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Abstract—We propose techniques for exploratory search in
large databases. The goal is to provide new functionality that
aids users in homing in on the right query conditions to find
what they are looking for. Query refinement proceeds interactively
by repeatedly consulting the user to manage query conditions.
This process is characterized by three key challenges: (1) dealing
with incomplete and imprecise user input, (2) keeping user
effort low, and (3) guaranteeing interactive system response time.
We address the first two challenges with a probability-based
framework that guides the user to the most important query
conditions. To recover from input errors, we introduce the notion
of sensitivity and propose efficient algorithms for identifying
the most sensitive user input, i.e., those inputs that had the
greatest influence on the query results. For the third challenge,
we develop techniques that can deliver estimates of the required
probabilities within a given hard realtime limit and are able to
adapt automatically as the interactive query refinement proceeds.

I. INTRODUCTION

With Big Data comes a big responsibility to make databases
more accessible to a broad spectrum of users, ranging from
SQL experts to non-technical users querying them through
form-based interfaces. While an expert with full SQL access
will usually find her way around a database, less technical
users working through limited interfaces often have difficulty
finding what they are looking for. Hence, for databases to be
relevant for these users, they have to provide functionality for
exploratory search.

Consider a large crowd-sourced database of bird observa-
tions. Each record has attributes describing the properties of
the bird (e.g., species, size) and the observation event (e.g.,
location, habitat features). An organization such as the Cornell
Lab of Ornithology would like to leverage this database to
help casual bird watchers identify the species of a bird they
observed. To reach a broad audience, the Lab decides to make
the database accessible through a simple interface where the
user enters properties of the observed bird in a Web form (e.g.,
as shown in Figures 1 and 2). Now consider user Amy who
wants to identify the species of a bird she observed. Amy will
be sure about some attributes, e.g., her GPS device reliably
recorded location. She will not know others, e.g., the bird’s
belly color. Then there will be many more attributes whose
values she recalls with varying degrees of uncertainty. For
instance, Amy thinks the bird’s wing was mostly red, but
maybe it was more of a brownish tone.

Assume Amy initially only fills in values she is certain
about. Unfortunately, these are not selective enough and she
receives an overwhelming list of possible matches, where none
of the top-10 species displayed looks like the one she observed.

      What color is the wing? 
Select 1-3 colors. 

Fig. 1. Possible interface for speci-
fying multiple wing color values

Your responses 

Fig. 2. Possible interface for speci-
fying the bird size

Trying to narrow the search further, she has to decide which
of the less certain attribute values to enter. Without help from
the database, this is a tedious process of trial-and-error. If she
selects only “red” for wing color, but the species is actually
rufous, the correct answer might be eliminated. If she selects
too many possible colors, only few of the irrelevant records
might be eliminated. Or maybe the wing color selection does
not even matter much: since the database is crowd-sourced, a
large number of other users might have specified “red” instead
of the correct “rufous” anyway.

Similar issues arise in many other important applications,
including product search and online medical advice. For prod-
uct search, suppose a user wants to leverage the wisdom of the
crowd for deciding about a camera purchase. Crowd-sourced
camera data will contain a mix of “objective” properties
(e.g., megapixels and price) and subjective user evaluations
(e.g., if the camera is good for sport photography). Now
the user wants to find the right camera, relying on a mix
of certain and uncertain values for the various properties. In
the medical domain, a database of diseases, their symptoms,
potential causes (e.g., family history and lifestyle choices),
and possible remedies would similarly be consulted by people
not feeling well. As sites like WebMD’s symptom checker
(http://symptoms.webmd.com) show, there is great interest in
this kind of application.

In general, our work targets the challenge of helping a
database user fine-tune selection conditions for exploratory
analysis. In these applications the query is not pre-determined,
but the goal is to find a query that returns a result that is “good
enough” for some task.

We make several contributions aimed at improving support
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for exploratory search in databases. First, exploratory search
usually involves uncertainty; not only in the data (which
motivated probabilistic database research [1]) but also in the
query. To deal with uncertainty in user-provided query condi-
tions, we propose a probability-based framework that makes
this uncertainty explicit. Notice that for imprecise queries,
the result is probabilistic even if the data is precise. Hence,
ranking of result records based on their probability is
inherent in exploratory search.

Our second contribution helps the user judge the potential
risk of specifying a condition she is not very confident about,
e.g., the wing color in the bird example. Specifying such
a condition might provide useful information for improving
the query result. However, if getting it just slightly wrong
might significantly change the result, then it might be safer
to not enter it at all. To provide this kind of risk-estimation
functionality, we introduce the novel notion of sensitivity of
a condition and prove structural properties that allow its
efficient computation.

While sensitivity allows the user to quantify the risk of a
query constraint, our third contribution aims at quantifying the
benefit of a constraint by identifying the best new conditions
to be added in order to improve result quality.

As a user-driven process, query refinement should be
interactive. Unfortunately, computation time tends to be high
when dealing with large databases and imprecise queries and
data. We therefore propose fast approximate estimation
techniques that guarantee to deliver results within a given
response time threshold.

II. DATA MODEL AND FRAMEWORK

We introduce the data model and propose a probability-
based framework for exploratory search in databases.

A. Data Model

For simplicity and without loss of generality, we assume
that the given database contains “certain” data, i.e., is not
a probabilistic database. (We will point out non-trivial ex-
tensions required for probabilistic data where appropriate.)
The database manages some entities of interest, each of them
described by a set of attributes {X1, X2, . . . , Xm} and an
entity-identifier Y . Again, for simplicity and without loss of
generality, assume that data about these entities is stored in
a relational view R with schema {X1, X2, . . . , Xm, Y }. (R
could be a base table or the result of a complex SQL query.)
Notice that even though Y uniquely identifies an entity, it does
not need to be a key of R.

In the bird example, the entities of interest are the dif-
ferent bird species. Attribute Y is the species name. The Xi

describe various properties of a bird and observation event,
e.g., hasWingColorRed and obsLongitude. Data set R contains
a record for each individual bird observed. Hence, there can
be many records for the same species. Since not all individuals
of a species look alike or are seen at the same location, the
values of the Xi can differ even for records with the same
entity ID Y . (For this reason Y is not necessarily a key of R.)

B. Probabilistic Query Framework

The user wants to find entities y ∈ Y of interest (we
slightly abuse notation and use Y to denote both the name
of the attribute and its domain) and expresses her prefer-
ences by specifying constraints on some of the attributes
Xi. This corresponds to query SELECT Y FROM R WHERE
condition(X1, X2, . . . , Xm) in a relational database. To incor-
porate uncertainty, our framework supports constraints that are
probability distributions in the condition. More precisely,
for some attribute Xi, let Ai be the set of all possible
probability distributions over the values in the domain of Xi.
When interacting with the system, the user specifies some
probability distribution ai ∈ Ai. In the bird example, for binary
attribute hasWingColorRed, the user might specify distribution
(0.8, 0.2) over domain (“yes”, “no”), indicating that she is 80%
confident that the observed bird’s wing contained red.

Given such probability distributions for some of the Xi,
we support exploratory search by doing the following:

1) Estimate for each entity y ∈ Y the probability that it
is what the user is looking for and present a list of
the top-ranked entities based on these probabilities.

2) Estimate the sensitivity of each Xi for which the user
specified a distribution ai and present these Xi and
their sensitivity scores in decreasing order.

