating competitive game balance with
restricted play, 2012.

[14] L. Keiff. Dialogical logic. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Summer 2011 edition, 2011.

[15] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

[16] K. Leyton-Brown and Y. Shoham. Essentials of game theory:
A concise multidisciplinary introduction. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 2(1):1–88,
2008.

[17] K. Lieberherr. The Scientific Community Game. Website,
2009. http://www.ccs.neu.edu/home/lieber/
evergreen/specker/scg-home.html.

[18] K. J. Lieberherr, A. Abdelmeged, and B. Chadwick. The
Specker Challenge Game for Education and Innovation in
Constructive Domains. In Keynote paper at Bionetics 2010,
Cambridge, MA, and CCIS Technical Report
NU-CCIS-2010-19, December 2010. http:
//www.ccs.neu.edu/home/lieber/evergreen/
specker/paper/bionetics-2010.pdf .

[19] K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction. Journal of the ACM, 28(2):411–421, 1981.

[20] K. J. Lieberherr and E. Specker. Complexity of Partial
Satisfaction II. Elemente der Mathematik, 67(3):134–150,
2012. http:
//www.ccs.neu.edu/home/lieber/p-optimal/
partial-sat-II/Partial-SAT2.pdf.

[21] J. Linderoth. Why gamers don’t learn more: An ecological
approach to games as learning environments. In L. Petri,
T. A. Mette, V. Harko, and W. Annika, editors, Proceedings
of DiGRA Nordic 2010: Experiencing Games: Games, Play,
and Players, Stockholm, January 2010. University of
Stockholm.

[22] M. Marion. Why Play Logical Games. Website, 2009.
http://www.philomath.uqam.ca/doc/
LogicalGames.pdf.

[23] J. Petit, O. Giménez, and S. Roura. Jutge.org: an educational
programming judge. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,
SIGCSE ’12, pages 445–450, New York, NY, USA, 2012.
ACM.

[24] K. R. Popper. Conjectures and refutations: the growth of
scientific knowledge, by Karl R. Popper. Routledge, London,
1969.

[25] W. Scacchi. The Future of Research in Computer Games and
Virtual Worlds: Workshop Report. Technical Report
UCI-ISR-12-8, 2012. http://www.isr.uci.edu/
tech_reports/UCI-ISR-12-8.pdf.

[26] R. Sedgewick. The Role of the Scientific Method in
Programming. Website, 2010. http://www.cs.
princeton.edu/~rs/talks/ScienceCS.pdf.

[27] G. Smith, J. Whitehead, and M. Mateas. Tanagra: a
mixed-initiative level design tool. In Proceedings of the Fifth
International Conference on the Foundations of Digital
Games, FDG ’10, pages 209–216, New York, NY, USA,
2010. ACM.

[28] J. P. Zagal, M. Mateas, C. Fernandez-Vara, B. Hochhalter,
and N. Lichti. Towards an ontological language for game
analysis. In in Proceedings of International DiGRA
Conference, pages 3–14, 2005.

[29] K. J. S. Zollman. The communication structure of epistemic
communities. Philosophy of Science, 74(5):574–587, 2007.

8

 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/ 
 http://sourceforge.net/p/generic-scg/code-0/110/tree/GenericSCG/ 
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/supplementary/ 
 http://www.ccs.neu.edu/home/lieber/papers/SCG-definition/supplementary/ 
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
http://www.ccs.neu.edu/home/lieber/evergreen/specker/scg-home.html
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
http://www.ccs.neu.edu/home/lieber/p-optimal/partial-sat-II/Partial-SAT2.pdf
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf 
 http://www.philomath.uqam.ca/doc/LogicalGames.pdf 
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf 
 http://www.isr.uci.edu/tech_reports/UCI-ISR-12-8.pdf 
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf 
 http://www.cs.princeton.edu/~rs/talks/ScienceCS.pdf 

	1 Introduction
	1.1 SCG in a Nutshell
	1.2 SCG Applications
	1.3 Contributions
	1.4 Organization

	2 Binary Game Definition
	2.1 Domain
	2.2 Refutation Protocol
	2.3 Lab and Claim
	2.3.1 Classification of Claims and Labs

	2.4 Refutation Game
	2.5 Binary SCG
	2.5.1 Payoff function

	2.6 Example

	3 Beyond Binary SCG
	3.1 Matches and Tournaments
	3.2 Reputation Score
	3.2.1 Breakthroughs

	3.3 Histories and Open Publication

	4 Discussion
	4.1 Five Element Game Ontology
	4.2 Triadic Game Design
	4.3 Exploratory-Performatory Games

	5 Binary SCG Analysis
	5.1 Blame Assignment
	5.2 Payoff Function
	5.2.1 Incomplete Knowledge and Fairness
	5.2.2 Soundness
	5.2.3 Competitiveness

	5.3 Payoff Function Design using CSP

	6 Experience with the SCG
	6.1 Software Development
	6.2 Algorithms

	7 Related Work
	7.1 Crowd Sourcing and Human Computation
	7.2 Logic and Imperfect Information Games
	7.3 Foundations of Digital Games
	7.4 Architecting Socio-Technical Ecosystems
	7.5 Online Judges
	7.6 Educational Games
	7.7 Formal Sciences and Karl Popper
	7.8 Scientific Method in CS
	7.9 Games and Learning
	7.10 CSP-based Game Design
	7.11 Origins of SCG

	8 Future Work
	9 Summary and Conclusions
	10 References

