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ABSTRACT
The Cornell Laboratory of Ornithology’s mission is to in-
terpret and conserve the earth’s biological diversity through
research, education, and citizen science focused on birds.
Over the years, the Lab has accumulated one of the largest
and longest-running collections of environmental data sets
in existence. The data sets are not only large, but also have
many attributes, contain many missing values, and poten-
tially are very noisy. The ecologists are interested in identi-
fying which features have the strongest effect on the distri-
bution and abundance of bird species as well as describing
the forms of these relationships. We show how data min-
ing can be successfully applied, enabling the ecologists to
discover unanticipated relationships. We compare a variety
of methods for measuring attribute importance with respect
to the probability of a bird being observed at a feeder and
present initial results for the impact of important attributes
on bird prevalence.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—data mining, scien-
tific databases

General Terms: Experimentation

Keywords: Attribute importance, bagging, decision trees,
model inspection, partial dependence function, sensitivity
analysis

1. INTRODUCTION
Ecology is fundamentally the science of understanding the

distribution and abundance of organisms. Ecologists inter-
ested in efficient environmental manipulation for conserva-
tion and management of wild birds have two general needs:
(1) to be able to accurately predict where a species is and
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is not found; and (2) to understand the causes of presence
and absence of a species. Within ecology, the conventional
paradigm for analyzing data and gaining insights has been
the formulation and testing of a small set of statistical mod-
els that are assumed, based on expert opinion, to be the
most likely descriptions of the biological processes at work.

This conventional paradigm is now becoming unwork-
able, overwhelmed by increasingly available large ornitho-
logical data sets with many potentially important features
(e.g., geographic data sets based on satellite imagery). One
example of this is the Avian Knowledge Network (AKN,
http://avianknowledge.net), a group of university, gov-
ernmental, and non-governmental ornithological organiza-
tions that are combining their existing databases of bird
distribution information. Currently, over 25 million bird ob-
servation records exist in the AKN’s data warehouse, each
record associated with data on over 200 environmental fea-
tures, not even counting the additional geographic data.
This volume of data requires new scalable analytical tools
that provide ecologists with initial insights (hypotheses) to
be subsequently examined in greater detail.

For this, ecologists need to identify features that are
strongly associated with interesting patterns of species’ oc-
currence and visualize their effects. The two main challenges
addressed in this paper are (1) to develop and evaluate prac-
tical strategies for automatically identifying subsets of im-
portant features, and (2) to visualize the effects of important
features.

Our analytical tools need to deal with several data quality
challenges, including missing data, observer-specific biases,
biases inherent in each of the multiple data-collection proto-
cols, and potentially high inter-correlation among features.
The tools must not only be able to accurately predict birds’
distributions, but also identify a potentially limited sub-set
of features that are important in predicting distributions
of birds. Empirical experience from other ecological studies
suggests that only a small number of environmental features
will likely have large impact on the distribution and abun-
dance of each bird species.

In this paper, we report on our initial steps in using data
mining to explore the AKN data. To eliminate protocol bias,
we are limiting ourselves to data collected under a single col-
lection protocol, examining only data on presence/absence
of species. We make the following contributions:

• We describe the data set, illustrate the kind of results
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in which the ecologists are interested, and point out
practical challenges (Section 2).

• We present several very fast heuristics for extracting
the most important attributes from a bagged decision
tree ensemble by analyzing the structure of the trees.
The surprising result is that these different methods
produce almost identical rankings of the top-20 at-
tributes and also agree with a far more expensive al-
gorithm for sensitivity analysis (Section 3).

• We present results that the ecologists found useful
(Section 4).

Section 5 contains our conclusions and future directions.

2. PROBLEM DESCRIPTION AND
CHALLENGES

2.1 Description of the Data
The data examined come from Project FeederWatch

(PFW, http://birds.cornell.edu/pfw), a winter-long
survey of North American birds observed at bird feeders.
PFW has been running since the winter of 1987-88, and as
of March 2005 had over 1 million submissions, which report
a total of 11.7 million bird sightings. Participants report all
observed species; therefore the data also imply the absence
of all species that were not reported. For the 100 most in-
teresting species, this adds about 90 million “bird absence”
records to the data set.

Each PFW location and submission is described by mul-
tiple attributes, which are provided by project participants.
These attributes can be roughly grouped into features re-
lated to observer effort, weather during the observation pe-
riod, and attractiveness of the location and neighborhood
area for birds. The observer-provided attributes were sup-
plemented with several hundred additional descriptions of
the environment that came from a variety of geographic data
sets, e.g., the U.S. Census Bureau’s 2000 census (human im-
pact), the USGS National Elevation Dataset, the USGS Na-
tional Landcover Dataset, and various descriptions of local
climatic conditions (e.g., monthly snow depths, wind speed,
temperature) from the National Climatic Data Center’s Cli-
mate Atlas of the United States.