3) Estimate how much each of the remaining unspecified
Xj would help improve the query result quality if the
user provided a distribution aj for it. Present these
attributes Xj and their quality-improvement score in
decreasing order to the user.

For illustration, consider the bird-species identification
example in Figure 3. It shows the information presented to
the user after she specified conditions for attributes X2 (size)
and X4 (main color). In the center is the list of the top-ranked
species based on the user input so far. To the left is the ranked
list of unspecified attributes, sorted by how much knowing their
value would help improving the current result. On the right is
the ranked list of specified attributes, sorted by their sensitivity
score, i.e., how much changing their current condition would
affect the current species ranking.

Assume the user decides to proceed by adding more query
conditions in order to improve the result. Looking at the
left table in Figure 3, she skips ShapeGroup and BillLength,
because she did not observe these properties. Encountering
WingColor next, she decides to enter the corresponding prob-
ability distribution a11, possibly through an interface as shown
in Figure 1. Alternatively, the high sensitivity score of X2

might motivate the user to revisit her initial input, e.g., using an
interface as shown in Figure 2, because she is not too confident
about the observed bird’s size.

Before discussing techniques for each of these function-
alities, we formally introduce the probability of an entity to
be what the user is looking for. Assuming the user specified
distributions a1, . . . , ak for attributes X1, . . . , Xk, the desired
probability for y ∈ Y is

Pr(Y = y |A1 = a1, . . . , Ak = ak, D),

written more compactly as Pr(Y |A1, . . . , Ak, D). Notice that
this probability also depends on the database content D. In
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User specified conditions 
for attributes X2,X4

Expected Result
Quality Improvement

Sensitivity Scores
Estimate of Pr(C|A2,A4,D)

Attribute Quality Improvement

X3:ShapeGroup 83.27

X14:BillLength 81.12

X11:WingColor 74.98

X1:Time 69.47

X0:Location 65.24

X5:BreastColor 64.02

X6:BreastPattern 63.18

X9:BackColor 57.79

X16:LegColor 49.35

X8:BellyPattern 48.81

Rank Species Image 

1 C245:Eastern Bluebird 

2 C211:Blue Jay 

3 C223:Barn Swallow 

4 C212:Western Scrub-Jay 

5 C233:Red-breasted Nuthatch

6 C242:Blue-grey Gnatcatcher

7 C221:Tree Swallow

8 C331:Indigo Bunting

9 C246:Western Bluebird 

10 C210:Steller's Jay

Specified Attribute SensitivityScore

X2:Size 206.88

X4:MainColor 18.01

Fig. 3. Feedback to the user after she specified distributions for attributes X2 and X4

addition to specifying conditions for the Xi, we can also model
explicit rejection of entities. E.g., after seeing a list of the most
likely species, the user might choose to eliminate some. Let ȳj
denote that entity yj was rejected and assume the user rejected
entities y1, . . . , yl. The entity probability then becomes

Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D).

We discuss in Section VI how to estimate this probability
subject to hard realtime constraints on response time.

Whenever the user is looking for a single result, e.g.,
the correct bird species, the probability of Y as defined here
directly captures the notion of result quality because random
variable Y can take on the value of any individual entity.
Furthermore, this probability is also meaningful when the
user is looking for multiple result entities. Intuitively, the
probability of entity y corresponds to the fraction of entity-
y tuples (those whose Y -value equals y) among the tuples in
R that satisfy the user-specified constraints. Stated differently,
the entities with the highest probabilities are those that would
occur most frequently in the result of SELECT Y FROM
R WHERE condition(X1, X2, . . . , Xm) in a sufficiently large
data set R. Furthermore, when looking for multiple results, the
user would not only reject entities, but could also accept some
and then continue the search process. The probabilities can
be adjusted accordingly by essentially removing the accepted
entities from consideration (as if they never existed in R).

III. RESULT RANKING

Given an imprecise query, we want to present a ranked
result as shown in the central table in Figure 3. Due to the prob-
abilistic nature of the query conditions, each entity y ∈ Y is a
query result with probability Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D)
as discussed above. Hence, we can present the most likely
entities to the user first, i.e., rank by entity probability.

While this is a very natural ranking, we also propose an-
other ranking that takes user effort into account. It is motivated
by the fact that the user has to invest some time to look at the
presented query result in order to decide which entities are of
interest. In the example in Figure 3, the user would go over
the list of birds in the center from top to bottom, determining
if any looks similar to the bird she observed. Let φj denote the
user effort required for deciding about the relevance of entity
yj .1 Now consider two entities y1 and y2 with probabilities
0.51 and 0.49 and effort φ1 = 10 and φ2 = 1, respectively.
If we rank y1 before y2, the user would have to invest an
expected effort of 0.51 · 10 + 0.49 · (10 + 1) = 10.49 when
examining the ranked list top-down until the correct answer
is found (assuming either y1 or y2 is correct, but not both).
However, if y2 was ranked first, expected user effort would
drop to 0.49 · 1 + 0.51 · (1 + 10) = 6.1.

Ranking by effort-adjusted entity probability. This
example motivates an alternative ranking system based
on effort-adjusted probabilities. The effort-adjusted prob-
ability of entity yi ∈ Y is defined as Pr(Y =
yi |A1, . . . , Ak, ȳ1, . . . , ȳl, D)/φi. It has the following prop-
erty:

Lemma 1: Assume the user is looking for a single entity
of interest by exploring the ranked list of entities one-by-one
from top to bottom, until this entity is found. Expected user
effort then is minimized if the entities are ranked in decreasing
order of their effort-adjusted probability.

Proof sketch: Without loss of generality, assume the entities
are ranked in order y1, y2, . . . , yn. If yc is the correct result
the user is looking for, she would have to go through entities

1Effort can vary, e.g., some bird species is easily recognizable from a
picture, another requires reading a description. Effort can be measured based
on the user’s response time when interacting with our system.
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y1 to yc−1, which are all ranked higher, until finding yc.
The corresponding effort is

∑c
j=1 φj . Hence, we obtain the

expected user effort as
n∑
i=1

Pr(Y = yi |A1, . . . , Ak, ȳ1, . . . , ȳl, D) ·
i∑

j=1

φj . (1)

Now consider a pair (yk, yk+1) that is not correctly ranked
by effort-adjusted probability, i.e., pk/φk < pk+1/φk+1.
(To avoid clutter, we use pi as a shorthand for Pr(Y =
yi |A1, . . . , Ak, ȳ1, . . . , ȳl, D).) Examining all affected terms
in Eq. 1, we can see that swapping the positions of the two
entities in the ranked list would change expected effort by
pk+1φk − pkφk+1. This difference is positive because of the
initial assumption pk/φk < pk+1/φk+1. Stated differently,
swapping any two adjacent entities that are not correctly
ordered by effort-adjusted probability will decrease expected
user effort. This in turn implies that ranking in decreasing order
of effort-adjusted probability minimizes expected user effort.
(This step is the same as showing that Bubble Sort is a correct
sort procedure.)

IV. SENSITIVITY ANALYSIS

Our goal is to help the user judge the potential risk and
benefit of conditions she considers for her exploratory search
query. This section focuses on the risk aspects, while Section V
deals with the benefit.

