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Abstract. Ransomware is a form of extortion-based attack that locks
the victim’s digital resources and requests money to release them. The
recent resurgence of high-profile ransomware attacks, particularly in crit-
ical sectors such as the health care industry, has highlighted the pressing
need for effective defenses. While users are always advised to have a re-
liable backup strategy, the growing number of paying victims in recent
years suggests that an endpoint defense that is able to stop and recover
from ransomware’s destructive behavior is needed.
In this paper, we introduce Redemption, a novel defense that makes the
operating system more resilient to ransomware attacks. Our approach re-
quires minimal modification of the operating system to maintain a trans-
parent buffer for all storage I/O. At the same time, our system monitors
the I/O request patterns of applications on a per-process basis for signs
of ransomware-like behavior. If I/O request patterns are observed that
indicate possible ransomware activity, the offending processes can be ter-
minated and the data restored.
Our evaluation demonstrates that Redemption can ensure zero data
loss against current ransomware families without detracting from the
user experience or inducing alarm fatigue. In addition, we show that
Redemption incurs modest overhead, averaging 2.6% for realistic work-
loads.

1 Introduction

Ransomware continues to be one of the most important security threats on the
Internet. While ransomware is not a new concept (such attacks have been in the
wild since the last decade), the growing number of high-profile ransomware at-
tacks [8, 13, 14, 19] has resulted in increasing concerns on how to defend against
this class of malware. In 2016, several public and private sectors including the
healthcare industry were impacted by ransomware [11, 9, 35]. Recently, US of-
ficials have also expressed their concerns about ransomware [16, 20], and even
asked the U.S. government to focus on fighting ransomware under the Cyberse-
curity National Action Plan [20].

In response to the increasing ransomware threat, users are often advised to
create backups of their critical data. Certainly, having a reliable data backup
policy minimizes the potential costs of being infected with ransomware, and is



an important part of the IT management process. However, the growing number
of paying victims [10, 29, 17] suggests that unsophisticated users – who are the
main target of these attacks – do not follow these recommendations, and easily
become a paying victim of ransomware. Hence, ransomware authors continue to
create new attacks and evolve their creations as evidenced by the emergence of
more sophisticated ransomware every day [34, 7, 33, 32].

Law enforcement agencies and security firms have recently launched a pro-
gram to assist ransomware victims in retrieving their data without paying ran-
som fees to cybercriminals [30]. The main idea behind this partnership is that
reverse engineers analyze the cryptosystems used by the malware to extract se-
cret keys or find design flaws in the way the sample encrypts or deletes files.
While there are ransomware families that are infamous for using weak cryptog-
raphy [22, 12, 24], newer ransomware variants, unfortunately, have learned from
past mistakes by relying on strong cryptographic primitives provided by stan-
dard cryptographic libraries. In response to the increasing number of ransomware
attacks, a desirable and complementary defense would be to augment the oper-
ating system with transparent techniques that would make the operating system
resistant against ransomware-like behavior. However, an endpoint approach to
defend against unknown ransomware attacks would need to immediately stop at-
tacks once the ransomware starts destroying files, and should be able to recover
any lost data.

This paper presents a generic, real-time ransomware protection approach to
overcome the limitations of existing approaches with regard to detecting ran-
somware. Our technique is based on two main components: First, an abstract
characterization of the behavior of a large class of current ransomware attacks
is constructed. More precisely, our technique applies the results of a long-term
dynamic analysis to binary objects to determine if a process matches the ab-
stract model. A process is labeled as malicious if it exhibits behaviors that
match the abstract model. Second, Redemption employs a high-performance,
high-integrity mechanism to protect and restore all attacked files by utilizing
a transparent data buffer to redirect access requests while tracking the write
contents.

In this paper, we demonstrate that by augmenting the operating system with
a set of lightweight and generic techniques, which we collectively call Redemp-
tion, it is possible to stop modern ransomware attacks without changing the
semantics of the underlying file system’s functionality, or performing significant
changes in the architecture of the operating system. Our experiments on 29
contemporary ransomware families show that our approach can be successfully
applied in an application-transparent manner, and can significantly enhance the
current protection capabilities against ransomware (achieving a true positive
[TP] rate of 100% at 0.8% false positives [FPs]). Finally, we show that this goal
can be achieved without a discernible performance impact, or other changes to
the way users interact with standard operating systems. To summarize, we make
the following contributions.



– We present a general approach to defending against unknown ransomware
attacks in a transparent manner. In this approach, access to user files is medi-
ated, and privileged requests are redirected to a protected area, maintaining
the consistent state of user data.

– We show that efficient ransomware protection with zero data loss is possible.
– We present a prototype implementation for Windows, and evaluate it with
real users to show that the system is able to protect user files during an un-
known ransomware attack while imposing no discernible performance over-
head.

The rest of the paper is structured as follows. Section 2 presents related
work. In Section 3, we present the threat model. In Section 4, we elaborate on
the architecture of Redemption. In Section 6, we provide more details about
the implementation of the system. In Section 7, we present the evaluation re-
sults. Limitations of the approach are discussed in Section 8. Finally, Section 10
concludes the paper.

2 Related Work

The first scientific study on ransomware was performed by Gazet [18] where he
analyzed three ransomware families and concluded that the incorporated tech-
niques in those samples did not fulfill the basic requirements for mass extor-
tion. The recent resurgence of ransomware attacks has attracted the attention
of several researchers once more. Kharraz et al. [22] analyzed 15 ransomware
families including desktop locker and cryptographic ransomware, and provided
an evolution-based study on ransomware attacks. The authors concluded that
a significant number of ransomware in the wild has a very similar strategy to
attack user files, and can be recognized from benign processes. In another work,
Kharraz et al. [21] proposed Unveil, a dynamic analysis system, that is specifi-
cally designed to assist reverse engineers to analyze the intrinsic behavior of an
arbitrary ransomware sample. Unveil is not an end-point solution and no real
end-user interaction was involved in their test. Redemption is an end-point
solution that aims differentiate between benign and malicious ransomware-like
access requests to the file system.