After data were screened to exclude those observation
records that were improperly submitted, or did not have suf-
ficient fields to be included in the analysis, a total of about
800,000 observation records with 197 interesting attributes
were available for analysis. Recall that each record indicates
the presence of a set of species and implies the absence of all
other species. Hence for each bird species there are 800,000
records about its presence or absence, constituting a mas-
sive amount of information about bird occurrence. These
records still included a considerable fraction of fields where
the participant-reported attributes were missing.

Because of the ecologists’ expectation that species’ pop-
ulation trends and the most important influences on any
species’ distribution will vary across the continent, we sub-
divided the continent into ecologically-relevant units, us-
ing 37 existing Bird Conservation Regions (BCRs; see
http://www.nabci-us.org/map.html). There are 600+
BCR-species pairs with sufficient data for a data mining
analysis. In this paper we limit our attention to the sim-
pler, but nevertheless very challenging, problem of analyz-
ing data from nine BCR-species pairs; specifically we ana-
lyze the American Goldfinch, Dark-eyed Junco, and House

Finch in BCR’s 5, 22, and 30. Due to space constraints,
however, we only present results for House Finch in BCR 30
(the U.S. Atlantic coastal plain region from southern-most
Maine to northern-most Virginia); the high-level conclusions
hold for the other 8 pairs. BCR 30 has 92,514 observations,
during which the House Finch is present 55,860 times.

2.2 Desired Results and Challenges
In Section 1, we noted the ecologists’ primary goals of pre-

dicting and understanding the causes of bird species’ distri-
butions and abundances. Motivated by this first ecological
goal, one facet of our work has focused on providing pre-
cise predictions of changing presence of feeder birds both
within a winter, and across years. Motivated by the ecolo-
gist’s second goal, we have explored multiple techniques for
identifying a small number of attributes, from the larger-
dimensional attribute set, that together have the most im-
portant role in predicting bird’s presence or absence.

Data mining tools are well suited for the exploratory anal-
ysis of species occurrence in space and time. For exam-
ple, the yearseason graph in Figure 5 illustrates how data
mining analysis can produce summaries of changing distri-
bution, in this instance showing the inter-annual trend in
presence of House Finches at feeders, after accounting for
the effects of all other features. (See analysis details in Sec-
tion 4.) A steep, disease-induced decline in House Finch
occurrence clearly emerges from our analysis.

Conventional ecological analyses of species occurrence
based on statistical techniques (e.g., Generalized Linear
Models [13]) can detect changes in occurrence and identify
important subsets of variables. However, these techniques
require expert training and tuning, especially when there
are complications like missing data, the need to fit non-
linear effects, and potentially many interactions. These chal-
lenges quickly overwhelm standard techniques when faced
with large sample sizes and large numbers of attributes.

Data mining tools offer better flexibility and near au-
tomatic application compared to standard statistical tech-
niques. Many data mining methods scale to large sample
sizes and large numbers of attributes. Decision trees are par-
ticularly well suited to dealing with missing data. Yet, there
has been little emphasis to date on extracting information
about variable importance from these predictive models.

Approaches that rely on comparisons of the predicted
probability surface tend to be conceptually simple but com-
putationally expensive. The essential problem is that com-
paring predicted probabilities as a function of any single
focal attribute, such as in Figure 5, requires enough pre-
dictions at each value of the focal attribute to effectively
marginalize over the effects of all other attributes (see also
discussion in Section 4). The number of predictions nec-
essary for this marginalization step increases dramatically
with the number of attributes, quickly becoming infeasible.
The problem is further compounded when interactions are
considered for pairs and tuples of attributes.

We therefore need a fast heuristic approach to identifying
sets of important attributes that enables ecologists to later
refine and investigate the effect of important attributes. Our
approach focuses on mining the structure inherent in the
predictive models. Then interaction plots are produced to
visualize the effects of important attributes. We describe
our approaches and compare them in the following section.
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3. BUILDING AND ANALYZING MODELS
Our general approach is to first build highly accurate non-

parametric models that capture the relationships between
attributes. Then we determine important attributes by an-
alyzing the model. For the analysis we selected bagged deci-
sion trees as our model of choice [2, 1], because trees can cap-
ture non-linear relationships and they handle missing values
gracefully. In recent work it has been shown that bagged
trees are competitive with the best available learning meth-
ods [5, 14]. Decision trees provide the added benefit of being
intelligible. The tree structure reveals valuable information
about attribute importance based on which attributes the
tree selects for splits.

