
The Model-Summary Problem and a Solution for

Trees

Biswanath Panda 1, Mirek Riedewald 2, Daniel Fink 3

1Google Inc., USA; bpanda@google.com
2College of Computer and Information Science, Northeastern University, USA; mirek@ccs.neu.edu

3Cornell Lab of Ornithology, USA; df36@cornell.edu

Abstract— Modern science is collecting massive amounts of
data from sensors, instruments, and through computer simula-
tion. It is widely believed that analysis of this data will hold the
key for future scientific breakthroughs. Unfortunately, deriving
knowledge from large high-dimensional scientific datasets is
difficult. One emerging answer is exploratory analysis using
data mining; but data mining models that accurately capture
natural processes tend to be very complex and are usually not
intelligible. Scientists therefore generate model summaries to find
the most important patterns learned by the model. We formalize
the model-summary problem and introduce it as a novel problem
to the database community. Generating model summaries creates
serious data management challenges: Scientists usually want to
analyze patterns in different “slices” and “dices” of the data
space, comparing the effects of various input variables on the
output. We propose novel techniques for efficiently generating
such summaries for the popular class of tree-based models. Our
techniques leverage workload structure on multiple levels. We
also propose a scalable implementation of our techniques in
MapReduce. For both sequential and parallel implementation,
we achieve speedups of one or more orders of magnitude over
the naive algorithm, while guaranteeing the exact same results.

I. INTRODUCTION

Across many scientific disciplines, the availability of very

large amounts of data is creating a paradigm shift. This is

usually referred to as data-driven science or eScience. The

National Science Foundation (NSF) in the US has made

data-driven science one of its funding priorities, and there

are similar efforts world-wide. In its 2007 report, the NSF

Cyberinfrastructure Council stated that “. . . U.S. international

leadership in science and engineering will increasingly depend

upon our ability to leverage this reservoir of scientific data

captured in digital form, and to transform these data into in-

formation and knowledge aided by sophisticated data mining,

integration, analysis and visualization tools.”

Data management skills are needed to solve many of

the grand challenges in data-driven science. However, these

problems have not received adequate attention in the database

community. In this paper we introduce the model-summary

computation problem, a challenging general problem from

data-driven science. We show solutions for a popular instance

of the problem, and point out various future challenges. To

illustrate the problem, consider the following example from

bird ecology.

Ornithologists and conservation biologists try to identify

large-scale threats to sensitive bird species such as climate

Fig. 1. Typical data-intensive science workflow

change or land use change associated with human population

expansion. To do this, they need to explore the complex

and highly dynamic ecology of bird populations across huge

geographic extents. The traditional approach of having experts

come up with a hypothesis and then design an experiment to

collect the data for testing this hypothesis requires a sufficient

understanding of the studied phenomenon. And due to the high

cost of collecting data from a carefully designed experiment,

it is limited to the study of few variables at small scale.

Instead, the bird ecology community, like many other

domain sciences, is shifting focus to the analysis of non-

experimental, or what we call “observational”, data that can

be more efficiently collected across large spatial and tem-

poral scales [1]. Figure 1 shows the corresponding work-

flow. For example, the Cornell Lab of Ornithology and

dozens of partner organizations are collecting millions of

bird sighting reports every year from various protocols (see

www.avianknowledge.net). These records are joined

based on time and location with other datasets, adding thou-

sands of attributes describing habitat, climate, census, eleva-

tion, and other features (synthesis step).

In the next step of the workflow, exploratory analysis

techniques are used to identify and describe the input attributes

that are most strongly associated with observed distributions of

birds. Understanding such statistical associations is essential

quantitative information, which provides the inspiration for

new hypotheses about the true causal relationships. Then

more traditional hypothesis-driven science can be carried out

through careful collection of additional data or through quasi-

experimental design approaches [2].

Exploratory analysis begins by training prediction models.

These models are then analyzed as an approximation of the

underlying real process that generated the data [3], [4]. Non-

parametric data mining models like tree-based ensembles,

SVM’s, and artificial neural nets (ANNs) are perfectly suited

for exploratory analysis. They are flexible enough to model

complex interactions between many variables and they can

handle large datasets. Even with little understanding of a

complex natural process, data mining techniques can generate

excellent models that have high predictive accuracy by “letting

the data speak for itself” and avoiding prior assumptions as

much as possible.

Although non-parametric models have great accuracy, they

tend to be very complex for all but the most trivial data

sets. This makes it difficult to directly discover associations

between input attributes and output. Even decision trees be-

come unintelligible once they have thousands of nodes. In

other words, the model behaves like a blackbox. Scientists

therefore compute low-dimensional summaries to extract and

visualize “what the model has learned.” All such summaries

are based on predictive “experiments”, calculated across a se-

ries of systematic, structured predictions from the exploratory

model. Most often, these analyses begin by investigating how

each attribute, in isolation, affects the output. More detailed

investigations deal with the joint effect of attribute sets, called

“interactions”. Importantly, the number of model evaluations

required increases dramatically when we investigate high-

order interactions. Thus, a thorough investigation of even

a relatively small analysis may require a huge number of

summaries, and hence model predictions, to be computed

to generate useful scientific knowledge. In fact, it is the

bottleneck of the workflow as described in Figure 1, dwarfing

other costs such as model training.

The final step in the workflow, confirmatory analysis, is

used to refine the results from exploratory analyses and

strengthen the basis for inference, e.g., by taking into account

the estimation error. In practice, error and confidence is

estimated with resampling techniques. This exacerbates the

computational bottleneck associated with summary generation.

This model-summary problem is not specific to bird ecol-

ogy. It is relevant to any scientific use of predictive modeling

or supervised learning. As programs like NSF’s DataNet are

poised to create massive repositories with petabytes of data

from many scientific disciplines, exploratory analysis as dis-

cussed here will become an indispensable tool, and achieving

scalability will be crucial.

In this paper we make the following contributions:

• We introduce the general model-summary computation

problem for complex data mining models and identify

common structure in the workloads for generating model

summaries. (Sections II and III)

• We argue that any solution has to be tailored to the

model type and propose algorithms that take advantage

of the workload structure for speeding up summary

computations in tree-based models, including state of the

art ensembles. (Sections IV, V and VI)

• We evaluate our algorithms using models built from real

world data and show impressive speedups in computing

large sets of summaries. (Section VII)

Section VIII discusses algorithm extensions, Section IX dis-

cusses related work, and Section X concludes the paper.

II. EXAMPLES

To illustrate the problem, we discuss a toy example and

then show how summaries are used in a real-world study. Both

examples are from bird ecology, but it is easy to see how they

generalize to other domains, e.g., analysis of medical records.

A. Toy Example

Assume a scientist has trained a model

F (Elev,Year,Hpop), which for a given combination of

elevation (e ∈ Elev), year (y ∈ Year), and human population

density (h ∈ Hpop) can accurately predict the probability of

observing some bird species of interest.1

Now the scientist would like to study how bird occurrence

is associated with Year by generating a plot like the right one

in Figure 2. In general, there is no perfect way of summarizing

a high-dimensional function with a lower-dimensional one.