Scaife et al. [31] proposed CryptoDrop which is built upon the premise that
the malicious process aggressively encrypts user files. In the paper, as a lim-
itation of CryptoDrop, the authors state that the tool does not provide any
recovery or minimal data loss guarantees. Their approach is able to detect a
ransomware attack after a median of ten file losses. Redemption does not have
this limitation as it is designed to protect the consistent state of the original files
by providing full data recovery if an attack occurs. Hence, unlike CryptoDrop,
Redemption guarantees minimal data loss and is resistant to most of realistic
evasion techniques that malware authors may use in future.

Very recently, Continella et al. [15], and Kolodenker et al. [23] concurrently
and independently proposed protection schemes to detect ransomware. Con-
tinella et al. [15] proposed ShieldFS which has a similar goal to us. The authors



also look at the file system layer to find typical ransomware activity. While
ShieldFS is a significant improvement over the status quo, it would be desir-
able to complement it with a more generic approach which is also resistant to
unknown cryptographic functions. Unlike ShieldFS, Redemption does not rely
on cryptographic primitive identification which can result in false positive cases.
More importantly, this was a conscious design choice to minimize the interference
with the normal operation of processes, minimize the risk of process crashes and
avoid intrusive pop-up prompts which can have noticeable usability side-effects.

Kolodenker et al. [23] proposed PayBreak which securely stores cryptographic
encryption keys in a key vault that is used to decrypt affected files after a ran-
somware attack. In fact, PayBreak intercepts calls to functions that provide
cryptographic operations, encrypts symmetric encryption keys, and stores the
results in the key vault. After a ransomware attack, the user can decrypt the key
vault with his private key and decrypt the files without making any payments.
The performance evaluation of the system also shows that PayBreak imposes
negligible overhead compared to a reference platform. Similar to ShieldFS, Pay-
Break relies on identifying functions that implement cryptographic primitives.
As mentioned earlier, Redemption does not depend on any hooking technique
to identify cryptographic functions. Furthermore, the detection accuracy of Re-
demption is not impacted by the type of packer a ransomware family may use to
evade common anti-malware systems. This makes Redemption a more generic
solution to the same problem space.

The evaluation of Redemption covers a significantly larger number of ran-
somware families compared to [15, 31] and shows it can successfully identify un-
seen ransomware attacks after observing a median of five exposed files without
any data loss. Indeed, Redemption shares some similarity with CryptoDrop,
ShieldFS, and PayBreak due to the common characteristics of ransomware at-
tacks. However, extracting such behavior of ransomware is not the main con-
tribution of the paper as they have been comprehensively discussed in several
security reports. Rather,Redemption is the introduction of a high performance,
data loss free end-user protection framework against ransomware that protects
the consistent state of the entire user space and can be used as an augmented
service to the operating system. We are not aware of any other scientific work
on the protection against ransomware attacks.

3 Threat Model

In this paper, we assume that ransomware can employ any standard, popular
techniques to attack machines similar to other types of malware. That is, ran-
somware can employ several strategies to evade the detection phase, compromise
vulnerable machines, and attack the user files. For example, a ransomware in-
stance could be directly started by the user, delivered by a drive-by download
attack, or installed via a simple dropper or a malicious email attachment.

We also assume that the malicious process can employ any techniques to
generate the encryption key, use arbitrary encryption key lengths, or in general,
utilize any customized or standard cryptosystems to lock the files. Ransomware



can access sensitive resources by generating new processes, or by injecting code
into benign processes (i.e., similarly to other classes of malware). Furthermore,
we assume that a user can install and run programs from arbitrary untrusted
sources, and therefore, that malicious code can execute with the privileges of
the user. This can happen in several scenarios. For instance, a user may install,
execute and grant privileges to a malicious application that claims to be a well-
known legitimate application, but in fact, delivers malicious payloads – including
ransomware.

In addition, in this work, we also assume that the trusted computing base
includes the display module, OS kernel, and underlying software and hardware
stack. Therefore, we can safely assume that these components of the system
are free of malicious code, and that normal user-based access control prevents
attackers from running malicious code with superuser privileges. This is a fair
assumption considering the fact that ransomware attacks mainly occur in the
user-mode.
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Fig. 1: Redemption mediates the access to the file system and redirects each write
request on the user files to a protected area without changing the status of the original
file. Reading the user files, creating and writing on new files follow the standard 2-step
procedure since they do not introduce any risk with regard to ransomware attacks on
user data.

4 Design Overview

In this section, we provide our design goals for Redemption. We refer the reader
to Section 6 for details of our prototype implementation. Redemption has two
main components. First, a lightweight kernel module that intercepts process
interactions and stores the event, and manages the changes in a protected area.
Second, a user-mode daemon, called behavioral monitor and notification module,
that assigns a malice score to a process, and is used to notify the user about the
potential malicious behavior of a process.
Intercepting Access Requests. In order to implement a reliable dynamic
access control mechanism over user data, this part of the system should be



implemented in the kernel, and be able to mediate the access to the file system.
The prototype redirects each write access request to the user files to a protected
area without changing the status of the original file. We explain more details on
how we implemented the write redirection semantics in Section 6.