We propose the notion of sensitivity of a user-provided
condition for an attribute Xi. Intuitively, user response ai
for attribute Xi has high sensitivity, if the current result
ranking would change significantly if the user were to change
her current answer “a little”. To illustrate the use of sen-
sitivity analysis, we return to the bird example. Recall that
user Amy is not certain about the observed bird’s size.
She knows for sure that it was smaller than a crow, but
cannot decide between the sizes in the range from sparrow
to American Robin (which is significantly larger than its
European cousin). Assume she entered probability distribu-
tion (0, 0.3, 0.4, 0.3, 0, 0, 0, 0, 0) (see Figure 2 for bird size
choices). Assume further that our system told her that any
alternative input of the form (0, q1, q2, q3, 0, 0, 0, 0, 0), where
0 ≤ q1, q2, q3 and q1 +q2 +q3 = 1, would result in only minor
changes of the species ranking. Then she can be confident
about having entered the distribution information: It would
eliminate very small and very large species from consideration
without risking major re-shuffling of the remaining ones, even
if her probability numbers are a bit “off”.

On the other hand, if even minor changes, e.g., from
(0, 0.3, 0.4, 0.3, 0, 0, 0, 0, 0) to (0, 0.33, 0.34, 0.33, 0, 0, 0, 0, 0)
could dramatically change the species ranking, then adding this
information is very risky. It would be better to initially avoid
specifying bird size. However, as will become clearer after
the formal definition of sensitivity is introduced, an attribute
with high sensitivity early on might have much lower sensitivity
after more information about other attributes is entered. Hence
initially “risky” input can become useful at a later stage.

Sensitivity complements other approaches that try to detect
problematic user input by determining if it differs significantly
from what was expected based on historic searches and user

responses so far. Those approaches rely on outlier detection
techniques [2], [3] or include errors as variables in a prediction
model [4].

A. Definition and Naive Algorithm

The sensitivity of user-provided condition ai for attribute
Xi depends on how much a change of ai would affect the
current result ranking. Let Lp and Lq be two entity rankings.
For each entity y ∈ Y , let ρp(y) and ρq(y) denote y’s rank
in the first and second ranking, respectively. To measure how
different the rank of each entity is between the two rankings,
we use the popular Minkowski distance. For some constant
d > 0 it is defined as

dst(Lp, Lq) =

∑
y∈Y
|ρp(y)− ρq(y)|d

1/d

.

Definition 1: Let Lp be the current entity ranking and X
be an attribute for which the user has specified a condition.
Furthermore, let A denote the set of all alternative conditions
the user considers for attribute X . The sensitivity of the current
ranking Lp to attribute X for a set of possible conditions A is
defined as the maximum difference dst(Lp, Lq) between Lp
and any other ranking Lq that could be obtained if the user
were to change the current condition for attribute X to any
other value in A.

For brevity, we will refer to the “sensitivity of the current
ranking Lp to attribute X for a set of possible conditions A”
simply as the “sensitivity of attribute X”. By default the set A
of possible alternative conditions includes any input the user
might have given for X . If the user can exclude some answers
with certainty, e.g., Amy knows that the bird was definitely
smaller than a crow, then A could be limited accordingly. All
results in this section apply to any such set A.

Naive algorithm for computing sensitivity: Consider one-
by-one each attribute for which the user specified a condition.
When computing the sensitivity of attribute Xi, try every single
condition in Ai: compute the entity ranking based on this
modified condition to find the ranking with the maximum
distance from the current ranking Lp.

We will next identify an important structural property that
allows us to dramatically reduce the space of conditions in Ai
to be considered.

B. Structural Property of Ranking Distance

Consider an attribute X with three possible values x1,
x2, and x3. The user would specify some probability dis-
tribution over these three values. For instance, it might be
a = (0.4, 0.2, 0.4), indicating that the user believes X had
value x1 with probability 0.4 and so on. To compute the sensi-
tivity of attribute X , we want to determine the greatest ranking
difference that could be achieved by changing answer a to any
other probability distribution considered, e.g., (0.0, 0.4, 0.6).
Since the third probability is determined by the other two (all
have to add up to 1.0), we only need to consider a probability
vector (p1, p2).

In the following, we prove that the maximum ranking
difference can only be achieved by a distribution “on the
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edge” of the space of possible alternative inputs considered. In
particular, if all possible probability distributions are consid-
ered for X , then the maximum ranking difference is achieved
for distribution (p1, p2) where either p1 = 0 or p2 = 0 or
p1 + p2 = 1 (follows from p3 = 0).

Consider three distributions for attribute X: probability
vectors p = (p1, p2), q = (q1, q2), and r = (r1, r2). Let the
three vectors be located on a line, such that q = p+α · (r−p)
for some 0 < α < 1. Intuitively, q lies between p and r.
We now show that the corresponding probabilities for each
entity will have the same property, i.e., that the probability of
entity y given distribution q will be between the probabilities
obtained for distributions p and r. Hence we need to examine
probabilities

P = Pr(Y |A = p,A1, . . . , Ak, ȳ1, . . . , ȳl, D),

Q = Pr(Y |A = q, A1, . . . , Ak, ȳ1, . . . , ȳl, D),

R = Pr(Y |A = r,A1, . . . , Ak, ȳ1, . . . , ȳl, D).

Recall that each Ai is a distribution over the values of the
corresponding attribute Xi. Hence the above probabilities are
actually expectations over these combinations of X-values.
Formally, P (and similarly Q and R) is defined as

EX,X1,...,Xk
[Pr(Y |X,X1, . . . , Xk, ȳ1, . . . , ȳl, D)].

Since expectations can be decomposed, we can equivalently
write

EX
[
EX1,...,Xk

[Pr(Y |X,X1, . . . , Xk, ȳ1, . . . , ȳl, D)]
]
.

Based on the definition of the expectation, we then obtain

P =
∑
x∈X

Pr(x) · g(x),

where g(x) = EX1,...,Xk
[Pr(Y |X =

x,X1, . . . , Xk, ȳ1, . . . , ȳl, D)]; similar for Q and R. For
our 3-valued example attribute X we therefore have

P = p1 · g(x1) + p2 · g(x2) + (1− p1 − p2) · g(x3), (2)
Q = q1 · g(x1) + q2 · g(x2) + (1− q1 − q2) · g(x3), (3)
R = r1 · g(x1) + r2 · g(x2) + (1− r1 − r2) · g(x3). (4)

Since q = p+ α · (r − p), we can derive from Equation 3

Q =(p1 + α(r1 − p1))g(x1) + (p2 + α(r2 − p2))g(x2)

+ (1− (p1 + α(r1 − p1))− (p2 + α(r2 − p2)))g(x3)

=(p1g(x1) + p2g(x2) + (1− p1 − p2)g(x3))

+ α((r1g(x1) + r2g(x2) + (1− r1 − r2)g(x3))

− (p1g(x1) + p2g(x2) + (1− p1 − p2)g(x3))).

Together with Equations 2 and 4, we then obtain the desired
result that Q = P + α · (R− P ).