We have examined and compared several approaches to
measuring variable importance. One of these methods is a
“black box” method; i.e., it examines only the inputs and
outputs of the model and does not depend on the structure of
the model itself and therefore can be applied to any classifier.
The other methods are “white box” techniques that analyze
the structure of individual trees in an ensemble.

In the following sections we discuss these methods and
compare their results. For all experiments the tree ensemble
consists of 100 ID3 trees1, built using the IND package [4].
The data sets are partitioned into roughly 2/3 training and
1/3 testing. Building the entire ensemble on a single pro-
cessor modern PC (3.6 GHz, 1 GB RAM) takes about 2
hours.

3.1 Black Box Approach: Sensitivity Analysis
We use Breiman’s sensitivity analysis technique [3] to as-

sess the importance of a feature while treating the learned
model as a black box (this method is related to randomiza-
tion and permutation tests used in statistics [12]). The idea
is to compare the performance of the model on a test set
before and after noise is added to the target feature.

To measure the importance of feature A, all A-values
are shuffled, essentially permuting the original vector of A-
values (when viewing the data set as a matrix whose rows are
the different observation records and columns correspond to
the different features). If the attribute is important, perfor-
mance should drop on the perturbed test data set compared
to the real one, because the model relies on the spoiled val-
ues when making predictions.

There are many different measures of model performance.
For our sensitivity analysis, we selected a diverse set of com-
monly used measures to avoid measure-related bias. In par-
ticular, we based the importance rankings on three different
metrics: accuracy (ACC), root mean squared error (RMS),
and ROC area [15] (ROC). The performance was measured
on a separate test set, i.e., none of the test records was used
for training the bagged trees.

Table 1 shows the feature sensitivity results for the House
Finch in BCR 30, sorted by RMS. An entry in the table
reports the relative loss in performance between the real and
perturbed test data set. For example, let x be the model’s
accuracy on the real test data, and y be its accuracy after
permuting the latitude values. The relative loss for latitude
is (x−y)/x. Relative loss for RMS is computed as (y−x)/x
since lower RMS scores indicate better performance.

Sensitivity analysis is a relatively fast method for estimat-

1Experiments with other tree types indicated that the choice
of tree had fairly little effect on the ensemble performance.

attribute ACC RMS ROC
latitude 0.079 0.15 0.070
longitude 0.0056 0.045 0.014
numfeeders hanging 0.012 0.034 0.013
halfdays 0.013 0.034 0.015
yearseason 0.012 0.032 0.014
dayselapsed 0.016 0.030 0.014
numfeeders thistle 0.0098 0.022 0.0095
ave fam sz 0.0016 0.011 0.0040
effort hrs atleast 0.0030 0.010 0.0045
asian 0.0014 0.0091 0.0030
elev ned 0.00023 0.0067 0.0024
evgr trees atleast 0.00072 0.0050 0.0017
numfeeders suet 0.00045 0.0048 0.0016
gcsnow2912 8.5E-05 0.0045 0.0015
pop00 sqmi 8.5E-05 0.0041 0.0012
vacant 0.00048 0.0037 0.0011
count area size 0.00016 0.0037 0.0012
other -0.00063 0.0035 0.0011
elev gt30 0.00012 0.0032 0.0010
ave hh sz -0.00093 0.0030 9.8E-4

Table 1: Top-20 attributes for sensitivity analysis,
sorted by RMS

ing variable importance. Once the model is trained, we only
need to evaluate its performance for different perturbed test
data sets, one for each attribute. This is much faster than
the costly approach of re-training models for different sets
of attributes, as required for feature selection methods [10,
11, 8]. Nevertheless, for large high-dimensional data sets
like PFW, even sensitivity analysis requires considerable re-
sources: evaluating the sensitivity of a single feature using
the 32K test cases for BCR 30 takes about 4-5 minutes.
Using this approach for all 197 features of interest (or even
pairs or larger sets of features) and for all 600+ BCR-species
combinations requires access to expensive high-performance
computing resources. In the following section we propose
efficient heuristics to address this issue.

3.2 White Box Approach: Looking At Trees
The methods discussed in this section leverage the fact

that we are using ensembles of decision trees. We can in-
spect the learned trees to see which attributes have been
selected. Because selected attributes separate positive and
negative observations, they are clearly important predictors.
If an attribute is “important” for many of the trees in the
ensemble, then we have strong evidence of its overall im-
portance. The main challenge is defining a good measure
to quantify an attribute’s importance in a tree and in an
ensemble of bagged trees.

We have implemented several ranking methods that use
only the information about the tree structure and how a
training set is partitioned by the different trees. This in-
formation is available once the ensemble is built, so there is
no need to generate new models or new predictions in order
to calculate these rankings. This is a clear advantage over
black box methods like sensitivity analysis or feature selec-
tion. We can compute the complete ranking of all features
in less than 2 minutes (no matter which of the methods in-
troduced below we are using), compared to 4-5 minutes per
feature for sensitivity analysis—a factor of 500 speedup!