Figure 1 presents an example that illustrates how access requests are pro-
cessed. In an unmodified system, the request would succeed if the corresponding
file exists, and as long as the process holds the permission. The system intro-
duces the following changes. (1) Redemption receives the request A from the
application X to access the file F at the time t, (2) if At requests access with
write or delete privilege to the file F , and the file F resides in a user defined path,
the Redemption’s monitor is called, (3) Redemption creates a corresponding
file in the protected area, called reflected file, and handles the write requests.
These changes are periodically flushed to the storage to ensure that they are
physically available on the disk. The meta-data entry of the corresponding file
is updated with the offset and length of the data buffer in the I/O request after
a successful data write at Step 3. (4) the malice score of the process is updated,
and is compared to a pre-configured threshold α. (5) the Redemption monitor
sends a notification to the display monitor to alert the user depending on the
calculated malice score. (6) a success/failure notification is generated, and is sent
to the system service manager.

Data Consistency. An important requirement for Redemption is to be able
to guarantee data consistency during the interaction of applications with the
file system. A natural question that arises here is what happens if the end-user
confirms that the suspicious operations on the file that was detected by the
system are in fact benign. In this case, having a consistency model is essential to
protect the benign changes to the user files without on-disk data corruption. The
implementation of the consistency policy should maintain the integrity properties
the applications desire from the file system. Failure to do so can lead to corrupted
application states and catastrophic data loss. For this reason, the system does
not change the file system semantics that may affect the crash guarantees that
the file system provides. To this end, Redemption operates in three steps: (1)
it reads the meta-data generated for the reflected file, and creates write requests
based on the changed data blocks, and changes the status of these blocks to
committed, (2) upon receiving the confirmation notification, the system updates
the meta-data of the reflected file from committed to confirmed, and (3) the
reflected file is deleted from the protected area.

Another question that arises here is how the system protects the consistency
of the original file during the above-mentioned three-steps procedure if a system
crash occurs. In case of a crash, the system works as follows: (1) if data is
committed (Step 1), but the corresponding meta-data is not updated (Step 2),
the system treats the change as incomplete, and discards the change as a rollback
of an incomplete change. This operation means that Step 2 is partially completed
before a crash, so the system repeats the Step 1, (2) If the meta-data of the
reflected file is updated to confirmed, it means that the benign changes to the
file has been successfully committed to the original file. In this case, the reflected



file is removed from the protected area. Note that a malicious process may attack
the Malice Score Calculation (MSC) function by trying to keep the malice score
of the process low while performing destructive changes. We elaborate more on
these scenarios in Section 8.
User Notification. The trusted output that Redemption utilizes is a visual
alert shown whenever a malicious process is detected. We have designed the
alert messages to be displayed at the top of the screen to be easily noticeable.
Since benign applications usually require sophisticated inputs (i.e., clicking on
specific buttons, filling out the path prompt) from the user before performing
any sensitive operation on the files, the user is highly likely to be present and
interacting with the computer, making it difficult for her to miss an alert.

5 Detection Approach

As mentioned earlier, an important component of Redemption is to perform
system-wide application monitoring. For each process that requires privileged
access to user files, we assign a malice score. The malice score of a process
represents the risk that the process exhibits ransomware behavior. That is, the
malice score determines whether the Redemption monitor should allow the
process to access the files, or notify the user. In the following, we explain the
features we used to calculate the malice score of a process. The features mainly
target content-based (i.e., changes in the content of each file) and behavior-based
(i.e., cross-file behavior of a process) characteristics of ransomware attacks.

5.1 Content-based Features

Entropy Ratio of Data Blocks. For every read and write request to a file,
Redemption computes the entropy [25] of the corresponding data buffers in
the I/O traces similar to [21]. Comparing the entropy of read and write requests
to and from the same file offset serves as an excellent indicator of ransomware
behavior. This is due to the popular strategy of reading in the original file data,
encrypting it, and writing the encrypted version.
File Content Overwrite. Redemption monitors how a process requests write
access to data blocks. In a typical ransomware attack, in order to minimize the
chance of recovering files, the malicious process overwrites the content of the
user files with random data. Our system increases the malice score of a process
as the process requests write access to different parts of a file. In fact, a process
is assigned a higher malice score if it overwrites all the content of the files.
Delete Operation. If a process requests to delete a file that belongs to the end-
user, it receives a higher malice score. Ransomware samples may not overwrite
the data block of the user files directly, but rather generate an encrypted version
of the file, and delete the original file.

5.2 Behavior-based Features

Directory Traversal. During an attack, the malicious process often arbitrarily
lists user files, and starts encrypting the files with an encryption key. A process



receives a higher malice score if it is iterating over files in a given directory. Note
that a typical benign encryption or compression program may also iterate over
the files in a directory. However, the generated requests are usually for reading
the content of the files, and the encrypted or compressed version of the file is
written in a different path. The intuition here is that the ransomware usually
intends to lock as many files as possible to force the victim to pay.
Converting to a Specific File Type. A process receives a higher malice score
if it converts files of differing types and extensions to a single known or unknown
file type. The intuition here is that in many ransomware attacks, unlike most
of the benign applications that are specifically designed to operate on specific
types of files, the malicious process targets all kinds of user files. To this end,
Redemption logs if a process requests access to widely varying classes of files
(i.e., videos, images, documents). Note that accessing multiple files with differ-
ent extensions is not necessarily malicious. Representative examples include the
media player to play .mp3 files (audio) as well as .avi (video) files. However,
such applications typically open the files with read permission, and more impor-
tantly, only generate one request in a short period of time since the application
requires specific inputs from the user. Hence, the key insight is that a malicious
ransomware process would overwrite or delete the original files.
Access Frequency. If a process frequently generates write requests to user
files, we would give this process a higher malice score. We monitor δ – the time
between two consequent write access requests on two different user files. Our
intuition is that ransomware attacks programmatically list the files and request
access to files. Therefore, the δ between two write operations on two different
files is not very long – unlike benign applications that usually require some input
from the user first in order to perform the required operation.

