

Northeastern University

International Secure Systems Lab

A Large-Scale, Automated Approach to Detecting Ransomware

Amin Kharraz, Sajjad Arshad, Collin Mulliner, William Robertson, Engin Kirda

Attacks on School Districts

CRIME . NEWS

US School District Paralyzed By 500 BTC Ransomware Attack

Stan Higgins | Published on March 24, 2015 at 22:31 BST

A bitcoin ransomware attack on a New Jersey school district has grown into an investigation involving multiple US government agencies.

The Swedesboro-Woolwich School District, which encompasses four elementary schools in Gloucester County, New Jersey, was forced to delay a statewide standardized test earlier this week after the ransomware was discovered over the weekend.

NEU SECLAB

Police pay ransom after cyberterror attack on network

Story Comments (1)

Thomas Murphy, Daniel Sawicki and Lt. Scott Keddie

Print 😑 Font Size: -

Posted: Saturday, April 4, 2015 10:27 am

By Jayne W. Miller News Editor Jayne@YourTownCrier.com |
1 comment

Chief: "Paying ransom was the last resort"

TEWKSBURY – Last December Tewksbury Police confronted a new, and growing, frontier in cyberterrorism when the CryptoLocker ransomware virus infected the department's network, encrypting essential department files until the town paid a \$500 bitcoin ransom. In total, police systems were down between four and five days as the department worked with the FBI, Homeland Security, Massachusetts State Police, as well as private firms in an effort to restore their data without paying the ransom.

Attacks on Hospitals

"Between April 2014 and June 2015, the IC3 received 992 CryptoWall-related complaints, with victims reporting losses totaling over \$18 million."

– FBI Security Bulletin, June 2015

A Typical Ransom Note

2 Paying the ransom fee

BReceiving the decryption key

4 Unlocking the machine

- Educating end-users
 - Have a reliable *backup* policy
 - Avoid risky browsing
- Developing *detection* tools to assist defenders
 - Providing insight from *internal* behavior
- Developing *protection* tools to enhance AV capabilities
 - Stopping the attack, and keeping the data consistent

- Educating end-users
 - Have a reliable *backup* policy
 - Avoid risky browsing
- Developing *detection* tools to assist defenders
 - Providing insight from *internal* behavior
- Developing *protection* tools to enhance AV capabilities
 - Stopping the attack, and keeping the data consistent

But, How can we detect a ransomware sample?

Achilles' Heel of Ransomware

- Ransomware has to inform victim that attack has taken place
 - Behavior inherent in its nature
- Ransomware has certain behaviors that are predictable
 - e.g., entropy changes, modal dialogs and background activity, accessing "honey" files
- A good sandbox that looks for some of these signs helps here...

UNVEIL: An Early Warning Dynamic Detection System for Ransomware

NEU SECLAB

Approach

- Detecting ransomware based on two techniques:
 - 1) Crypto-style Ransomware
 - Generating a fake (and attractive) user environment
 - Finding a reliable method for monitoring filesystem activity
 - 2) Desktop Locker
 - Going after the ransom note and using heuristics to detect such a message to the user

Generating Fake (Honey) Content

- Real files with valid headers
 - Using standard libraries (e.g., *python- docx, python-pptx, OpenSSL*)
 - Content that appears meaningful
 - File names do not look random, and appear realistic
- File paths
 - User's directory structure is generated randomly, but meaningfully
- File attributes
 - Generate content with different creation, modification, and access times

Rfs = <Time, Pname, Pid, PPid, IRPflag, Arg, Result, BufEntropy>

Extracting I/O Access Sequences

(1) Overwrites the users' file with an encrypted version

- (2) reads, encrypts and deletes files without wiping them from storage
- (3) reads, creates a new encrypted version, and securely deletes