The above analysis generalizes beyond 3-valued attributes
to any discrete attribute type. Intuitively, we have shown the
following powerful result: Assume entity y has a probability
P of being the result based on distribution p for attribute X .
Assume we also know that this probability will be R if the user
changed her response from p to a different distribution r. Then
each alternative response q that is a linear combination of p and
r will result in a probability Q that is proportionally between
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P and R. Figure 4 illustrates this property for an example
of five entities y1 to y5. For distribution p of attribute X , y1
has the highest probability and y5 the lowest. For a different
distribution r those probabilities are almost reversed. For any
distribution q between p and r, each entity’s probability is
proportionally between the corresponding probabilities for p
and r. Using this result, we can now prove the following
theorem:

Theorem 1: Let p be the current user input for attribute
X . Let q and r be two other possible responses from A, such
that q = p+ α · (r− p) for some 0 < α < 1. And let Lp, Lq ,
and Lr, respectively, denote the rankings obtained for these
responses (while keeping all other responses constant). Then,
if categories are ranked based on their probability or effort-
adjusted probability (Section III), it holds that dst(Lp, Lq) ≤
dst(Lp, Lr).

Proof: Consider Figure 4 for illustration. As α is in-
creased from 0 to 1, we obtain a series of different rankings
between the entities due to their changing probabilities. In the
example, for 0 < α < 0.2 the ranking of probabilities for
q is identical to the ranking for p. At α = 0.2, “adjacent”
(in their ranking) entities y2 and y3 swap places. Then at
α = 0.3, adjacent y2 and y4 swap places, and so on. Notice that
sometimes more than two entities might swap places “at the
same time” when multiple lines intersect, e.g., for α = 0.4 in
the example. The result of this many-entity swap can always be
equivalently expressed as a series of the corresponding binary
swaps between adjacent entities. Consider again Figure 4.
For α = 0.39, the entity ranking is (y1, y3, y4, y2, y5); for
α = 0.41 it is (y4, y3, y1, y5, y2). The following sequence of
binary swaps between adjacent entities transforms one ranking
to the other: y2 ↔ y5, y3 ↔ y4, y1 ↔ y4, y1 ↔ y3.

Now consider the sequence of rankings L0(=
Lp), L1, L2, . . . , Lk−1, Lk(= Lr) defined by gradually
increasing α from 0 to 1. As we showed above, each ranking
pair (Li, Li+1), 0 ≤ i < k, is identical except that two
adjacent categories in Li are swapped in Li+1. We now
show that this property implies that the distance from Lp
to Li cannot be greater than the distance from Lp to Li+1.
Let y and y′ be the adjacent entities that swapped ranks
between Li and Li+1. More precisely, both rankings are
identical, except that ρi(y) = ρi(y

′) − 1, ρi+1(y) = ρi(y
′),

and ρi+1(y′) = ρi(y). Now consider all possible cases for the
ranking of these entities in Lp:

Case 1: ρp(y) > ρi(y) and ρp(y
′) < ρi(y

′). This case
is impossible, because it implies for the corresponding entity
probabilities that P ′ > P , Q′ < Q, and R′ > R. Since we

920



showed above that Q = P +α(R−P ) = (1−α)P +αR and
similarly Q′ = (1− α)P ′ + αR′, we obtain a contradiction.

Case 2: ρp(y) ≤ ρi(y) and ρp(y
′) ≥ ρi(y

′). Since
all entities are at the same ranks in Li and Li+1, except
for y and y′, the only difference between dst(Lp, Li) and
dst(Lp, Li+1) is due to y and y′. More precisely, for any
entity ŷ different from y and y′, the rank difference of ŷ
between Lp and Li is the same as between Lp and Li+1.
Now consider the terms where the rank difference is different:
|ρp(y) − ρi(y)|d + |ρp(y′) − ρi(y

′)|d for dst(Lp, Li) versus
|ρp(y) − ρi+1(y)|d + |ρp(y′) − ρi+1(y′)|d for dst(Lp, Li+1).
Because of the case condition and the fact that y and
y′ have swapped ranks between Li and Li+1, it follows
that |ρp(y) − ρi+1(y)|d + |ρp(y′) − ρi+1(y′)|d is equal to
(|ρp(y) − ρi(y)| + 1)d + (|ρp(y′) − ρi(y

′)| + 1)d, which is
greater than |ρp(y) − ρi(y)|d + |ρp(y′) − ρi(y

′)|d. Hence
dst(Lp, Li) < dst(Lp, Li+1).

Case 3: ρp(y) ≤ ρi(y) and ρp(y′) < ρi(y
′). Observe that

|ρp(y) − ρi(y)| ≥ |ρp(y′) − ρq(y′)|. This is due to the facts
that y′ cannot precede y in Lp (proof like for case 1) and that
both are ranked higher in Lp than in Li. Therefore, similar to
the analysis in case 2, we obtain the following for the rank-
difference terms that are different between dst(Lp, Li) and
dst(Lp, Li+1):

|ρp(y)− ρi+1(y)|d + |ρp(y′)− ρi+1(y′)|d

= (ρi+1(y)− ρp(y))d + (ρi+1(y′)− ρp(y′))d

= (ρi(y) + 1− ρp(y))d + (ρi(y
′)− 1− ρp(y′))d

= (ρi(y)− ρp(y))d + d(ρi(y)− ρp(y))d−1 + · · ·+ 1

+ (ρi(y
′)− ρp(y′))d − d(ρi(y

′)− ρp(y′))d−1 + · · ·+ (−1)d

≥ (ρi(y)− ρp(y))d + (ρi(y
′)− ρp(y′))d

= |ρp(y)− ρi(y)|d + |ρp(y′)− ρi(y′)|d

⇒ dst(Lp, Li) ≤ dst(Lp, Li+1)

Case 4: ρp(y) > ρi(y) and ρp(y′) ≥ ρi(y
′). The analysis

is symmetric to case 3.

These cases cover all possible rankings for Lp. We can now
inductively apply this argument, showing that dst(Lp, L1) ≤
dst(Lp, L2) ≤ · · · ≤ dst(Lp, Lk) = dst(Lp, Lr). This
completes the proof.

We can similarly prove that Theorem 1 also holds when
the ranking distance is measured by the number of inversions
between two rankings, instead of using a Minkowski distance.

While Theorem 1 guarantees that the maximum ranking
difference can only be achieved by a distribution “on the edge”
of the space of possible inputs in A, one might wonder if an
even stronger result could be shown. In particular, would the
optimum have to be in one of the “vertices” of the space?
Unfortunately, this does not hold in general, because the
optimization problem is not convex. First, the set of alternative
probability distributions, A, might not be convex. Second, as
Figure 6 shows, the objective function is monotonic, but not
necessarily convex.

C. Efficient Sensitivity Algorithm

Recall that the sensitivity of attribute X is determined by
the maximal ranking difference over all alternative probability

Fig. 5. Ranking distance for 3-valued
attribute billLength and current distri-
bution (0.4, 0.2) when selecting other
distributions (q1, q2) for the proba-
bility of the bill length being shorter
than the head and equal to the head,
respectively

Fig. 6. Ranking distance for binary
attribute hasWingColorBlue and cur-
rent distribution (0.6) when selecting
other distributions q1 for the probabil-
ity of the bird’s wing containing blue

distributions for X in A. Based on Theorem 1, when searching
for the distribution that maximizes the ranking distance to the
current ranking, we only need to consider the “boundaries”
of the data space. This often eliminates the vast majority of
possible distributions in A, dramatically reducing the cost of
sensitivity analysis compared to the naive algorithm.