5.3 Evaluating the Feature Set

Indeed, the assumption that all the features are equally important hardly holds
true in real world scenarios. Therefore, we performed a set of measurements to
relax this assumption. We used Recursive Feature Elimination (RFE) approach
to determine the significance of each feature. To this end, the analysis started
by incorporating all the features and measuring the FP and TP rates. Then,
in each step, a feature with the minimum weight was removed and the FP
and TP rates were calculated by performing 10 fold cross-validation to quantify
the contribution of each feature. The assigned weights were then used as the
coefficient of the feature in the formula 1 in Section 5.4.

Our experiments on several combinations of features shows that the highest
false positive rate is 5.9%, and is produced when Redemption only incorpo-
rates content-based features (F1). The reason for this is that file compression
applications, when configured to delete the original files, are reported as false
positives. During our experiments, we also found out that in document editing
programs such as Microsoft Powerpoint or Microsoft Paint, if the user inserts a
large image in the editing area, the content-based features that monitor content
traversal or payload entropy falsely report the application as being anomalous.



However, when behavior-based features were incorporated, such programs do
not receive a high anomaly score since there is no cross-file activities with write
privilege similar to ransomware attacks. When all the features are combined (i.e.,
F12), the minimum false positive rate (0.5% FP with 100% TPs) is produced on
labeled dataset. Hence, we use the combination of all the features in our system.

5.4 Malice Score Calculation (MSC) Function

The MSC function allows the system to identify the suspicious process and notify
the user when the process matches the abstract model. Given a process X, we
assign a malice score S to the process each time it requests privileged access
to a user file. If the malice score S exceeds a pre-defined malice threshold α,
it means that the process exhibits abnormal behaviors. Hence, we suspend the
process and inform the user to confirm the suspicious action. In the following,
we provide more details on how we determine the malice score for each process
that requests privileged operations on user files:

(r1): The process that changes the entropy of the data blocks between a read
and a write request to a higher value receives a higher malice score. The required
value is calculated as an additive inverse of the entropy value of read and write
ratio, and resides on [0,1], meaning that the higher the value of entropy in the
write operation, the closer the value of the entropy to 1. If the entropy of the
data block in write is smaller than the read operation, we assign the value 0 to
this feature.

(r2): If a process iterates over the content of a file with write privilege, it will
receive a higher malice score. If the size of the file A is sA, and yA is the total
size of the data blocks modified by the process, the feature is calculated as yA

sA
where the higher the number of data blocks modified by the process, the closer
the value is to 1.

(r3): If a process requests to delete a file, this behavior is marked as being
suspicious. If a process exhibits such I/O activities, the value 1 is assigned to r3.

(r4): Redemption monitors if the process traverses over the user files with write
privilege, and computes the additive inverse of the number of privileged accesses
to unique files in a given path. The output of the function resides on [0,1]. Given
a processX, the function assigns a higher malice score asX generates more write
requests to access files in a given path. Here, write(X, fi) is the i

th independent
write request generated by the process X on a given file fi.

(r5): Given a set of document classes, Redemption monitors whether the pro-
cess requests write access to files that belong to different document classes. The
file A and file B belong to two different document classes if the program that
opens file A cannot take file B as a valid input. For example, a docx and a
pdf file belong to two different document classes since a docx file cannot be
opened via a PDF editor program. We assign the score 1 if the process performs
cross-document access requests similar to ransomware.

(r6): The system computes the elapsed time (δ) between two subsequent write
requests generated by a single process to access two different files. 1

δ represents



the access frequency. As the elapsed time between two write requests increases,
the access frequency decreases.
We define the overall malice score of a process at time t by applying the weights
of individual features:

MSC(r) =

k∑
i=1

wi × ri

k∑
i=1

wi

(1)

where wi is the predefined weight for the feature i in the MSC function. The
value of wi is based on the experiment discussed in Section 5.3. The weights we
used in (1) are w1 = 0.9, w2 = 1.0, w3 = 0.6, w4 = 1.0, w5 = 0.7, w6 = 1.0.

Note that when Redemption is active, even when using all the combined
features, file encryption or secure deletion applications are typically reported as
being suspicious. As mentioned earlier, such applications generate very similar
requests to access user files as a ransomware does. For example, in a secure
deletion application, the process iterates over the entire content of the given file
with write privileges, and writes random payloads on the contents. The same
procedure is repeated over the other files in the path. Hence, such cases are
reported to the user

as violations, or other inappropriate uses of their critical resources.

6 Implementation

In this section, we provide the implementation details of Redemption. Note
that our design is sufficiently general to be applied to any OS that is a poten-
tial target for ransomware. However, we built our prototype for the Windows
environment which is the main target of current ransomware attacks today.
Monitoring Access Requests. Redemption must interpose on all privileged
accesses to sensitive files. The implementation of the system is based on the
Windows Kernel Development framework without any modifications on the un-
derlying file system semantics. To this end, it suffices on Windows to moni-
tor the write or delete requests from the I/O system to the base file system
driver. Furthermore, to guarantee minimal data loss, Redemption redirects the
write requests from the user files to the corresponding reflected files. The re-
flected files are implemented via sparse files on NTFS. In fact, the NTFS file
system does not allocate hard disk drive space to reflected files except in re-
gions where they contain non-zero data. When a process requests to open a user
file, a sparse file with the same name is created/opened in the protected area.
The sparse files are created by calling the function FltFsControlFile with
the control code FSCTL SET SPARSE. The size of the file is then set by calling
FltSetInformationFile that contains the size of the original file.

Redemption updates the FileName field in the file object of the create
request with the sparse file. By doing this, the system redirects the operation
to the reflected file, and the corresponding handle is returned to the requesting



process. The write request is executed on the file handle of the reflected file which
has been returned to the process at the opening of the file. Each write request
contains the offset and the length of the data block that the process wishes to
write the data to.