the original files

IO Access Sequences in Multiple Ransomware Families

Ransomware Family	IRP Operation	Process	Filename	File Offset	Entropy	Description
CryptoWall	IRP_MJ_CREATE IRP_MJ_READ IRP_MJ_WRITE 	explorer.exe explorer.exe explorer.exe	honeyfile.doc honeyfile.doc honeyfile.doc	[0, 4096) [0, 4096)	4.21 7.11	Read, write
	IRP_MJ_CLEANUP IRP_MJ_CLOSE	explorer.exe explorer.exe	honeyfile.doc honeyfile.doc			
FileCoder	IRP_MJ_CREATE IRP_MJ_CREATE IRP_MJ_READ IRP_MJ_WRITE 	svchost.exe svchost.exe svchost.exe svchost.exe	honeyfile.doc honeyfile.doc.crypt honeyfile.doc honeyfile.doc.crypt	[0, 4096) [0, 4096)	4.21 7.02	Read Read, write
	IRP_MJ_CLEANUP IRP_MJ_CLOSE IRP_MJ_CREATE IRP_MJ_SET_INFORMATION IRP_MJ_CLEANUP IRP_MJ_CLOSE IRP_MJ_CLOSE	<pre>svchost.exe svchost.exe svchost.exe svchost.exe svchost.exe svchost.exe svchost.exe</pre>	<pre>honeyfile.doc honeyfile.doc honeyfile.doc honeyfile.doc honeyfile.doc honeyfile.doc honeyfile.doc honeyfile.doc</pre>			Read attributes, delete
CrypVault	IRP_MJ_CREATE IRP_MJ_CREATE IRP_MJ_READ IRP_MJ_WRITE	explorer.exe explorer.exe explorer.exe explorer.exe	balance.doc balance.doc.vault balance.doc balance.doc.vault	[0, 41014) [0, 41014)	4.33 7.14	Read Read, write
	IRP_MJ_CLEANUP IRP_MJ_CLOSE IRP_MJ_CREATE IRP_MJ_WRITE IRP_MJ_WRITE	explorer.exe explorer.exe explorer.exe explorer.exe explorer.exe	balance.doc balance.doc balance.doc balance.doc balance.doc	[0, 4096) [4096, 8192)	4.02 4.02	Write
	IRP_MJ_CLOSE IRP_MJ_SET_CREATE IRP_MJ_SET_INFORMATION	explorer.exe explorer.exe explorer.exe	balance.doc.vault balance.doc balance.doc			Read attributes, delete

Desktop Locker Ransomware

NEU SECLAB

Desktop Locker Ransomware

Desktop Locker Ransomware

Evaluation

1) Detecting known ransomware samples

- a) Collecting ~3500 ransomware from public repo, Anubis, two security companies.
- b) 149 benign executables including ransomware-like behavior
- c) 348 malware samples from 36 malware families

Benign Applications			Ransomware Families		
Application	Main Capability	Version	Family	Samples	
7-zip Winzip WinRAR DiskCryptor AESCrypt Eraser SDelete	Compression Compression Compression Encryption Encryption Shredder Shredder	15.06 19.5 5.21 1.1.846.118 6.2.0.2969 1.61	Cryptolocker CryptoWall CTB-Locker CrypVault Filecoder	19.5 CryptoWall 42 (2 5.21 CTB-Locker 77 (4 6.118 CrypVault 21 (1 .2969 Filecoder 19 (1 1.61 Reveton 501 (26. Tobfy 357 (18)	33 (1.7%) 42 (2.2%) 77 (4.0%) 21 (1.1%) 19 (1.0%) 501 (26.03%) 357 (18.6%) 877 (45.6%)
			Total Samples	1,926	
				NEU SECLAB	

The threshold value t = 0.32 gives the highest recall with 100% precision

Large-Scale Evaluation

~ 1200 malware samples per day

56 UNVEIL-enabled VMs on 8 Servers

Large-Scale Evaluation

- We used the same similarity threshold (t = 0.32) for the large scale experiment.
- The incoming samples were acquired from the daily malware feed provided by Anubis from March 18 to February 12, 2016.
- The dataset contained 148,223 distinct samples.

Cross-checking with VirusTotal

- The results are concentrated either towards small or very large detection ratios.
- A sample is either detected by a relatively small number, or almost all of the scanners.

Evaluation	Results
Total Samples	148,223
Detected Ransomware	13,637 (9.2%)
Detection Rate	96.3%
False Positives	0.0%
New Detection	9,872 (72.2%)

Detection: New Ransomware Family

- During our experiments, we discovered a new malware family
 - We call it "SilentCrypt"
 - After we reported it, others started detecting it as well
 - We were not able to find any information about this family online
 - The ransomware first checks for private files of a user, contacts the C&C server, and starts the attack based on the answer

NEU SECLAB

Detection: New Ransomware Family

NEU SECLAB

Detection: New Ransomware Family

Conclusion

- Defending against ransomware is not as *complex* as it is reported.
- Current analysis systems are not still ready to detect evasive ransomware attacks.
- UNVEIL is the introduction of concrete techniques to detect ransomware.
- SilentCrypt shows that AV industry is not still ready to detect *evasive* samples.

Thank You