Some information will inevitably be lost, no matter which

method we choose. However, all accepted methods follow the

same fundamental principle of experimental design: To study

the dependency of the output on a set of variables, one varies

only the values of these variables, while holding all other

variables constant. The two basic approaches for generating

a summary are:

Non-aggregate summaries: The most fine-grained way

of studying the effect of Year on bird occurrence is the

following. We pick a pair (e1, h1) ∈ Elev × Hpop and

then compute Fe1,h1
(Year) = F (e1,Year, h1). In par-

ticular, if we want to visualize the effect for the years

1994 to 2004, then we evaluate the model for points

(e1, 1994, h1), (e1, 1995, h1),. . . , (e1, 2004, h1). Hence the

summary consists of the 11 points (1994, F (e1, 1994, h1)),
(1995, F (e1, 1995, h1)),. . . , (2004, F (e1, 2004, h1)). We can

do the same for many different pairs (ei, hi) ∈ Elev×Hpop.

Aggregate summaries: Looking at Year-summaries for

many different elevation-human population pairs will give a

very detailed picture of the statistical association between

Year and bird occurrence. However, scientists usually prefer

to aggregate many of these summaries. Since the data is

high-dimensional, it tends to be sparse and hence aggregate

summaries are usually trusted more. And aggregating sum-

maries also reduces the amount of information that needs to

be examined.

An aggregate summary is produced by averaging multi-

ple non-aggregate summaries. In our example, for a set of

elevation-human population pairs {(ei, hi)}ni=1, the aggregate

1We slightly abuse notation by using the same symbol for both an attribute
name and the set of all values of this attribute, e.g., y ∈ Year means that y
is a value of attribute Year.

Fig. 2. Summaries of a complex bird occurrence prediction model.

summary is computed as 1
n

∑n

i=1 Fei,hi
(Year). Stated differ-

ently, for the year 1994, the function value in the summary is
1
n

∑n

i=1 F (ei, 1994, hi); similar for the other years.

Which type of summary (aggregate versus non-aggregate)

and for which pairs (ei, hi) to generate the summary on Year
is largely a function of the research questions of interest.

Visualizations (or plots) are a convenient way to present

summaries.

B. Real Example

Consider again the example from bird ecology where or-

nithologists would like to analyze bird observation records.

As mentioned earlier, by joining the observations with other

datasets about habitat, climate etc, each observation record is

described by thousands of attributes. Data mining techniques

can produce highly accurate models, but often these models are

unintelligible and do not reveal statistical associations directly.

To understand what the model has learned, scientists rely on

low-dimensional summaries like those discussed for the toy

example above. Partial dependence plots are one particularly

popular type of aggregate summaries [3], [5], [6], [7].

Figure 2 presents an example of two 1-dimensional partial

dependence plots. They show the estimated probability of oc-

currence of a bird species at feeders in some Bird Conservation

Region (BCR)2, for a selected summary attribute. The left plot

is for the Acorn Woodpecker in California, showing a drop in

the probability of Acorn Woodpecker occurrence as human

population density increases above 1,000 people per square

mile. It is hypothesized that habitat competition between the

woodpecker, which needs dead or dying branches to store

acorns, and humans who remove these branches could be

the cause for this decline. The plot on the right shows the

biennial winter irruptive migration of Common Redpoll into

New England, likely caused by biennial cycles of production

of tree seeds in Northern Canada. Interestingly, Purple Finch

shows a similar biennial pattern in BCR 14, but its highs and

lows are exactly the opposite compared to Common Redpoll.

This hints at a biological process driven by availability of

certain food sources and competition for similar habitat.

As the example indicates, interesting patterns could be

observed for various species, attributes, and regions. Scientists

therefore would like to search across many different species,

variables (attributes), and regions to see if there are any

2BCRs correspond to large geographical regions in North America.

interesting patterns like those in Figure 2. We are currently

working on a search engine for such model summaries. It

will enable scientists to express their preferences, e.g., to find

summaries showing a strong effect (measured as the difference

between max and min value in the summary), and then return

a ranked list of summaries according to these preferences.

However, to make such a pattern search engine useful, we

first have to create a large collection of these summaries.

Creating summaries is an expensive process, even for a

small dataset. Assume we have 1000 attributes that are poten-

tially interesting. Hence there are
(

1000
1

)

+
(

1000
2

)

≈ 500, 000
different 1- and 2-dimensional summaries. To produce a plot

like those in Figure 2, we need to evaluate the model for

sufficiently many values of the summary attribute (the one

on the x axis), at least 10. And each point in an aggregate

summary is obtained by appropriately averaging over many

combinations of data points, typically 1000 or more, to take

the average contribution of other variables into account. To

discover regional trends, not only for geographical regions,

but also for say certain elevation ranges, human population

ranges, or temperature ranges, this analysis is done for many

“slices” and “dices” of the data space, i.e., various selections

of the original data. At the very least, thousands of such

selections are typically explored. This results in a total of at

least 500, 000 ·10 ·1000 ·1000 = 5 ·1012 model evaluations. At

the optimistic estimate of 1 microsecond per evaluation, this

adds up to about 2 months of computation time.

For larger data, more complex models, and more ambitious

studies, we experienced that the naive method of creating sum-

maries is computationally infeasible. On top of that, scientists

cannot rely on studying a single model. Correlated attributes

distort the results and noise affects model structure. Hence

during confirmatory analysis, scientists explore how sum-

maries vary when different projections of the data are studied

(eliminating some of the correlated attributes), and different

samples are used for training the models. In short, without

dramatically speeding up summary computation, scientists are

limited to small-scale studies or poor approximations.

In theory summaries like those in Figure 2 could also be

obtained by training a model directly on the low-dimensional

space, i.e., a projection of the dataset on the attributes of

interest. However, this usually results in poor models and

hence low-quality summaries, because variables that do not

appear in the summary can still have a significant influence on

the output. Since these would be projected away, their effects

cannot be learned by the model.

III. THE MODEL-SUMMARY PROBLEM

A. Terminology

We will use the terms attribute and variable interchangeably

throughout the paper. Like in a database, an attribute describes

a property of a data record. At the same time, this attribute

corresponds to a variable in a statistical or data mining model.

We will refer to those attributes that the scientist wants to

visualize with a model summary as the summary attributes.

The remaining attributes in the model are the non-summary

attributes of this summary. In the toy example of a sum-

mary on Year, Year is the summary attribute, while Elev
and Hpop are the non-summary attributes. Similarly, if the

scientist wanted to study the combined effect of Year and

Hpop on bird occurrence, she would choose these two as the

summary attributes, while Elev would be the non-summary

attribute. The corresponding summary plot would show a two-

dimensional function surface.

We refer to the values of the summary attributes at which

the model is evaluated as the visualization points. In the right

summary in Figure 2 on Year, all year values between 1994

and 2004 were selected as the visualization points.

Let X = {X1, X2, . . . , X|X |} be a set of |X | attributes with

domains dom1, dom2,. . . , dom|X |, respectively. With D =
{x(1),x(2), . . . ,x(|D|)}, where all x(i) ∈ dom1 × dom2 ×
· · · × dom|X |, we denote a dataset from the input domain.

Let Y be the output with domain domy and let F : dom1 ×
dom2×· · ·×dom|X | → domy be a data mining model. Model

F maps |X |-dimensional vectors x = (x1, x2, . . . , x|X |) of

input attribute values to the corresponding output value F (x).

B. Problem Definition

We first formalize the notion of a summary and then define

the model summary problem.