If the write request is successfully performed by the system, the correspond-
ing meta-data of the reflected file (which is the offset and the length of the
modified regions of the original file) is marked in the write requests. In our pro-
totype, the meta-data entry to represent the modified regions is implemented
via Reparse Points provided by Microsoft – which is a collection of application-
specific data – and is interpreted by Redemption that sets the tags. When
the system sets a reparse point, a unique reparse tag is associated with it
which is then used to identify the offset and the length of every change. The
reparse point is set by calling FltTagFile when the file is created by Re-
demption. On subsequent accesses to the file in the protected area, the reparse
data is parsed via FltFsControlFile with the appropriate control code (i.e.,
FSCTL GET REPARSE POINT). Hence, the redirection is achieved by intercepting
the original write request, performing the write, and completing the original
request while tracking the write contents.

The consistency of the data redirected to the sparse files is an important
design requirement of the system. Therefore, it is required to perform frequent
flushing to avoid potential user data loss. Indeed, this approach is not without a
cost as multiple write requests are required to ensure critical data is written to
persistent media. To this end, we use the Microsoft recommended approach by
opening sparse files for unbuffered I/O upon creation and enabling write-through
caching via FILE FLAG NO BUFFERING and FILE FLAG WRITE THROUGH flags. In
fact, with write-through caching enabled, data is still written into the cache, but
cache manager writes the data immediately to disk rather than incurring a delay
by using the lazy writer. Windows recommends this approach as replacement
for calling the FlushFileBuffer function after each write which usually causes
unnecessary performance penalties in such applications.
Behavioral Detection and Notification Module. We implemented this
module as a user-mode service. This was a conscious design choice similar to the
design of most anti-malware solutions. Note that Microsoft officially supports
the concept of protected services, called Early Launch Anti-Malware (ELAM),
to allow anti-malware user-mode services to be launched as protected services.
In fact, after the service is launched as a protected service, Windows uses code
integrity to only allow trusted code to load into a protected service. Windows
also protects these processes from code injection and other attacks from admin
processes [28]. If Redemption identifies the existence of a malicious process, it
automatically terminates the malicious process.

7 Evaluation

The prototype of the Redemption supports all Windows platforms. In our
experiments, we used Windows 7 by simply attaching Redemption to the file
system. We took popular anti-evasion measures similar to our experiments in



Chapter 3. The remainder of this section discusses how benign and malicious
dataset were collected, and how we conducted the experiments to evaluate the
effectiveness of our approach.

7.1 Dataset

The ground truth dataset consists of file system traces of manually confirmed
ransomware samples as well as more than 230 GB of data which contains the
interaction of benign processes with file system on multiple machines. We used
this dataset to verify the effectiveness of Redemption, and to determine the
best threshold value to label a suspicious process.
Collecting Ransomware Samples. We collected ransomware samples from
public repositories [1, 3] that are updated on a daily basis, and online forums
that share malware samples [2, 26]. In total, we collected 9,432 recent samples,
and we confirmed 1174 of them to be active ransomware from 29 contemporary
ransomware families. We used 504 of the samples from 12 families in our training
dataset. Table 2 describes the dataset we used in this experiment.
Collecting Benign Applications. One of the challenges to test Redemption
was to collect sufficient amount of benign data, which can represent the realistic
use of file system, for model training purposes. To test the proposed approach
with realistic workloads, we deployed a version of Redemption on five separate
Windows 7 machines in two different time slots each for seven days collecting
more that 230 GB of data. The users of the machines were advised to perform
their daily activities on their machines. Redemption operated in the monitor-
ing mode, and did not collect any sensitive user information such as credentials,
browsing history or personal data. The collected information only included the
interaction of processes with the file system which was required to model benign
interaction with the file system. All the extracted data was anonymized before
performing any further experiments. Based on the collected dataset, we created
a pool of application traces that consisted of 65 benign executables including
applications that exhibit ransomware-like behavior such as secure deletion, en-
cryption, and compression. The application pool consisted of document editors
(e.g., Microsoft Word), audio/video editors (e.g., Microsoft Live Movie Maker,
Movavi Video Editor), file compression tools (e.g., Zip, WinRAR), file encryp-
tion tools (e.g., AxCrypt, AESCrypt), and popular web browsers (e.g., Firefox,
Chrome). Due to space limitation, we provided a sub set of benign applications
we used in our analysis in Table 1.

7.2 Detection Results

As discussed in Section 4, one of the design requirements of the system is to
produce low false positives, and to minimize the number of unnecessary notifica-
tions for the user. To this end, the system employs a threshold value to determine
when an end-user should be notified about the suspicious behavior of a process.

We tested a large set of benign as well as ransomware samples on a Redemp-
tion enabled machine. As depicted in Table 1 and Table 2, the median score



of benign applications is significantly lower than ransomware samples. For file
encryption programs such as AxCrypt which are specifically designed to protect
the privacy of the users, the original file is overwritten with random data once
the encrypted version is generated. In this case, Redemption reports the action
as being malicious – which, in fact, is a false positive. Unfortunately, such false
positive cases are inevitable since these programs are exhibiting the exact be-
havior that a typical ransomware exhibits. In such cases, Redemption informs
the end-user and asks for a manual confirmation. Given these corner cases, we
select the malice score as α = 0.12 where the system achieves the best detection
and false positive rates (FPs = 0.5% at a TP = 100%). Figure 2 represents the
false positive and true positive rates as a function of the malice score on the
labeled dataset. This malice threshold is still significantly lower than the mini-
mum malice score of all the ransomware families in the dataset as provided in
Table 2. The table also shows the median file recovery rate. As depicted, Re-
demption detects a malicious process and successfully recovers encrypted data
after observing on average four files. Our experiment on the dataset also showed
that 7 GB storage is sufficiently large for the protected area in order to enforce
the data consistency policy.
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Fig. 2: TP/FP analysis of Redemption. The threshold value α = 0.12 gives the best
detection and false positive rates (FPs = 0.5% at a TP = 100%).