Consider again the 3-valued example attribute X with
original user-response (0.4, 0.2, 0.4). There is no need to
explore distribution (0.65, 0.15, 0.2), because we know from
the theorem that since (0.65, 0.15, 0.2) = (0.4, 0.2, 0.4)+0.5 ·
((0.9, 0.1, 0.0)− (0.4, 0.2, 0.4)), the ranking distance for input
(0.9, 0.1, 0.0) will be greater than or equal to the one obtained
for (0.65, 0.15, 0.2). Figure 5 illustrates this structural property
for the 3-valued attribute billLength in our bird observation
data set (discussed in Section VII). Starting with the original
user response p = (0.4, 0.2), we sampled 1 million alternative
responses randomly and computed the distance in ranking to
Lp. Consistent with Theorem 1, distances are indeed increasing
along each line emanating from point (0.4, 0.2). (There is
some “color noise” in the graph, which are artifacts of the
drawing process when interpolating between sample points.)
In summary, to compute the sensitivity of attribute billLength,
the naive algorithm would have to consider the entire colored
triangle in Figure 5. Thanks to Theorem 1, we only need to
consider the three edges of this triangle.

The implications of Theorem 1 are particularly powerful
for binary attributes. Since the distribution of a binary attribute
is represented by a single probability value, all possible inputs
are collinear by definition. This means that to find the input
that results in the greatest ranking difference, we only need
to check the rankings for the lower and upper extreme of
the range of possible probability values considered. Figure 6
shows this for binary attribute hasWingColorBlue in our bird
observation data set. Starting with the original user response
p = 0.6, we sampled 1 million alternative responses randomly
and computed the distance in ranking to Lp.

D. Further Cost Reduction and Continuous Domains

Notice that our algorithm can exploit cases where A, the
set of possible probability distributions the user might specify
for an attribute X , is explicitly constrained by the user. E.g.,
if Amy is sure that the bird was smaller than a crow, then
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sensitivity analysis should only consider distributions of the
form (p1, p2, p3, p4, p5, 0, 0, 0, 0) over the nine possible bird-
size values. Theorem 1 obviously still applies and further
reduces the space of combinations to be considered.

Our sensitivity algorithm as discussed so far would not
work well for scenarios with an infinite (or very large) number
of possible probability distributions inA and for attributes with
infinite (or very large) domains.

Large A. For the billLength example in Figure 5, we see
that there can be an infinite number of probability distributions
over the three domain values. Even after applying Theorem 1,
the three edges of the colored triangle still contain an infinite
number of possible combinations. Hence, instead of exhaus-
tively exploring all of them, our algorithm in practice will draw
a random sample and estimate the maximum ranking distance
(and hence the sensitivity) from this sample. Theorem 1 is
still crucially important. Instead of sampling from the entire
colored triangle, we only have to sample from the edges.

Large attribute domain. For a continuous attribute with
infinite domain, we cannot accurately represent the probability
distribution over its values as a vector of probabilities. How-
ever, we can approximate the full distribution by discretizing
it, e.g., using a histogram. For discrete attributes with very
large domains, we use a coarser approximate representation.

Both sampling and approximation of distributions for at-
tributes with large domains are perfectly acceptable in practice.
Recall that in exploratory search the user provides the distribu-
tions. From the user’s point of view, it makes virtually no sense
to try and distinguish between distributions like (0.8, 0.2)
and (0.81, 0.19). They both express that the user was highly
confident about the attribute’s value. An analogous argument
applies to attributes with infinite and very large domains,
where provided distribution input will always be approximate
in nature anyway.

V. RECOMMENDING ADDITIONAL CONDITIONS

Section IV introduced sensitivity to quantify the risk of
specifying imprecise conditions. We now turn to the somewhat
“opposite” problem of recommending currently unspecified
attributes that have the greatest potential for improving result
quality (left table in Figure 3). Intuitively, we want to esti-
mate how beneficial each currently unspecified attribute is for
improving the query result quality. This is inherently difficult,
because we do not know which entities the user wants to find
and what conditions she would specify for these attributes.

Since the user’s future input a for attribute X is not known,
we model it as a random variable A. We can estimate the
probability that A takes on a specific value a from all the
information gathered so far, i.e.,

Pr(A = a |A1, . . . , Ak, ȳ1, . . . , ȳl, D).

We discuss in Section VI how to estimate this probability in
practice. For each value a, we can then compute

Pr(Y |A = a,A1, . . . , Ak, ȳ1, . . . , ȳl, D)

and use it to create an entity ranking as discussed in Section III.

Assume we have a function F that returns by how much the
entity ranking improves with the additional information A = a,

compared to the current ranking without knowing A. Using this
function F , we can then compute the expected improvement
in entity ranking over random variable A. Ideally, F should
measure how much the ranks improved for the entities the user
is interested in. Since we do not know which entities the user is
interested in, we have to find alternative measures that measure
how well “winning” entities are separated from “losing” ones.
More precisely, a ranking where the probability of being in
the result is high only for a few entities and near-zero for all
others, is desirable: likely answers and unlikely answers are
well-separated and the few top-ranked entities shown to the
user have a comparably high aggregate probability mass.

Entropy-based. Entropy directly captures this
intuition. Using py as shorthand for Pr(Y =
y |A1, . . . , Ak, ȳ1, . . . , ȳl, D), the entropy of a set of
entities is defined as −

∑
y∈Y py · log2(py). In general, cases

with few high-probability categories and many low-probability
ones have low entropy, while those where many categories
have similar probabilities have high entropy. For this reason
entropy is widely used for selection of split attributes in
decision trees, e.g., through information gain or gain ratio [5].
The goal of the tree is to separate different classes through
the splits, which coincides with our search goal of separating
likely result entities from unlikely ones. Hence, the expected
improvement in the quality of entity ranking can be based
on the expected entropy reduction after receiving the user
response for attribute X . Instead of entropy, one could also
use other common measures of “purity” for a probability
distribution, including Gini [5].

Effort-based. Entropy and the other purity measures do not
help the user decide if adding a condition for another attribute
is “worth the effort”. If it costs the user an effort of φX to
decide about and then specify a condition for attribute X , then
this investment should result in savings of future effort of at
least φX . We measure these future savings, denoted as ∆, in
terms of the reduction of expected effort for going through the
ranked list of entities as defined in Eq. 1. Then function F for
measuring the ranking improvement after adding a condition
for attribute X is defined as ∆−φX . A negative value signals
that investing effort for specifying a condition for this attribute
is on expectation not worth the small improvement in result
quality.

VI. PROBABILITY ESTIMATION

Our methods make use of Pr(Y =
y |A1, . . . , Ak, ȳ1, . . . , ȳl, D) and Pr(A =
a |A1, . . . , Ak, ȳ1, . . . , ȳl, D). Recall that A1, A2, . . . , Ak
represent potentially imprecise conditions, i.e., distributions
over the possible values of the corresponding attributes
X1, . . . , Xk.

In principle, we can leverage the vast body of pre-
vious work on classification and prediction techniques
to estimate these probabilities. Formulas of the type
Pr(C |X1, X2, . . . , Xk, D) define the posterior probability
of a class C in Bayesian classification [6]. In classification
problems in general the goal is to predict to which class a
given input object belongs. This is done in two phases. First
a classification model is constructed from a set of training
objects, each of which has a combination of input values and
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a known class label. Then this model is used to predict the
class of an input with unknown class label [5]. It is easy to
see the relationship to our problem: D can take on the role
of the training set and attribute Y corresponds to the set of
possible classes.