Definition 1: Let X , F and D be as defined above and

let S ⊂ X and S̃ = X − S be the sets of summary and

non-summary attributes, respectively. Let VS ⊆
⊗

Xj∈S domj

denote the set of visualization points. The summary of F on

S and VS is defined as

(

xS , F̂S̃(xS)
)

|xS ∈ VS , F̂S̃(xS) =
1

|D|

|D|
∑

i=1

F (xS ,xS̃(i))

(1)

where xS̃(i) = πS̃(x(i)) is the projection of the i-th data

record in D on the attributes in S̃ .

Notice that for |D| = 1, we obtain a non-aggregate sum-

mary, while for |D| > 1 it would be an aggregate summary

(see Section II-A). Depending on the choice of points in

dataset D, aggregate summaries with different properties can

be generated. For example, if D is the set of data points that

was used for training model F , then the summary is called

a partial dependence function [5]. Another popular choice

for D is to use points from a regular grid of non-summary

attribute value combinations.

The different choices of D affect the summary properties,

but these are irrelevant from our point of view. Our techniques

support all variations of summary definitions. We can now

define the model-summary problem.

Definition 2: Let X , F and D be as defined above and let

P = {p1, p2, . . . , p|P |} be a set of summaries (“plots”). Each

summary pi, 1 ≤ i ≤ |P |, is defined by its set of summary

attributes pi.S ⊂ X and a set of visualization points pi.VS ⊆
⊗

Xj∈pi.S
domj . The model-summary computation problem is

to compute all summaries in P efficiently and to scale to large

problems.

Algorithm 1 : Naive Algorithm

Input: model F (X), summary attributes S, non-summary

attributes S̃ , dataset D, visualization points VS

1: for all vS ∈ VS do

2: sum = 0
3: for all x ∈ D do

4: sum = sum+ F (vS , πS̃(x))
5: return (vS , sum/|D|)

C. Summaries for Blackbox Models

The naive algorithm as outlined in Algorithm 1 computes a

single summary. It directly implements the summary definition

and it is the only algorithm currently available for this prob-

lem. (There is also an approximation algorithm for a restricted

version of the problem, which we discuss in Section IX.)

For each visualization point vS ∈ VS , the naive algorithm

iterates through all data points x ∈ D and evaluates the model

for each query point obtained by combining vS with the

appropriate projection of x on the non-summary attributes.

In our toy example for the Year summary with visualiza-

tion points 1994 to 2004 and data set {(ei, yi, hi)}ni=1, we

query the model with (e1, 1994, h1),. . . , (e1, 2004, h1), then

(e2, 1994, h2),. . . , (e2, 2004, h2), and so on.

In fact, if the model is a true blackbox, then the naive

algorithm is the only option: Even if two query points are

similar, their model predictions can be very different. Hence

one cannot obtain the exact model summary without actually

evaluating the model for each individual point. Even an

approximate algorithm would be problematic for a blackbox

model, because there is no way to establish a bound on the

similarity of predictions based on the similarity of the input

values, without actually generating the predictions.

Stated differently, any improvement over the naive algo-

rithm has to take advantage of the internal structure of

the data mining model.

D. Workload Properties

Since data mining models, though complex, are not true

blackboxes, there are opportunities for designing algorithms

with lower cost than the naive one. The following workload

properties can be exploited:

Repetitive structure among query points: Algorithm 1

evaluates the model for all query points in VS × πS̃(D), i.e.,

the cross product of the set of visualization points with the

S̃-projected set of data points. Hence for each vS ∈ VS , there

are |D| query points that all have the same value vector vS for

the summary attributes. Similarly, for each x ∈ D, there are

|VS | query points that all have the same value vector πS̃(x)
for the non-summary attributes. This creates a potential for

sharing computation across query points.

Aggregation: For a given visualization point vS , its summary

output is the average of the model predictions for all query

points in {vS} × πS̃(D). Rather than first computing each

individual prediction and then averaging them, aggregation

could be “pushed into the model”.

8

4

X2 X3

D
a

d

eb

c

8

4

1

2 5

7

X1

X1<5

X3<7X2<5

X1<3

2

Fig. 3. Example tree and dataset D

Inter-summary commonality: Multiple summaries for the

same model can have non-summary or summary attributes in

common. This provides additional opportunities for sharing

computation across summaries.

IV. SUMMARY COMPUTATION IN TREES

As discussed in Section III-C, we can only improve over

the naive algorithm if we work with the internal structure

of a model. In this paper we focus on tree-based models,

because they are among the most popular models in practice

for several reasons. First, trees can handle all attribute types

and missing values. Second, the split predicates in tree nodes

provide an explanation why the tree made a certain prediction

for a given input. Third, tree models like bagged trees, boosted

trees, Random Forests, and Groves are among the very best

prediction models for both classification and regression prob-

lems [8], [9]. Fourth, they are perfectly suited for explanatory

analysis because they work well with fairly little tuning. We

briefly introduce trees and show how to take advantage of their

structure to exploit the observations discussed in Section III-D.

The algorithms will be more formally introduced in Section V.

A. Tree Models

Classification and regression trees are some of the oldest and

most popular predictive models [10]. A tree model partitions

the data space recursively, attempting to achieve partitions

with high purity, low mean squared error, or similar goals.

Each non-leaf node in the tree splits the data space on some

attribute; the leaves contain predictions for points that fall into

the corresponding region of the data space.

Figure 3 shows an example tree for attributes X1, X2, and

X3. The root corresponds to the entire data space. It contains a

split predicate on X1 (X1 < 3). The root has two children. The

left child corresponds to the “half” of the data space containing

all records with X1 < 3, while the right child corresponds

to the other “half” of the data space with records satisfying

X1 ≥ 3. Partitioning continues recursively at the children,

who can divide their respective sub-spaces further by similarly

splitting on any attribute. The leaf predictions in the example

are some constants a, b, c, d, and e. Nodes can have more

than two children. In the rest of the paper, we will refer to a

node in a tree model as nde, and its children as nde.chld1,

nde.chld2 and so forth.

When making predictions for a point x, the tree is traversed

from the root. At each node, the split predicate is evaluated for

x. This evaluation, which we will refer to as nde.TestSplit(x)

in the rest of the paper, returns the appropriate child where

the traversal continues recursively until a leaf is reached. For

example, in the tree of Figure 3, if x = (1, 1, 2), then the

predicate evaluation at the root results in the traversal of the

left child (X2 < 5), after which the prediction a is returned.

Since trees are well-known, we omit a detailed discussion and

refer the reader to Breiman et al. [10].

Trees work well for all types of prediction problems, but

the predictive performance of single tree models usually is

not competitive with more recent machine learning tech-

niques. This disadvantage has been eliminated by ensemble

methods like bagged trees [11], boosted trees [12], Random

Forests [13], and Groves [8]. These ensembles consist of

many trees and make predictions by adding and/or averaging

predictions of all trees in the ensemble. Our techniques can

be applied to all these tree ensembles.

Many variations of trees have been proposed, including

some with multivariate splits (split predicates on more than one

variable) and with non-trivial prediction functions in the leaves

(rather than a constant value). With the advent of ensemble

methods, these more “exotic” trees are rarely used because

they (1) are much harder to train and (2) not necessarily

produce better models. Furthermore, even the simple ID3 tree

can represent any finite discrete-valued function [14]. For all

our algorithms, we will therefore focus on trees with univariate

splits and constant predictions in the leaves. In Section VIII

we outline how our algorithms can be extended to the more

complex tree types.