Testing with Known/Unknown Samples. In addition to the 10-fold cross
validation on 504 samples, we also tested Redemption with unknown benign
and malicious dataset. The tests included 29 ransomware families which 57% of
them were not presented in the training dataset. We also incorporated the file



Table 1: A list of Benign application
and their malice scores.

Program Min. Score Max. Score

Adobe Photoshop 0.032 0.088
AESCrypt 0.37 0.72
AxCrypt 0.31 0.75
Adobe PDF reader 0.0 0.0
Adobe PDF Pro 0.031 0.039
Google Chrome 0.037 0.044
Internet Explorer 0.035 0.045
Matlab 0.038 0.92
MS Words 0.041 0.089
MS PowerPoint 0.025 0.102
MS Excel 0.017 0.019
VLC Player 0.0 0.0
Vera Crypt 0.33 0.71
WinRAR 0.0 0.16
Windows Backup 0.0 0.0
Windows paintit 0.029 0.083
SDelete 0.283 0.638
Skype 0.011 0.013
Spotify 0.01 0.011
Sumatra PDF 0.022 0.041
Zip 0.0 0.16

Malice Score Median 0.027 0.0885

Table 2: A list of ransomware families
and their malice scores.

Family Samples Min. Score Max. Score File Recovery

Cerber 33 0.41 0.73 5
Cryptolocker 50 0.36 0.77 4
CryptoWall3 39 0.4 0.79 6
CryptXXX 46 0.49 0.71 3
CTB-Locker 53 0.38 0.75 7
CrypVault 36 0.53 0.73 3
CoinVault 39 0.42 0.69 4
Filecoder 54 0.52 0.66 5
GpCode 45 0.52 0.76 2
TeslaCrypt 37 0.43 0.79 4
Virlock 29 0.51 0.72 3
SilentCrypt 43 0.31 0.59 9

Total Samples 504 - - -
Score Median - 0.43 0.73 -
File Recovery Median - - - 4

system traces of benign processes in the second time slot as discussed in Sec-
tion 7.1 as the unseen benign dataset in this test. Table 3 represents the list
of ransomware families we used in our experiments. This table also shows the
datasets that were used in prior work [15, 31, 23]. In this experiment, we used
the malice threshold α = 0.12 similar to the previous experiment and manually
checked the detection results to measure the FP and TP rates. The detection
results in this set of experiments is (TPs = 100% at 0.8% FPs). Note that the
number of FP cases depends on the value of malice threshold. We selected this
conservative value to be able to detect all the possible ransomware behaviors.
Indeed, observing realistic work loads on a larger group of machines can lead to
a more comprehensive model, more accurate malice threshold calibration, and
ultimately lower FP rates. However, our experiments on 677 ransomware sam-
ples from 29 ransomware families show that Redemption is able to detect the
malicious process in all the 29 families by observing a median of 5 files. We
suspect the difference in the number of files is due to difference in the size of the
files being attacked. In fact, this is a very promising result since the detection
rate of the system did not change by adding unknown ransomware families which
do not necessarily follow the same attack techniques (i.e., using different cryp-
tosystems). The results of this experiment also shows that the number of exposed
files to ransomware does not change significantly if Redemption is not trained
with unseen ransomware families. This result clearly implies that the system can
detect a significant number of unseen ransomware attacks.

7.3 Disk I/O and File System Benchmarks

In order to evaluate the disk I/O and file system performance of Redemption,
we used IOzone [6], a well-known file system benchmark tool for Windows. To



Family Redemption CryptoDrop [31] ShieldFS [15] PayBreak [23]
Samples/FA Samples/FA Samples Samples

Almalocker - - - 1
Androm - - - 2
Cerber 30/6 - - 1
Chimera - - - 1
CoinVault 19/5 - - -
Critroni 16/6 - 17 -
Crowti 22/8 - - -
CryptoDefense 42/7 18/6.5 6 -
CryptoLocker(copycat) - 2/20 - -
Cryptolocker 29/4 31/10 20 33
CryptoFortess 12/7 2/14 - 2
CryptoWall 29/5 8/10 8 7
CrypWall - - - 4
CrypVault 26/3 - - -
CryptXXX 45/3 - - -
CryptMIC 7/3 - - -
CTB-Locker 33/6 122/29 - -
DirtyDecrypt 8/3 - 3 -
DXXD - - - 2
Filecoder 34/5 72/10 - -
GpCode 45/3 13/22 - 2
HDDCryptor 13/5 - - -
Jigsaw 12/4 - - -
Locky 21/2 - 154 7
MarsJokes - - - 1
MBL Advisory 12/4 1/9 - -
Petya 32/5 - - -
PayCrypt - - 3 -
PokemonGo - - - 1
PoshCoder 17/4 1/10 - -
TeslaCrypt 39/6 149/10 73 4
Thor Locky - - - 1
TorrentLocker 21/6 1/3 12 -
Tox 15/7 - - 9
Troldesh - - - 5
Virlock 29/7 20/8 - 4
Razy - - - 3
SamSam - - - 4
SilentCrypt 43/8 - - -
Xorist 14/7 51/3 - -
Ransom-FUE - 1/19 - -
WannaCry 7/5 - - -
ZeroLocker 5/8 - 1 -

Total Samples (Families) 677(29) 492(15) 305(11) 107(20)
File Attacked/Recovered(FA/FR) Median 5/5 10/0 - -

Table 3: The list of ransomware families used to test Redemption, CryptoDrop [31],
ShieldFS [15], and PayBreak [23]. The numbers shown for [31, 15, 23] are extracted
from the corresponding papers.

this end, we first generated 100 × 512 MB files to test the throughput of block
write, rewrite, and read operations. Next, we tested the standard file system
operations by creating and accessing 50,200 files, each containing 1 MB of data
in multiple directories. We ran IOzone as a normal process. Then, for having a
comparison, we repeated all the experiments 10 times, and calculated the average
scores to get the final results. We wrote a script in AutoIt [5] to automate the
tasks.The results of our findings are summarized in Table 4.