In addition to Bayesian classification techniques, it has
been shown that virtually all popular classification methods
such as SVMs, artificial neural networks, and decision tree
ensembles can be modified to output such probabilities [7].
Based on this observation, we can in theory leverage almost
any classification technique using the following basic approach
for estimating Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D):

• Using data set D, train a classification model
M(X1, X2, . . . , Xk) that predicts the probability of
each entity y ∈ Y − {y1, . . . , yl} for a given input
vector (x1, x2, . . . , xk) ∈ X1 ×X2 × · · · ×Xk. (If D
contains probabilistic data, the we can use classifica-
tion techniques for uncertain data [8]. Alternatively,
one can transform a probabilistic data set D to a data
set without uncertainty by sampling multiple training
records from each uncertain data record.)

• Sample a sufficiently large number of points from
the joint distribution over A1, . . . , Ak. For each such
vector (x1, x2, . . . , xk), M(x1, x2, . . . , xk) returns the
desired probabilities for the entities.

• Return the average of these probabilities for each
entity.

We can use the same approach also for estimating
Pr(A |A1, . . . , Ak, ȳ1, . . . , ȳl, D). The only difference is that
the model is trained to predict the possible user responses for
unspecified attributes, not the probabilities of the entities.

A. Challenges

While conceptually straightforward, making the above
probability-estimation algorithm work in practice is very dif-
ficult due to the requirement of guaranteeing interactive re-
sponse time. Consider the status of the algorithm that rec-
ommends additional conditions after k attributes have been
specified, i.e., only the remaining m− k still need to be con-
sidered. For each of these candidate attributes X , we sample s1
different possible user responses a ∈ A. To estimate Pr(A =
a |A1, . . . , Ak, ȳ1, . . . , ȳl, D), the above algorithm samples s2
vectors (x1, x2, . . . , xk) and then computes M(x1, x2, . . . , xk)
at a cost cM . Computation cost is dominated by the model
evaluations, costing a total of

(m− k) · s1 · s2 · cM .

While s1 and s2 are easily tuneable, cM is usually fixed or
even hard to predict, depending on the model type used. We
discuss in Section VI-C how to also make it tuneable so that
we can achieve the best tradeoff between sample sizes and
model quality for given hardware resources.

The cost formula above assumes that model M is readily
available. Unfortunately, after the user provides additional
information Ak+1 for attribute Xk+1, we will need a model
M(X1, . . . , Xk, Xk+1) in the next round. One option is to
train this model on-the-fly, but this adds to the computation

cost and hence increases response time. Also, for large data
sets, state-of-the-art data mining models cannot be trained in a
few seconds. To avoid on-the-fly model training, one could pre-
compute these models ahead of time. However, this is tricky
due to the exponential number of possible attribute subsets.
We discuss our solution next.

B. Solution: Bagged Tree Ensembles

We propose using bagged decision tree ensembles [9] for
probability estimation. A decision tree recursively partitions
the data space, attempting to find partitions with high purity,
i.e., where one class clearly dominates over all others. Each
non-leaf node in the tree splits the data space on some attribute.
Tree traversal for making a prediction starts at the root and
proceeds like in a standard search tree. The leaf nodes contain
predictions based on the distribution of the data records that
fall into the corresponding region of the data space. Details
can be found in any data mining textbook [5]. A bagged tree
ensemble consists of many such trees, each trained on an
independent bootstrap sample of the training data. To make
a prediction for a given input, all trees are traversed and their
individual outputs are averaged. We decided to use bagged
trees for several reasons.

First, trees can handle any attribute type and missing
values. Bagged trees are robust against noise and overfitting
and have been shown to return excellent probabilities “out-of-
the-box” [7]. This makes them ideal for our problem.

Second, due to their structure of splitting on an at-
tribute at a time, trees can easily compute expectations like
Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D) in a single pass through the
tree. At a split node whose attribute value is 100% certain, i.e.,
Ai is a distribution where a single value of the corresponding
attribute Xi has probability 1.0, the entire “weight” follows the
corresponding branch. If the attribute value was specified by
the user, but is uncertain, the “weight” is partitioned according
to the provided probability and each partial weight is sent
down the corresponding branch. If the split attribute value has
not been specified at all, partial weights are computed based
on the training data distribution of the attribute’s value in the
corresponding region of the data space (which is stored in the
node). It is easy to show that this is consistent with the desired
computation of the expected entity probabilities when taking
the expectation over all uncertain and missing input values.
Hence there is no need to sample from A1, . . . , Ak, i.e., s1 is
effectively equal to 1.

Third, a tree trained for input (X1, . . . , Xm) can be used
to make predictions for any subset of these attributes. Here
we exploit the tree’s ability for dealing with missing input
values during the prediction process by sending partial records,
whose weights are determined by the training data distribution
in the node, to the next lower level. (Details can be found in
any standard data mining textbook [5].) This eliminates the
problem of on-the-fly model training or pre-computing a large
number of models for different attribute subsets.

And fourth, the comparably simple index-like structure
makes tree cost predictable and tuneable, as we discuss below.
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C. Controlling Tree Response Time

The greatest advantage of tree-based methods over other
popular classification techniques is that their response time is
very predictable and tuneable, which is crucial for guaranteeing
interactive response time. We discuss this for the computation
of Pr(A |A1, . . . , Ak, ȳ1, . . . , ȳl, D).

During a tree traversal for computing
Pr(A |A1, . . . , Ak, ȳ1, . . . , ȳl, D) we can keep track of
the number of tree nodes accessed. Due to the simple
structure, tree traversal cost can be accurately predicted based
on the number of nodes accessed. In addition to predictability,
we can tune bagged tree cost very accurately as well. Assume
the ensemble consists of T trees, each with at most L levels
(see Figure 7). By using only t < T of these trees, we can
reduce cost proportional to the reduction in the number of
nodes accessed. Similarly, cost can be reduced by limiting
access to the top l < L levels of each tree. To be able to do
this, we also store the class distribution in each inner node
of the trees, not just in the leaf level. As the user reveals
more attribute value distributions and some tree branches are
pruned due to zero probability mass, prediction time will drop
over time. As that happens, the initial limits for t and l can
be increased. Since this tree ensemble is capable of adapting
to the time threshold, we call it Adaptive Tree. The term Full
Tree refers to the full bagged ensemble with t = T and l = L.

To be able to automatically adjust l and t, we need to
estimate how many more tree nodes will be accessed if t
increases to t′ and l to l′. The former is fairly simple: since
all trees are trained on bootstrap samples of the same size and
similar data distribution, we can estimate the size of a newly
added limited tree quite accurately as the average of the sizes
of the already used t limited trees. The effect of the level
increase is more difficult to estimate, because the sub-trees in
the newly added levels are typically very skewed. However,
since we already accessed all nodes up to level l, we know
exactly how many children will be accessed at level l + 1.
Hence as long as we increase l by at most 1 in each iteration,
we can also accurately estimate the number of nodes accessed
after a level-limit increase.

The only difficult case occurs when the user modifies or
completely removes a previously specified condition, say on
attribute X . After this modification, a child c of a node splitting
on X that had zero probability mass before might now have
non-zero probability and hence would be accessed. In some
cases we will not know the number of tree nodes down to
level l in the sub-tree rooted at this child c. To deal with
this case, we introduce a “local” level limit lc for c, where
lc denotes the level of c. This way in the next round, i.e.,
after the next user interaction, we only access c but do not
traverse its sub-tree. After accessing c, we know the number

of its children and increase the local level limit to lc + 1. This
process continues until the local limit reaches l. Using this
approach we can always provide a hard upper bound on the
number of tree nodes accessed in the next round.