B. Sharing Computation

We show how to speed up computation by leveraging

tree structure together with the workload properties discussed

in Section III-D. We will focus on single trees; all ideas

extend to ensembles by applying them to each tree in the

ensemble individually. For ease of presentation, the techniques

are explained for a concrete example. The general algorithms

are discussed in Section V.

Short circuiting: Recall that to compute a summary, we have

to evaluate the model for all points in VS × πS̃(D). (Notice

that projection here returns a multi-set!) We can rewrite this

cross-product as
⋃

x(i)∈D VS×πS̃(x(i)). In VS×πS̃(x(i)), the

same set of non-summary attribute values, πS̃(x(i)), occurs

|VS | many times. To avoid duplicate computation, we can

“compress” the original tree for a given πS̃(x(i)) as follows.

Consider a tree node nde that splits on a non-summary

attribute X̃ ∈ S̃ . Since all query points in VS ×πS̃(x(i)) have

the same value πX̃(x(i)), the result of nde.TestSplit(x) will be

the same for all of them. Stated differently, whenever we reach

node nde during tree traversal for any point in VS ×πS̃(x(i)),
the traversal will continue with the same child every time. To

avoid repeated split predicate evaluations, we can hard-code

this traversal path with a short-circuit pointer. This pointer

connects the parent of nde directly to the appropriate child of

nde, effectively removing nde from the tree and pruning away

all other sub-trees of nde. Short-circuiting can be applied to

all tree nodes that split on non-summary attributes.

X1<5

d

eb

c

X1<3

a

d

eb

c

X1<3

a

X1<5

Fig. 4. Retained nodes for summary on X1 and single-point shortcircuit tree
for (X2,X3) = (7, 4)

To illustrate the idea, consider the example tree in Figure 3

and assume we want to compute a summary on S = {X1} for

dataset D, shown in the same figure. Now consider the set of

query points for the first point in D, (X1, X2, X3) = (2, 7, 4).
This set of query points is VX1

×{(7, 4)}. Predicates X2 < 5
and X3 < 7 will evaluate to false and true, respectively,

for each of these query points. Hence we can compress

the original tree to obtain the one shown on the right in

Figure 4. This compressed tree can now be traversed for every

visualization point x1 ∈ VX1
.

We will refer to such a tree as a single-point shortcircuit

tree, because it was created based on a single point from D.

For the other points in D, we obtain similar trees. For example,

for the last point (8, 1, 8), the single-point shortcircuit tree is a

stump, consisting of the node with predicate X1 < 3, pointing

directly to leaves a (left child) and e (right child).

Instead of short-circuiting a tree on the non-summary at-

tributes, one could alternatively short-circuit on the summary

attributes. However, in practice |S| ≪ |S̃|, because scientists

usually care about summaries for visualization (|S| = 1 or

|S| = 2). This implies that short-circuiting on non-summary

attributes will usually result in better tree compression.

Aggregating shortcircuit trees: Aggregate summaries are

computed using terms of the form 1
|D|

∑|D|
i=1 F (xS ,xS̃(i))

for each visualization point xS . With shortcircuit trees as

described above, we would run point xS through each of the

|D| single-point shortcircuit trees obtained for the points in D,

then compute the sum of the individual predictions. A much

faster algorithm for computing the same value is based on the

following observation.

For the sake of simplicity, we will continue the discussion

for the concrete example of a summary on X1. It is easy

to see how it generalizes. We can show formally that every

single-point shortcircuit tree for the summary on X1 satisfies

the following properties: (1) All nodes with split predicates on

non-summary attributes (X2 and X3) are effectively eliminated

(dotted nodes on the left side in Figure 4). (2) Some leaves

and some non-leaf nodes with split predicates on summary

attributes (X1) are retained, each connected directly through

a short-circuit pointer to its closest ancestor that splits on a

summary attribute. Stated differently, each shortcircuit tree for

the summary on X1 consists of a subset of the bold nodes as

marked on the left in Figure 4 and whenever a certain node nde

is retained in a single-point shortcircuit tree, it is connected

to the same ancestor node.

root.chld1.shckts={}

2c 2d

e2a+b

root

nde1

root.chld2.shckts={nde1}

X1<3

X1<5

root.chld2.res_pred=eroot.chld1.res_pred=2a+b

Fig. 5. Multi-point shortcircuit tree for running example

From these observations it follows that all shortcircuit trees

for a given summary can be equivalently represented by a

single tree whose nodes are a subset of the original tree’s nodes

(in particular its leaves and the nodes that split on summary

attributes). Nodes are connected through short-circuit pointers

such that each node is directly connected to its closest ancestor

that splits on a summary attribute. In addition, for each short-

circuit pointer there is a counter that indicates how many of the

individual shortcircuit trees contained this pointer. Traversing

this tree with a visualization point xS ∈ VS , we directly obtain
∑|D|

i=1 F (xS ,xS̃(i)) by returning the sum of the predictions of

all leaves reached, weighted by the count value of the short-

circuit pointer pointing to the leaf.

We will refer to this single tree that represents all |D| single-

point shortcircuit trees for a given summary as a multi-point

shortcircuit tree for this summary. As an optimization, we

replace a set of short-circuit pointers to leaves in the same

sub-tree by the corresponding weighted sum for this sub-tree

and store this sum directly in the tree node. Figure 5 shows

the corresponding multi-point shortcircuit tree for the running

example. For example, the node with predicate X1 < 3 would

have two left (“true” branch) short-circuit pointers, one to leaf

a with weight 2 (from the single-point trees for points (4, 2, 5)
and (8, 1, 8)) and one to leaf b with weight 1 (from the single-

point tree for point (2, 7, 4)). These are replaced by value 2a+b
in the node.

For convenience, in the rest of the paper whenever we

refer to a shortcircuit tree, unless mentioned otherwise, it

refers to a multi-point shortcircuit tree.

Inter summary structure: The techniques discussed so far

eliminate repetitive work in the computation of a single

summary. In the model-summary problem as introduced in

Section III, a scientist might request a large set of summaries,

P , for a given dataset D. In this case, any pair of summaries

{pi, pj} ∈ P can share computation on attributes in X −
{pi.S∪pj .S}. For example, for X = {X1, X2, . . . , X100}, the

summaries (X1, X2) and (X1, X3) can share computation on

attributes X4, . . . , X100. We share computation by generating

the multi-point shortcircuit trees for all summaries in a single

tree traversal.

Algorithm 2 : PointComputeOutput

Input: tree node nde, visualization point vS

1: chld = nde.TestSplit(vS)

2: sum = chld.res pred

3: for all nde′ ∈ chld.shckts do

4: sum = sum + PointComputeOutput(nde′,vS)

5: return sum

V. ALGORITHMS

We first introduce shortcircuit trees more formally and then

present algorithms for creating and querying such trees. For

ease of presentation, in the following discussion we will

assume that there are no missing values in the set D. Support

for missing values will be addressed in Section VIII.

A. Shortcircuit Tree Structure

Let T be a given tree for which we want to compute a

summary on S. The corresponding multi-point shortcircuit tree

is TS . Let nde be a node of T that splits on a summary

attribute. In TS this node maintains two types of information

about each subtree rooted at its children. Let chld be a

child of node nde. The first type of information is an array

of shortcircuit pointers, called shckts. Each pointer in this

array points to a node in the subtree rooted at chld with

the following properties: (1) the node splits on a summary

attribute and (2) none of the node’s ancestors that are also

descendants of node nde splits on a summary attribute. In

general, there can be 0 or more pointers in shckts, depending

on the tree structure. The second type of information for a

subtree rooted at chld is a residual prediction, called res pred,

which is the sum of the predictions for all points in πS̃(D) that

traversed this subtree and reached a leaf without encountering

a node that splits on a summary attribute. (See Figure 5 for

an example.)