The experiments show that Redemption performs well when issuing heavy
reads and writes, and imposes an overhead of 2.8% and 3.4%, respectively. How-
ever, rewrite and create operations can experience slowdowns ranging from 7%
to 9% when dealing with a large number of small files. In fact, creating the re-
flected files and redirecting the write requests to the protected area are the main
reasons of this performance hit under high workloads. These results also suggest
that Redemption might not be suitable for workloads involving many small
files such as compiling large software projects. However, note that such heavy



workloads do not represent the deployment cases Redemption is designed to
target (i.e., protecting the end host of a typical user that surfs the web and
engages in productivity activities such as writing text and sending emails).

Another important question that arises here is that how many files should
be maintained in the protected area when Redemption is active. In fact, as
the protected area is sufficiently large, the system can maintain several files
without committing them to the disk and updating the original files. However,
this approach may not be desirable in scenarios where several read operations
may occur immediately after write operations (i.e., database). More specifically,
in these scenarios, Redemption, in addition to write requests, Redemption
should also redirect read operations to the protected area which is not ideal
from usability perspective. To this end, we also performed an I/O benchmark-
ing on the protected area by requesting write access to files, updating the files,
and committing the changes to the protected area without updating the orig-
inal files. We created a script to immediately generate read requests to access
updated files. The I/O benchmark on the protected area shows that the perfor-
mance overhead for read operations is less than 3.1% when 100 files with median
file size of 17.4 MB are maintained in the protected area. This number of files
is significantly larger than the maximum number of files Redemption needs to
observe to identify the suspicious process. Note that we consider the scenarios
where read operations are requested immediately after write operations to ex-
ercise the redirection mechanism under high loads. Based on this performance
benchmarking, we conclude that read redirection mechanism does not impose
a significant overhead as we first expected. In the following, we demonstrate
that Redemption incurs minimal performance overhead when executing more
realistic workloads for our target audience.

7.4 Real-world Application Testing

To obtain measurable performance indicators to characterize the overhead of Re-
demption, we created micro-benchmarks that exercise the critical performance
paths of Redemption. Note that developing benchmarks and custom test cases
requires careful consideration of factors that might impact the runtime mea-
surements. For example, a major challenge we had to tackle was automating
the testing of desktop applications with graphical user interfaces. In order to
perform the tests as identical as possible on the standard and Redemption-
enabled machines, we wrote scripts in AutoIt to interact with each application
while monitoring their performance impact. To this end, we called the appli-
cation within the script, and waited for 5 seconds for the program window to
appear. We then automatically checked whether the GUI of the application is
the active window. The script forced the control’s window of the application to
be on top. We then started interacting with the edit control and other parts of
the programs to exercise the core features of the applications using the handle
returned by the AutoIt script. Similarly to the previous experiment, we repeated
each test 10 times. We present the average runtimes in Table 5.



Table 4: Disk I/O performance in a stan-
dard and a Redemption-protected host.

Operation
Original Redemption

Performance Performance Overhead(%)

Write 112,456.25 KB/s 110094.67KB/s 3.4%
Rewrite 68,457.57 KB/s 62501.76 KB/s 8.7%
Read 114,124.78 KB/s 112070.53 KB/s 2.8%
Create 12,785 files/s 11,852 files/s 7.3%

Table 5: Runtime overhead of Redemp-
tion on a set of end-point applications

Application Original (s) Redemption (s) Overhead (%)

AESCrypt 165.55 173.28 4.67%
AxCrypt 182.4 191.72 5.11%
Chrome 66.19 67.02 1.25%
IE 68.58 69.73 1.67%
Media Player 118.2 118.78 0.49%
MS Paint 134.5 138.91 3.28%
MS Word 182.17 187.84 3.11%
SDelete 219.4 231.0 5.29%
Vera Crypt 187.5 196.46 4.78%
Winzip 139.7 141.39 1.21%
WinRAR 160.8 163.12 1.44%
zip 127.8 129.32 1.19%

Average - - 2.6%

In our experiments, the overhead of protecting a system from ransomware
was under 6% in every test case, and, on average, running applications took only
2.6% longer to complete their tasks. These results demonstrate that Redemp-
tion is efficient, and that it should not detract from the user experience. These
experiments also support that Redemption can provide real time protection
against ransomware without a significant performance impact. We must stress
that if Redemption is deployed on machines with a primarily I/O bound work-
load, lower performance should be expected as indicated by the benchmark in
Section 7.3.

7.5 Usability Experiments

We performed a user study experiment with 28 participants to test the usability
of Redemption. We submitted and received IRB waiver for our usability exper-
iments from the office of Human Subject Research Protection (HSRP). The goal
of the usability test is to determine whether the system provides transparent
monitoring, and also to evaluate how end-users deal with our visual alerts. The
participants were from different majors at the authors’ institution. Participants
were recruited by asking for volunteers to help test a security tool. In order to
avoid the effects of priming, the participants were not informed about the key
functionality of Redemption. The recruitment requirement was that the partic-
ipants are familiar with text editors and web browsers so that they could perform
the given tasks correctly. All the experiments were conducted using two iden-
tical Windows 7 virtual machines enabled with Redemption on two laptops.
The virtual machines were provided a controlled Internet access as described
in Section 7. Redemption was configured to be in the protection mode on the
entire data space generated for the test user account. A ransomware sample was
automatically started at a random time to observe how the user interacts with
Redemption during a ransomware attack. After each experiment, the virtual
machines were rolled back to the default state. No personal information was
collected from the participants at any point of the experiments.