We can then estimate the system cost for computing the
ranked list of entities and the benefit of specifying a currently
unspecified attribute, i.e., to generate the lists shown in the
center and left table in Figure 3, as follows. (The analysis
for sensitivity computation is similar and hence omitted due
to space constraints.) Let ny and na be the number of nodes
accessed in the bagged tree models used to predict the entity
probabilities and each attribute probability, respectively. Let θ
denote the average time for accessing a single tree node and let
d = m− k be the number of remaining unspecified attributes.
Then Told, the system time when using the current (i.e., “old”
tree model) is

Told = nyθ + u+ dnaθ + s2dnyθ + du+ v.

This cost is obtained as follows. First the algorithm accesses
the entity prediction model to compute the probabilities of all
entities (cost: nyθ). Then it sorts the entities (cost: u). We
use u to denote the constant time, i.e., independent of the tree
model size, needed for sorting the entities. To compute the
expected ranking quality improvement for each attribute, the
corresponding attribute probability models are accessed (cost:
dnaθ). For each of the s2 samples from the obtained attribute-
value distributions (see Section VI-A), the entity probabilities
are computed (cost: s2dnyθ) and the hypothetical ranking is
computed by sorting them (cost: du). Finally, v accounts for
the constant, i.e., independent of tree model size, overhead
for all other tasks including reading the user’s response and
updating the UI.

Similar to Told, we can compute an upper bound on Tnew,
the cost of the next iteration. Instead of ny and na, we use the
corresponding upper bound on the number of tree nodes that
will be accessed in the next iteration, computed as described
above. (Also, note that d might have changed.) We can then
choose any combination (l′, t′) for which Tnew is below the
response-time limit. Our experiments show that we indeed can
successfully guarantee interactive response times.

VII. EXPERIMENTS

The goal of the experiments is to provide a proof of concept
for three important properties of our approach: (1) improved
efficiency of sensitivity analysis due to Theorem 1, (2) quality
of the recommended attributes for additional conditions, and
(3) guarantee of interactive system response times. In all
experiments, the effort-based function is used to compare the
entity rankings.

A. Data

In our experiments we are using a real-world data set
provided by the Cornell Lab of Ornithology. The bird data
set contains examples of commonly observable bird species in
North America. There are 372 different species, each described
by 177 binary attributes, e.g., encoding the size of the bird, its
color and the pattern of its different body parts, its behavior,
and so on. There are 2,000,000 individual bird observations
that we generated as follows. First, we randomly select an
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Fig. 8. Naive vs. efficient sensitivity estimation algorithm for a multi-valued
attribute

observation from the real eBird data set [10], i.e., a data set
containing actual observations reported by citizen scientists.
Unfortunately, while eBird reports the species of the observed
bird, it does not contain individual bird properties like color,
size etc. We generate these individual bird features by sampling
from a feature distribution that was carefully defined by the
domain experts for every single species.

B. Sensitivity Analysis

In this experiment we explore how much difference it
makes in practice to use the efficient algorithm for sensitivity
estimation instead of the naive one. We consider for A the
entire space of alternative responses. For each attribute, we
randomly select 1,000 sample points and plot the current
maximum distance versus the number of samples explored so
far. The goal is to find a good estimation of the maximum
distance with as few samples as possible. Figure 8 shows
this experiment for attribute “size”, which has 9 values. The
naive algorithm chooses sample points randomly in the entire
space of possible distributions for bird size, while the efficient
algorithm only selects points on the boundary of the sample
space. Figure 8 shows that after sampling only 27 points, the
efficient algorithm has already reached a ceiling, while the
naive one keeps improving with more samples. Still, even after
1000 samples for the naive algorithm, the maximum distance
found by the efficient algorithm is 78% greater.

C. Additional Condition Recommendation

In this series of experiments we explore how well our
condition recommendation framework improves the entity
ranking quality. Applying the solution introduced in Section
V, we compare the Full Tree (F) to the Adaptive Tree (A).
This reflects the effect of potentially less accurate probability
estimates in the Adaptive Tree due to the limited tree model.
The other competitor is Random (R) which picks a random
attribute.

In Tables I, II and III the first three columns report ρ(y),
the rank of the true entity (initially at rank 100) for the three
approaches. The second and third sets of three columns report
the probability of the true entity and the expected user effort,
respectively. The first row shows the initial values based on
the data set D only. The values are updated as conditions
are added one by one in the next rows. The experiment
is repeated for varying degrees of uncertainty in the user
response. Uncertainty value x means that with probability x
the user will specify an imprecise constraint. For imprecise

TABLE I. IMPROVEMENT DUE TO CONDITION RECOMMENDATION:
UNCERTAINTY=0

ρ(y) Pr(Y |A1, . . . , Ak, D) Expected Effort
F A R F A R F A R

100 100 100 0.002 0.002 0.002 38.1 38.1 38.1
62 63 100 0.003 0.003 0.002 21.6 21.6 39.1
45 45 100 0.007 0.007 0.002 19.8 19.8 40.1
28 28 100 0.014 0.014 0.002 14.0 14.0 41.1
19 19 100 0.022 0.022 0.002 11.9 11.9 42.1
10 10 100 0.035 0.035 0.002 9.4 9.4 43.1
6 6 99 0.070 0.070 0.002 10.0 10.0 43.8
4 4 99 0.143 0.142 0.002 9.6 9.6 44.8
3 3 99 0.222 0.222 0.002 10.0 10.0 45.8
1 1 66 0.458 0.459 0.003 10.8 10.8 42.0
1 1 66 0.768 0.768 0.003 11.4 11.4 43.0

TABLE II. IMPROVEMENT DUE TO CONDITION RECOMMENDATION:
UNCERTAINTY=0.5

ρ(y) Pr(Y |A1, . . . , Ak, D) Expected Effort
F A R F A R F A R

100 100 100 0.002 0.002 0.002 38.1 38.1 38.1
75 76 100 0.003 0.003 0.002 35.3 35.3 39.1
54 54 100 0.006 0.006 0.002 30.6 30.7 40.1
42 42 100 0.008 0.008 0.002 30.6 30.6 41.1
26 26 100 0.012 0.012 0.002 24.2 26.5 42.1
19 19 100 0.020 0.020 0.002 20.6 21.1 43.1
9 17 100 0.031 0.020 0.002 18.9 21.8 44.1
4 17 100 0.062 0.020 0.002 18.4 22.0 45.1
3 18 100 0.125 0.020 0.002 16.8 21.3 46.1
3 17 100 0.125 0.020 0.002 17.6 21.4 47.1
3 16 100 0.125 0.020 0.002 17.4 21.6 48.1

constraints, the probability distribution is (0.25, 0.75) between
“yes” and “no”. To deal with the effect of randomness, both in
the user’s response and the intrinsic randomness of the Random
method, we repeated each experiment many times. Due to the
lack of space and similarity of results, we only report the result
of a representative run. The effort is computed by assuming
that answering any question incurs the same cost.