If the root node of T splits on a non-summary attribute, then

TS̃ also has a new root node with the trivial split predicate

“true”. It maintains an array of shortcircuit pointers and a

residual prediction computed for the entire tree T, as explained

above for nodes that split on summary attributes.

For each visualization point xS , we compute
∑|D|

i=1 F (vS ,xS̃(i)) by traversing the shortcircuit tree

using Algorithm 2, starting the traversal at the root. The

algorithm determines the appropriate subtree by evaluating

the split predicate (line 1); it then recursively traverses all

shortcircuit pointers for this subtree. For all accessed nodes,

their residual predictions are added.

For a given set of summaries P , the corresponding shortcir-

cuit tree is equivalent to the set of per-summary shortcircuit

trees, but all of them merged together into a single structure.

More precisely, a node has not just a single (shckts, res pred)

pair. It now has an array of these entries, one array element

for every summary that contains the split attribute of the node

as a summary attribute.

Algorithm 3 : ShortCircuitTree

Input: tree T, summary set P , dataset D
1: Create new root node new root

2: for all x ∈ D do

3: new root.Update(ShortCircuitNode(T,P ,x))

4: return new root

Algorithm 4 : ShortCircuitNode

Input: tree node nde, set of active summaries Pnde, data

record x

1: if nde is a leaf then

2: for all p ∈ Pnde do

3: op[p] = 〈null, nde.prediction〉
4: else

5: P s
nde

= {p ∈ Pnde | nde.splitAttribute ∈ p.S}
6: for all children chld of node nde do

7: if chld == nde.TestSplit(x) then

8: /* Pass all summaries to the child for which the

node predicate is satisfied. */

9: op = ShortCircuitNode(chld,Pnde,x)

10: for all p ∈ P s
nde

do

11: chld [p].shckts.add(op[p].shckts)

12: chld [p].res pred.add(op[p].res pred)

13: op[p] = 〈nde, null〉
14: else /* Pass only summaries that have nde’s split attr.

as a summary attribute to all other children. */

15: optmp = ShortCircuitNode(chld,P s
nde

,x)

16: for all p ∈ P s
nde

do

17: chld [p].shckts.add(optmp [p].shckts)

18: chld [p].res pred.add(optmp [p].res pred)

19: return op

B. Generating Shortcircuit Trees

Algorithms 3 and 4 describe the pseudocode for generating

the multi-point shortcircuit trees for a set P of summaries. For

each record in D, they perform a single traversal of the tree

(instead of |P | traversals). During this traversal the pointer

structure and residual prediction values for all summaries in

P are generated. We first discuss Algorithm 4 which performs

operations at a single node nde in the tree.

To better understand Algorithm 4, let us for now assume

that P contains only a single summary on S. In this case the

output (called op in the pseudocode) is a single pair consisting

of a short-circuit pointer to a node in nde’s subtree (possibly

nde itself) and a prediction value. Exactly one of them is null.

Now let us examine how the output is computed.

If nde is a leaf, then the algorithm returns the node’s

prediction value and null for the pointer (lines 1–3). If nde

is not a leaf, there are two cases. Case 1: If nde splits on a

summary attribute, then we need to recursively traverse all its

children. For each child, this traversal returns either a short-

circuit pointer or a residual prediction value for this subtree

(if no node splitting on a summary attribute was accessed

in the subtree). The returned pointer or prediction value is

stored in nde.chld for the corresponding subtree. Since nde

splits on a summary attribute, its nearest ancestor that splits

on a summary attribute should point to it. Hence the algorithm

returns op as a pair containing a pointer to nde and null for

the residual prediction value. Case 2: If nde splits on a non-

summary attribute, then we only traverse that child for which

the split predicate evaluates to true (nde.TestSplit(x)). This

recursive call returns either a pointer or a residual prediction

as described before, but since nde splits on a non-summary

attribute, nde is conceptually deleted from the tree and hence

does not store any short-circuit pointers or residual predictions

itself. Instead, it returns what it received from its subtree to

its ancestor.

Algorithm 4 implements this procedure for an entire set of

summaries together during a single tree traversal. The set of

active summaries encodes the set of all summaries that reach

node nde. Notice also the branches in lines 9–13 and 15–18.

For the child that was selected by the split predicate evaluation,

all summaries that were active at nde remain active. For

the other children, only those summaries for which the split

attribute is a summary attribute will be active. Similarly, as

lines 10 and 16 indicate, we only update nde’s pointers and

residual prediction values for those summaries that contain

nde’s split attribute as a summary attribute. Line 13 ensures

that for these summaries, we return a short-circuit pointer to

nde to nde’s ancestors. For all other summaries, i.e., those

for which nde’s split attribute is a non-summary attribute,

the algorithm simply passes up the call chain the pointer or

residual prediction value it received from traversing the subtree

rooted at the child that was selected by the split predicate

evaluation.

Algorithm 3 calls Algorithm 4 for every point in D on the

root node of tree T with the active set of summaries set to P .

The return array op from the call to Algorithm 4 is used to

update the shortcircuit pointers and residual prediction for the

root of the shortcircuit tree for each summary in P (line 3 in

Algorithm 3).

C. Algorithm Analysis

Single summary computation. Let T be an ensemble of trees

and n(T) denote the total number of tree nodes in the ensem-

ble. The naive algorithm queries each tree in the ensemble for

each point in VS × πS̃(D). Its runtime is O(|VS | · |D| · n(T))
and it needs O(n(T)) space. With single-point shortcircuit

trees, for each point in D, we create a short-circuit tree with

a single traversal, then query the smaller tree. Hence total

computation time is O(|D| · n(T) + |VS | · |D| · n(T ′)), where

usually n(T ′) ≪ n(T). If a shortcircuit tree ensemble for

a single point is discarded before the next one is generated,

space cost is O(n(T) + n(T ′)) = O(n(T)).
A multi-point shortcircuit tree ensemble is constructed by

traversing T for each point in πS̃(D), then predictions are

made by running each point in VS through it. As we discussed

earlier, a multi-point shortcircuit tree cannot have more nodes

than the original tree, no matter how big D is. This results in

a total computation cost of O(|D| ·n(T)+ |VS | ·n(T ′)), where

usually n(T ′) ≪ n(T). This is a dramatic improvement over

the naive algorithm, essentially reducing cost by a factor in

the order of VS or |D|, depending on which term dominates.

Space cost is still low at O(n(T) + n(T ′)) = O(n(T)).
Multiple summaries. If |P | summaries are computed one-by-

one, the above costs are |P | times higher. When computing all

summaries together in a single tree traversal, the asymptotic

cost is the same. However, this algorithm evaluates node

predicates for each point in D exactly once. And for a point in

D, it makes all updates to short-circuit pointers and residual

predictions in one visit to a node. This results in significant

cost savings in practice.

Desirable properties. Our short-circuiting based algorithms

have several important properties. First, as points are added

to or deleted from data set D, it is easy to incrementally

maintain a multi-point shortcircuit tree. Algorithm 3 already

computes the tree with a single scan of D, hence when

adding a new point to D, we just call line 3 for this point.