We asked the participants to perform three tasks to evaluate different aspects
of the system. The first task was to work with an instance of Microsoft Word



and PowerPoint on the test machines running Redemption. The experiment
observer asked the participants to compare this process with their previous ex-
perience of using Microsoft Word and PowerPoint and rate the difficulty involved
in interacting with the test setup on a 5-point Likert scale.

In the second task, the participants were asked to encrypt a folder containing
multiple files with AxCrypt on the Redemption-enabled machine. This action
caused a visual alert to be displayed to the participant that the operation is
suspended, and ask the user to confirm or deny the action. The participants
were asked to explain why they confirmed or denied the action and the reason
behind their decision.

In the last task, the participants were asked to perform a specific search on
the Internet. While they were pre-occupied with the task, the ransomware sample
was automatically started. This action was blocked by Redemption and caused
another visual alert to be displayed. Similar to the second task, the experiment
observer monitored how participants handled the alert.

At the end of the first phase of the experiment, all 28 participants found the
experience to be identical to using Microsoft Word and PowerPoint on their own
machines. This finding empirically confirms that Redemption is transparent
to the users. In the second experiment, 26 participants confirmed the action.
Another 2 noticed the alert, but denied the operation so no file was encrypted.
In the third phase, all the 28 participants noticed the visual alert, and none of
the users confirmed the operation. The participants explained that they were
not sure why they received this visual alert, and could not verify the operation.
These results confirm that Redemption visual alerts are able to draw all par-
ticipants’ attention while they are occupied with other tasks, and are effective in
protecting the user data. Furthermore, the experiments clearly imply that end-
users are more likely to recognize the presence of suspicious operations on their
sensitive data using Redemption indicators. To confirm statistical significance,
we performed a hypothesis test where the null hypothesis is that Redemption’s
indicators do not assist in identifying suspicious operations during ransomware
attacks, while the alternative hypothesis is that Redemption’s ransomware in-
dicators do assist in identifying such destructive actions. Using a paired t-test,
we obtain a p-value of 4.9491 × 10−7, sufficient to reject the null hypothesis at
a 1% significance level.

8 Discussion and Limitations

Unfortunately, malware research is an arms race. Therefore, there is always the
possibility that malware developers find heuristics to bypass the detection on the
analysis systems, or on end-user machines. In the following, we discuss possible
evasion scenarios that can be used by malware authors, and how Redemption
addresses them.
Attacking Redemption’s Monitor.

Note that the interaction of any user-mode process as well as kernel mode
drivers with the file system is managed by Windows I/O manager which is re-
sponsible for generating appropriate I/O requests. Since every access in any form



should be first submitted to the I/O manager, and Redemption registers call-
backs to all the I/O requests, bypassing Redemption’s monitor is not possible
in the user-mode. Furthermore, note that direct access to the disk or volume
is prohibited by Windows from Windows Vista [27] for user-mode applications
in order to protect file system’s integrity. Therefore, any other form of requests
to access the files is not possible in the user-mode, and is guaranteed by the
operating system.

Attackers may be able to use social engineering techniques and frustrate
users by creating fake alert messages – accusing a browser to be a ransomware
– and forcing the user to turn off Redemption. We believe these scenarios
are possible. However, note that such social engineering attacks are well-known
security problems and target all end-point security solutions including our tool.
Defending against such attacks depends more on the security awareness of users
and is out of scope of this work.

Attacking the Malice Score Calculation Function.

An attacker may also target the malice calculation function, and try to keep
the malice score of the process lower than the threshold. For example, an attacker
can generate code that performs selective content overwrite, use a low entropy
payload for content overwrite, or launch periodic file destruction. If an attacker
employs any one of these techniques by itself, the malice score becomes lower,
but the malicious action would still be distinguishable. For example, if the file
content is overwritten with low entropy payload, the process receives a lower
malice score. However, since the process overwrites all the content of a file with
a low-entropy payload, it is itself suspicious, and would be reported to the user.

We believe that the worst case scenario would be if an attacker employs all the
three techniques simultaneously to bypass the malice score calculation function.
This is a fair assumption since developing such a malware is straightforward.
However, note that in order to launch a successful ransomware attack, and force
the victim to pay the ransom fee, the malicious program needs to attack more
than a file – preferably all the files on the system. Hence, even if the malicious
program employs all of the bypassing techniques, it requires some sort of iter-
ation with write permission over the user files. This action would still be seen
and captured by Redemption. In this particular case, a malicious program can
successfully encrypt a single user file, but the subsequent write attempt on an-
other file would be reported to the user for the confirmation if the write request
occurs within a pre-defined six hour period after the first attempt. This means
a ransomware can successfully encrypt a user file every six hours. We should
stress that, in this particular scenario, the system cannot guarantee zero data
loss. However, the system significantly decreases the effectiveness of the attack
since the number of files encrypted per day is very small.

Furthermore, since these approaches incur a considerable delay to launch a
successful attack, they also increase the risk of being detected by AV scanners on
the end-point before encrypting a large number of files, and forcing the user to
pay. Consequently, developing such stealthy ransomware may not be as profitable
as current ransomware attack strategies where the entire point of the attack



is to encrypt as many files as possible in a short period of time and request
money. An attacker may also avoid performing user file encryption, and only
lock the desktop once installed. This approach can make the end-user machine
inaccessible. However, such changes are not persistent, and regaining access to
the machine is significantly easier, and is out of the scope of this paper.
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10 Conclusions

In this paper, we proposed a generic approach, called Redemption, to defend
against ransomware on the end-host. We show that by incorporating the proto-
type of Redemption as an augmented service to the operating system, it is pos-
sible to successfully stop ransomware attacks on end-user machines. We showed
that the system incurs modest overhead, averaging 2.6% for realistic workloads.
Furthermore, Redemption does not require explicit application support or any
other preconditions to actively protect users against unknown ransomware at-
tacks. We provide an anonymous video of Redemption in action in [4], and hope
that the concepts we propose will be useful for end-point protection providers.
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