Tables I, II and III present the results when the uncertainty
in the user’s response is 0, 0.5 and 1 respectively. The Full and
the Adaptive Trees clearly outperform the Random approach in
all cases, providing a strong evidence that a wise selection of
attributes has a great impact on the query refinement process.
Although the Random approach asks the same number of
questions, it can at best only slightly improve the initial rank.

Table I shows that with certain responses the results of the
Adaptive and the Full Trees are very similar. The reason is that
providing precise conditions for important attributes quickly
shrinks the space of possible entities. It also prunes away zero-
probability branches in the trees, letting the Adaptive Tree
grow quickly toward full size. Also, Tables II and III show
that the Full Tree is better than the Adaptive Tree for higher
uncertainty values. This experiment and the timing experiment
in Section VII-D indicate that there is a trade-off between the
system response time and the quality of probability estimates.

D. Interactive Response Time

An important feature of our framework is to guarantee
interactive response times, even for large data sets with many
attributes. Our experiments show that this goal is achieved. We
discuss representative results, comparing an Adaptive Tree to a
Full Tree. Bagged tree ensembles (represented by the Full Tree
results here) have been shown to provide excellent probability
estimates, but might be too slow for large data sets. In this
experiment the Full Tree ensemble consists of 100 trees. Each
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TABLE III. IMPROVEMENT DUE TO CONDITION RECOMMENDATION:
UNCERTAINTY=1

ρ(y) Pr(Y |A1, . . . , Ak, D) Expected Effort
F A R F A R F A R

100 100 100 0.002 0.002 0.002 38.1 38.1 38.1
75 76 100 0.003 0.003 0.002 35.3 35.3 39.1
63 63 100 0.004 0.004 0.002 37.5 37.5 40.1
49 49 100 0.006 0.006 0.002 37.4 37.2 41.1
45 45 100 0.007 0.007 0.002 37.0 38.1 42.1
36 36 100 0.008 0.008 0.002 38.5 38.2 43.1
29 34 100 0.010 0.008 0.002 39.6 38.5 44.1
20 36 100 0.015 0.008 0.002 41.4 39.9 45.1
15 36 100 0.022 0.008 0.002 42.5 41.2 46.1
13 40 102 0.022 0.008 0.002 43.6 42.7 48.1
13 39 102 0.022 0.008 0.002 44.8 44.0 49.1

is grown on an independent bootstrap sample of 2 million
records, such that nodes with less than 1000 objects are not
split any further.

We set the threshold for interactive user response time to
5 seconds. (Other thresholds showed similar results.) Adaptive
Tree automatically selected an appropriate setting to guarantee
this response time. We report results for the most expensive
computation—recommending additional conditions.

Figures 9, 10, and 11 show how system response time
varies as more user-provided conditions are added with varying
degrees of uncertainty. The x-axis reports the number of
attributes specified so far and the y-axis reports the system
response time measured from the time the user submitted the
new condition until the system responded.

Figure 9 shows results for a run where the user always
provides 100% precise conditions. The Full Tree is very slow
in the beginning, suffering from a response time of about 15
sec. As more conditions are added, Full Tree responds faster
because more tree branches are pruned. Also, the more condi-
tions are specified, the fewer attributes must be considered for
recommending the next one. The Adaptive Tree holds response
time below the 5 sec threshold. As user input results in pruned
tree branches, it adapts number of trees and tree levels used,
converging to the Full Tree size.

The basic picture is similar in Figures 10 and 11, as the
uncertainty probability increases to 0.5 and 1, respectively.
Recall that for uncertain responses, the probability distribution
is (0.25, 0.75). Comparing the different Full Tree curves, it is
evident that response time improves more slowly at higher
uncertainty levels. This is due to the fact that an uncertain
response does not result in pruning of tree branches as each
child branch receives a non-zero weight. For uncertainty of 1,
no branches in the tree can be pruned. Hence response time
drops almost perfectly linearly due to the decreasing number
of remaining attributes considered for future conditions.

The experiment shows that the Adaptive Tree virtually
guarantees our system to respond within the set realtime limit.
It initially tracks the 5 sec threshold and at some point mirrors
the behavior of the Full Tree when it converged to full size as
user input results in pruned tree branches.

VIII. RELATED WORK

Recent work on optimal questionnaire design explores the
selection and ordering of questions on electronic forms to

extract the most information from users [4]. Similarly, Visi-
pedia [11] is designed to determine the category of an image by
posing questions to the user based on visual properties. Ques-
tions are selected using information gain. Issues like sensitivity
and interactive response time guarantees are not explored. The
20Q game uses a proprietary algorithm to select good questions
in order to guess an object the user is thinking of [12]. It mixes
ideas from artificial neural networks and binary search for
selecting the best objects and the next question. Previous work
on search in the presence of errors in the theory community
is limited to scenarios where user responses are either correct
or erroneous, but not uncertain [13]. Conditions for attribute
values are not considered.

Abouzied et al. [14] propose techniques for learning quan-
tified Boolean queries by asking users to label data objects
as answers or non-answers. For human-assisted graph search,
Parameswaran et al. [15] explore how to select an optimal
set of graph nodes to minimize the number of reachability
questions a human expert has to answer.

Classification is a well-studied problem in data mining and
machine learning [5]. The goal is to learn a model to predict
the class label for a given input. Issues related to interactive
refinement of model input are not considered, but we can
leverage traditional classification techniques for probability
estimation. The notion of revealing information at a cost has
been explored in active learning [16]. The most common
scenario is as follows: Given a set of input vectors and a
budget, choose some inputs to be labeled with their class value
such that a model trained on the resulting labeled data set
has the highest accuracy (or other measure of quality). Work
on active feature acquisition and classification considers input
attribute values to be revealed at a cost and tries to balance
this cost with the benefit and cost of correctly or incorrectly
classifying a given input. The goal is to find the best model
and sequence of “tests”, such that total cost is minimized [17],
[18]. This different optimization goal results in very different
solutions compared to exploratory search.

Querying of uncertain data has been studied for probabilis-
tic databases [1], but the query is given and specified precisely.
Our approach can also be applied to probabilistic data.

Search and ranking suggest a relationship to information
retrieval [19], but our work deals with structured data. Previous
work on top-k queries in database community [20] focuses on
different goals not related to making a database user-friendly.

Crowd-sourcing refers to a variety of approaches that
involve humans in the creation of data and the solution of
problems that are difficult for computers [21], [22]. Our goal
is to make it easier for non-technical users to access crowd-
sourced databases.

IX. CONCLUSIONS

Databases will only gain wide acceptance if they support
a broad spectrum of users, including non-technical ones, in
finding the information they are looking for. We focused on
scenarios where the user does not have a specific query in mind
and conditions for some of the attributes might be imprecise.
Our techniques help the user (1) quickly see which results
are the best answers to her query, (2) evaluate the risk of
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Fig. 9. Response time: Uncertainty=0

0 50 100 150 200
0

5

10

15

Number of Specified Attributes

Ti
m

e 
(s

)

 

 

Full Tree
Adaptive Tree

Fig. 10. Response time: Uncertainty=0.5
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Fig. 11. Response time: Uncertainty=1

specifying conditions she is not certain about, and (3) decide
which additional conditions to add.

This functionality relies on a probability-based framework,
which makes uncertainty explicit, and on adaptive probability
estimation techniques that can be tuned to deliver approximate
estimates for a given hard realtime limit on response time. The
main thrust of our future work is to identify other approaches
for fast and accurate probability estimation.
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