Similarly, when deleting a point from D, we traverse the

original tree to determine which short-circuit pointers and

nodes are affected. Then we simply decrement the counter

values for these short-circuit pointers and reduce the residual

predictions in the nodes accordingly. Second, due to their

incremental maintainability and fixed space cost, independent

of |D|, multi-point shortcircuit trees are perfectly suited for

data stream applications, i.e., where data set D is streaming.

However, a change of the original tree model would require a

re-computation of the shortcircuit tree.

Third, by decomposing summary computation into multi-

point shortcircuit tree construction (does not need visualization

points VS) and faster prediction on that more compact tree

(only needs VS), our algorithms are ideal for the online

version of the summary computation problem. In that version,

scientists explore a summary interactively, presenting visual-

ization points on-the-fly.

VI. DISTRIBUTED COMPUTATION

To scale model-summary computation to realistic work-

loads, we have to parallelize both the construction and the

evaluation of shortcircuit trees. In this section we propose

algorithms that allow us to scale in all important input parame-

ters of summary computation: size of the dataset (|D|), number

of summaries (|P |), number of trees in the ensemble (|T |), and

number of visualization points (|VS |) per summary. Following

common practice, we say that our algorithm is (linearly)

scalable in a parameter, if we can achieve the following:

With c times the computing resources, we can process a c
times larger job (i.e., parameter scaled up by a factor of c)
without suffering a significantly higher response time. Based

on a careful evaluation of alternatives, we determined that

MapReduce [15] would be a perfect fit for parallelizing our

approach.

A. MapReduce Overview

The MapReduce framework can be used to implement

a two-phase distributed computation on a very large input

Algorithm 5 : GeneralizedMap

Input: P ′ ⊆ P , T ′ ⊆ T , D′ ⊆ D
1: for all T ∈ T ′ do

2: ShortCircuitTree(T, P ′, D′)

3: for all p ∈ P ′ do

4: for all vS ∈ p.VS do

5: sum =
∑

T∈T ′PointComputeOutput(T,vS)

6: Output((p, vS), (sum, id(T ′), |T ′|, id(D′), |D′|))

dataset, which we denote as I . The first phase, Map, parti-

tions I into a set of disjoint chunks. A user-specified map

function is then applied to each chunk in parallel by a set of

machines, called the mappers. The output of map is a set of

< key, value > pairs. The second phase, Reduce, works on

all the key-value pairs produced by the mappers. Conceptually,

these pairs are grouped by their key; then each group of values

is processed by a single reducer. This happens in parallel

on many reducer machines. The output produced by all the

reducers is the final output of the distributed computation.

B. Algorithms

There are three major inputs for our algorithm: P (set of

plots to be computed, including their visualization points), T
(set of tree models), and D (set of data points). Assume we

partition P into two subsets P1∪P2 = P , P1∩P2 = ∅; and we

similarly partition T into T1, T2 and D into D1 and D2. We

can run our algorithm on each input combination (Pi, Tj , Dk),
where i, j, k ∈ {1, 2} and then combine the individual outputs

into the corresponding output for (P, T , D).
In general, summary computation with shortcircuit trees

can be parallelized by partitioning each input set into smaller

subsets (“chunks”), then running our sequential algorithms on

each chunk combination, and finally combining the individual

outputs. However, the Map function of MapReduce is defined

as a one-tuple-at-a-time processor for a single input set. To

work around this limitation, we define a function General-

izedMap (Algorithm 5), which processes any combination

(P ′, T ′, D′), where P ′ ⊆ P , T ′ ⊆ T , and D′ ⊆ D.

When implementing GeneralizedMap with a Map function,

we choose the parameter we want the algorithm to scale in as

the Map input and load the other two inputs into each mapper

before executing the map function. For example, to scale in D,

the corresponding Map function would declare D as its input

(and hence the MapReduce runtime would assign a chunk of D
to each mapper node); and it would load the entire sets P and

T onto each mapper node. Through an appropriate Reducer

(Algorithm 6), the output of the MapReduce computation will

be the final summary outputs.

GeneralizedMap computes for each visualization point of

a summary in P ′ the total contribution that D′ and trees in

T ′ make to the summary output at that visualization point.

Each reduce function receives as key a (p,vS) combination

and as values a set of partial summary outputs computed over

subsets of T and D. The reduce function performs a simple

aggregation of this set to produce the final summary output

Algorithm 6 : Reduce

Input: Key = (p,vS), Values =

{(sum1, id1,1, |T ′
1 |, id1,2, |D

′
1|),

(sum2, id2,1, |T ′
2 |, id2,2, |D

′
2|),. . .}

1: AVG = ComputeAVG((sum1, id1,1, |T ′
1 |, id1,2, |D

′
1|),

(sum2, id2,1, |T ′
2 |, id2,2, |D

′
2|),. . .)

2: Output((p, vS), AVG)

for the (p,vS) combination. The logic for this computation is

encoded in the ComputeAVG function and depends on the

ensemble type. For a bagged tree ensemble, ComputeAVG

would first compute total data set size (|D|) and number of

trees in the ensemble (|T |) by adding the various |D′
i| and |T ′

i |.
The algorithm uses the data and ensemble chunk id’s to avoid

double-counting. (Hence these id’s have to be included in the

Map output.) Finally ComputeAVG simply adds all the sumi

values and then divides the total sum by |D| · |T |. For other

ensembles the computation is similar, e.g., based on weighted

sums for boosted trees and additive models like Groves.

VII. EXPERIMENTS

We compare the performance of our shortcircuit-tree based

algorithm against the only existing solution for the model-

summary problem—the naive algorithm. This comparison was

done on a single processor. Then we demonstrate the scalabil-

ity of the parallel version of our algorithm on a cluster.

We experimented with different datasets. Due to space con-

straints, we present results for a single real dataset from bird

ecology. These results are representative. In fact, the presented

results are for a comparably small dataset for several reasons.

(1) This demonstrates how expensive summary computation

is in practice, even for small data. (2) The larger the data, the

larger the models tend to be. Since our technique dramatically

reduces model size in the prediction phase, its performance

advantage over the naive algorithm increases with larger data.

(3) For the parallel algorithm, scalability is not affected by

larger input data.

We report results for a real bird ecology dataset

obtained from the Avian Knowledge Network

(www.avianknowledge.net), Project FeederWatch, that

was joined with datasets containing geographical features

of observation locations. It covers a geographical region

in North America and contains about 90,000 observation

records, described by 155 continuous attributes (e.g., time,

location, habitat features, climate, census features, elevation).

We use 60,000 records to train a model for predicting the

probability of observing the Dark-eyed Junco. The model is a

bagged tree model consisting of 10 trees and is trained using

the IND package [16] using the information gain splitting

criterion. Each tree in the ensemble had on average 10,300

non-leaf nodes. This was the best-performing tree-based

model trained on the data.

For our experiments, we use the entire 60,000 training

records as the D set in summary computations. The training

data had missing values on some attributes, which we filled

TABLE I

COMPUTATION TIME (SEC): SINGLE SUMMARY, FREQUENT ATTRIBUTES

|VS | Naive ShCkt

100 85.0 3.02 (= 2.96 + 0.06)

400 311.5 3.17 (= 2.97 + 0.20)

625 469.8 3.29 (= 2.96 + 0.33)

TABLE II

COMPUTATION TIME (SEC): SINGLE SUMMARY, INFREQUENT ATTRIBUTES

|VS | Naive ShCkt

100 84.8 2.1 (= 2.1 + 0.001)

400 324.5 2.1 (= 2.1 + 0.001)

625 462.7 2.1 (= 2.1 + 0.002)

in using values randomly selected from the attribute’s domain.

We verified that all leaves of the tree contained data points to

guard against degenerate cases. Not handling missing values

in the short-circuited trees is not an inherent limitation of our

approach, as discussed in Section VIII, just a limitation in our

current implementation. The choice of the actual D set does

not matter much, because our experiments are only aimed at

evaluating the speedups we obtain in summary computations.

A. Single Machine Experiments

Our algorithms are implemented in Java and the experiments

reported in this section were run on a Linux machine with a

2.66GHz processor and a JVM heap size of 3GB. All reported

times are in seconds. Standard deviations in the reported times

were negligible and hence are not reported.

Naive vs. short-circuiting: We begin our evaluation by

comparing the benefits of the short-circuiting algorithm (Sec-

tion V) over the naive algorithm (Section III-C). The first

summary, which we refer to as the frequent attributes sum-

mary, is on a pair of attributes that are frequently used as

split attributes in the ensemble (Table I), at a total of 23%

of all nodes (12% and 11% for the first and second summary

attribute, respectively). The second summary is on a pair of

attributes used infrequently in the ensemble (Table II), together

accounting for less than 1% of the splits. The tables report

the time taken to compute a single summary for the naive

algorithm (Naive) and the short-circuiting algorithm (ShCkt).

For short-circuiting we break total cost down into time for

generating the shortcircuit trees and time for querying these

trees and generating the summary outputs. In both cases, our

algorithm achieves significant speedup, between 30 times and

more than 200 times. The speedup increases with the number

of visualization points. As the cost breakdown shows, the cost

of generating the shortcircuit trees remains constant, while the

cost for querying the trees grows linearly with the size of

VS . As expected, for the infrequent attribute case, the trees

are compressed more and hence the model evaluation time

on the shortcircuit trees is almost zero (Table II). Notice

that shortcircuit tree construction is slightly more expensive

in the frequent attribute case. This is due to the fact that

the shortcircuiting algorithm only needs to traverse a single

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of summaries

OneByOne
MultipleSummary

Fig. 6. Multiple Summaries

subtree at nodes that split on non-summary attributes, while it

has to traverse both subtrees for nodes splitting on summary

attributes. In the frequent attribute case there are many more

nodes that split on summary attributes. Small differences in

the runtime of the naive algorithm for the same number of

visualization points are caused by the fact that the query points

are different and the trees are not balanced.

Multiple Summaries: The last experiment in this section

measures the benefits of generating the shortcircuit trees for a

set of summaries together (MultipleSummary) rather than one

summary at a time (OneByOne). Summary workloads were

generated by sampling randomly from the set of all possible

one- and two-dimensional summaries over the attributes used

by the trees in the ensemble as split attributes. Figure 6 shows

that generating shortcircuit trees for multiple plots together is

up to 10 times faster than generating them one summary at a

time. Stated differently, on top of the 20-200 times speedup for

single summary computation, our algorithm achieves another

order of magnitude or more improvement over the naive

algorithm for workloads with multiple summaries.

B. Distributing Summary Computation

In this section we evaluate how the MapReduce algorithms

proposed in Section VI scale in the different input parameters

of summary computations. The experiments were run on

a cluster with 20 machines. Each machine in the cluster

had a 2.66Ghz processor and 8GB RAM and the cluster

was running Hadoop v0.18, the open source implementation

of MapReduce configured with all the default settings (see

hadoop.apache.org). All times in this section are job

completion times as reported by the Hadoop framework and

include all costs such as job setup and teardown times.

Deviations in the measured times were small and hence not

reported.

Recall that while GeneralizedMap can work on any subset

P ′ ×D′ × T ′ of the P ×D× T input parameter space, Map

only allows a single input file. To scale in a certain parameter,

we declare it as the Map input and let the MapReduce system

partition the space along this parameter; we do not partition

along the other parameters. For example, to scale in D, D is

the input to Map and hence each mapper works on chunks

P ×D′ × T , where D′ ⊆ D.

Figures 7, 8 and 9 show how the MapReduce algorithm

scales in D, P , and T respectively. (The graph for scalability

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20

T
im

e
 i
n

 s
e

c
o

n
d

s

Scaling Factor for D

Single
Distributed

Fig. 7. Scaling in |D|

 0

 50

 100

 150

 200

 0 100 200 300 400 500

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of summaries

Single
Distributed

Fig. 8. Scaling in |P |

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of trees

Single
Distributed

Fig. 9. Scaling in |T |

in |VS | looks virtually the same, and hence is omitted.)

For Figure 7 we fixed the number of summaries at 1 (the

frequent attributes summary) with 900 visualization points.

The model is the same 10-tree ensemble as before. The number

of reducers was set to 1. We then computed the summary

for D of varying size. The larger datasets were generated by

simply replicating the D set used in the previous section. This

ensures that as the datasets are scaled up, access patterns in

the tree remain the same and any increase in cost is only due

to processing additional data points. The scaling factor is the

size multiplier for D. Line Single shows job completion time

when the entire computation is done on a single mapper, for

the Distributed graph, we increased the number of mappers in

proportion to the scaling factor of the dataset. As we can see,

response time remains approximately constant with increasing

|D|, showing that the framework scales well in D.

For Figure 8, we fixed the dataset D to the usual 60,000

points, used the same 10-tree ensemble, and fixed the number

of visualization points at 900. The number of summaries is

varied from 20 to 400 (scaling factor 1 to 20). Notice that when

partitioning on P , each mapper works on a subset of P , but

the entire D and T . Hence we do not need a reduce phase and

the number of reducers was set to 0. We use the same method

as described above for generating summary workloads.

Figure 9 reports scalability in the size of the ensemble. We

fixed the number of summaries to 1 (the frequent attributes

summary) with 900 visualization points, and used the usual

dataset of 60,000 points. Like the experiment for scaling in

D, the number of reducers was set to 1.

VIII. EXTENSIONS

For the sake of clarity, we made a few simplifying assump-

tions in previous sections. Our algorithms generalize naturally

and can be extended with additional functionality, as we briefly

discuss in this section.

Confidence Intervals: For aggregate summaries, scientists are

also interested in obtaining the standard deviation. This can be

supported by not only maintaining sums of residual predictions

for each child of a node, but also the sum of squares of these

residual predictions.

Missing Values: Trees can handle missing values in a query

point gracefully by sending partial weights down each sub-tree

of a node that splits on an attribute whose value is missing;

then computing the weighted average of the corresponding

leaves. Our algorithms, which were described for the case that

there are no missing values in D, can be extended to support

this behavior. We extend Algorithm 4 by associating a weight

with each active summary at a node. At the root all weights are

1. When line 7 in Algorithm 4 fails because x is missing the

value for the split attribute, all children are recursively visited

with Pnde as the active set. However, when visiting a child

chld, the weight for a summary p ∈ Pnde−P s
nde

is modified to

the current weight of p times the fraction of training cases that

went into the subtree of chld. Line 3 returns the prediction in

the leaf multiplied with the weight of the summary. Also note

that op[p].shckts could now contain multiple node pointers and

not just one.

Complex Trees: Our approach also generalizes to tree types

with multivariate splits at non-leaf nodes and non-trivial

functions as leaf predictions. For these trees, the prediction

made by a leaf and the predicate evaluation at a non-leaf

node may require the values of both the visualization point

and some non-summary attributes. This means that the multi-

point shortcircuit tree is not guaranteed any more to have only

a subset of the nodes of the original tree. In the worst case

it degenerates to the equivalent of all single-point shortcircuit

trees, which still represents a significant improvement over the

naive algorithm. (Time and space complexity of the algorithm

would in the worst case be that of the single-point shortcircuit

algorithm.) The multisummary optimization can also still be

applied.

IX. RELATED WORK

Several papers discuss partial dependence plots [5], [7] for

summarization of complex models. Friedman [5] proposes

a technique for computing approximate partial dependence

plots in tree models. This method gives no approximation

quality guarantees (a major limitation for use by scientists),

it produces accurate summaries only when strong indepen-

dence assumptions hold, it is limited to partial dependence

summaries, and it does not support summary computation in

“slices” and “dices” of the data space without generating a new

model. Our focus is on efficiently computing the exact same

summaries as the naive algorithm for all types of summaries

and all possible data partitions, no matter what the attribute

distribution.

Our work is motivated by OLAP [17], but OLAP techniques

cannot be directly applied because our main bottleneck is the

evaluation cost of a model. Prediction cubes [18] focus on

efficiently (and often approximately) computing predictions of

a model for a large region of the data space from many models

covering smaller partitions of this region. This approach is

problematic for sparse high-dimensional data and it is in some

sense the dual of computing region-based summaries for a

“large” model.

Other model summary types like dependence diagrams [19]

were recently proposed, but data mining research usually

concentrates on improving prediction quality [11], [12], [13] or

on scalable algorithms for training tree models from large data

sets [20]. In general, little work has been done to address the

performance issues that arise when using complex data mining

models for making predictions. Bucila et al. [21] propose

model compression to reduce model size and computational

cost for making predictions. Model prediction time has also

been studied in the context of scientific simulations [22].

However, in both cases the original model is approximated,

and elimination of redundant computation for summaries is not

considered. Our approach is orthogonal in the sense that one

could speed up summary computation for such approximate

models further by eliminating redundant computation.

The database community has started to explore efficient

data management for models [23], [4], but has not considered

summary computation from complex models. Sen et al. [24]

show how to exploit shared correlations to reduce the cost

of inference on probabilistic graphical models. Their work

is superficially related, having the same high-level theme of

exploiting workload structure to improve query performance.

Multi-query optimization has been studied in many different

contexts like relational databases [25] and stream process-

ing [26]. While our algorithms have a similar theme of sharing

computation, the structural properties that we exploit are very

different.

X. CONCLUSIONS AND FUTURE WORK

We introduced a new data management problem that arises

during the analysis of observational data in many domains. We

identified various types of structure in summary computation

workloads and showed how to exploit it to speed up model-

summary computations in tree-based models. Our algorithms

produce the exact same results as the naive approach, but

are several orders of magnitude faster. Tree-based models are

widely used and our algorithms support all types of common

model summaries, hence the algorithms in this paper are

widely applicable in practice.

There are many directions for future work. First, since

algorithms have to be model-specific, new techniques need to

be developed for other complex data mining models. Second,

scientists need automatic techniques for selecting visualization

points that capture all interesting features of a summary. Third,

summary computation cost can be further reduced through

approximation, but it is only useful to scientists if such

techniques provide confidence bounds.

ACKNOWLEDGMENT

This research was supported by the National Science

Foundation (NSF) under award 0920869. Additional support

came from the Leon Levy Foundation and the NSF (awards

0427914, 0542868, 0612031, 0734857, 0832782). Any opin-

ions, findings, and conclusions or recommendations expressed

in this publication are those of the author(s) and do not

necessarily reflect the views of the sponsors.

We would like to thank the reviewers and the Avian Knowl-

edge Network team, in particular Wesley Hochachka, Steve

Kelling, Art Munson, and Giles Hooker for their contributions.

REFERENCES

[1] S. Kelling, W. M. Hochachka, D. Fink, M. Riedewald, R. Caruana,
G. Ballard, and G. Hooker, “Data intensive science: A new paradigm
for biodiversity studies,” BioScience, vol. 57, no. 7, pp. 613–620, 2009.

[2] D. Jensen, A. S. Fast, B. J. Taylor, and M. E. Maier, “Automatic identifi-
cation of quasi-experimental designs for discovering causal knowledge,”
in KDD, 2008, pp. 372–380.

[3] W. M. Hochachka et al., “Data-mining discovery of pattern and process
in ecological systems,” Journal of Wildlife Management, vol. 71(7), pp.
2427–2437, 2006.

[4] A. Thiagarajan and S. Madden, “Querying continuous functions in a
database system,” in SIGMOD, 2008, pp. 791–804.

[5] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, pp. 1189–1232, 2001.

[6] G. Hooker, Diagnostics and extrapolation in machine learning. PhD
thesis, Stanford University, 2004.

[7] O. Linton and J. P. Nielsen, “A kernel method of estimating structured
nonparametric regression based on marginal integration,” Biometrika,
vol. 82(1), pp. 93–100, 1995.

[8] D. Sorokina, R. Caruana, and M. Riedewald, “Additive groves of
regression trees,” in Proc. ECML, 2007, pp. 323–334.

[9] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proc ICML, 2006, pp. 161–168.

[10] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and

regression trees. McGraw-Hill, 2000.
[11] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–

140, 1996.
[12] R. Schapire, The boosting approach to machine learning: An overview.

MSRI Workshop on Nonlinear Estimation and Classification, 2001.
[13] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,

2001.
[14] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[15] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[16] W. Buntine and R. Caruana, Introduction to ind and recursive parti-

tioning. Technical Report FIA-91-28, NASA Ames Research Center,
1991.

[17] S. Chaudhuri and U. Dayal, “An overview of data warehousing and
OLAP technology,” SIGMOD Record, vol. 26, no. 1, pp. 65–74, 1997.

[18] B. Chen, L. Chen, Y. Lin, and R. Ramakrishnan, “Prediction cubes,” in
VLDB, 2005, pp. 982–993.

[19] K. Karimi and H. J. Hamilton, “Using dependence diagrams to summa-
rize decision rule sets,” in Advances in AI, vol. 5032, 2008, pp. 163–172.

[20] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh, “BOAT-optimistic
decision tree construction,” in Proc. SIGMOD, 1999, pp. 169–180.

[21] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proc. SIGKDD, 2006, pp. 535–541.

[22] B. Panda, M. Riedewald, J. Gehrke, and S. B. Pope, “High-speed
function approximation.” in Proc. ICDM, 2007, pp. 613–618.

[23] A. Deshpande and S. Madden, “Mauvedb: Supporting model-based user
views in database systems,” in SIGMOD, 2006, pp. 73–84.

[24] P. Sen, A. Deshpande, and L. Getoor, “Exploiting shared correlations in
probabilistic databases,” PVLDB, vol. 1, no. 1, pp. 809–820, 2008.

[25] T. K. Sellis, “Multiple-query optimization,” ACM TODS, vol. 13(1), pp.
23–52, 1988.

[26] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M. White,
“Towards expressive publish/subscribe systems.” in EDBT, 2006, pp.
627–644.