The importance score of an attribute for the tree ensem-
ble is computed by summing the importance scores on the
individual trees. To illustrate the differences between the
methods, we will use the simple tree shown in Figure 1. It
splits on three attributes: A, B, and C. The training set has
100 records; numbers in parentheses indicate the number of
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Figure 1: Sample decision tree

records affected by the corresponding split (i.e., the num-
ber of records in the corresponding subtree). We consider
the following methods for computing attribute importance
scores on a single tree.

Number of nodes (#nodes). An attribute’s score is
the number of nodes in the tree that selected the attribute
for the split. In our example attribute A gets importance
score 2, while B and C receive importance scores of 1 each.
This method will give too much weight to continuous at-
tributes, because the tree can split on them more often. The
other methods address this issue.

Weighting by height (height). Greedy tree growing al-
gorithms usually choose the most important attributes early,
so they appear higher in the tree structure. This method
weights each node inversely proportionally to the length of
the path from it to the root. The root itself is considered to
have importance 1, so in the example attribute A receives
importance 1 + 1/3 (importance of root + importance of
the rightmost subtree split), while attributes B and C each
have importance 1/2. The example in Figure 1 illustrates
a problem with height-based weighting. Attributes B and
C receive the same weight, whereas splitting on them af-
fects different numbers of cases in the data set. To correct
for this, the following methods take into consideration the
number of training cases affected by the split.

Weighting by size of training set — multiple
counting (multiple). This method weights a node by the
number of training cases in its subtree, i.e., the cases af-
fected by the split at this node. In the example, attributes
A, B, and C receive scores of 160, 80 and 20, respectively.

Weighting by size of training set — single count-
ing (single). As with #node ranking, there is a risk that
continuous attributes will be over-weighted when using the
multiple counting of training points. In the example, the 60
records in the lower-right subtree with parent node A are
counted twice towards A’s score. To fix this problem, single
counting assigns weight zero to all nodes that have an ances-
tor with the same split attribute. In the example A receives
an importance score of 100 instead of 160, while the scores
for B and C do not change.

Weighting by size of training set — giving weight
to the path (path). This method compromises between
single and multiple counting. Intuitively, training records
from every leaf are distributed evenly between the splits
on the path from the root to the leaf. Each split is still
counted, even if there is another split on the same attribute
in an ancestor node. In our example, the 30 records from
the rightmost leaf are distributed between the two splits on
A and the one split on B, i.e., 20 points go to A and 10 to
B. Similarly, the 10 points from the leftmost leaf are given
to A and C, in this case 5 points to each. Counting from
left to right, A receives an importance score of 5 + 5 + 10 +

0 10 20 30 40 50
0

10

20

30

40

50

Base ranking:single

sen − rms
multiple
path

Figure 2: Comparison of different rankings (first
50 features shown). X-axis represents attributes in
the order induced by ranking single, y-axis measures
their position in other rankings.

20 + 20 = 60, B gets 0 + 0 + 10 + 10 + 10 = 30 and C
gets 5 + 5 + 0 + 0 + 0 = 10. It is worth mentioning that
importance scores for all attributes sum to the size of the
training set used to build the tree. A similar method was
used by Friedman [7] for estimating attribute importance in
an ensemble of rules.

3.3 Comparison of Rankings
All three measures based on the size of training set in

splitting nodes are very similar (Fig. 2). This result is sur-
prising, because different ways of handling continuous at-
tributes could in theory have significant influence on the
resulting rankings. In practice we observed only minor dif-
ferences.

#nodes and height produced rankings that are very simi-
lar to each other, but differ from the previous group. Fig. 3
shows that height and #nodes almost always agree, but are
very different from the diagonal where they would be if they
were correlated with single. Subsequent tests showed that
results of these methods are less reliable than those of single,
multiple and path (see Section 3.4).

One of the sensitivity analysis rankings — sensitivity-rms
— shows a lot of similarity with the three most reliable
methods from the “white-box” group (Fig. 2). sensitivity-
acc tends to agree with them only for the top ranked features
and then shows a significant amount of discrepancy (Fig. 3).
Because accuracy is known to be a high variance measure,
while RMS is very stable, we have more confidence in the
results of sensitivity-rms. (sensitivity-roc produced results
similar to sensitivity-acc and therefore is omitted from the
plot.)

The most important result here is the fact that our very
fast white-box methods essentially identify the same top
20 features as the much more expensive black-box method.
This result is also true for the other 8 BCR-species pairs we
analyzed. It means that we can take advantage of the faster
methods without sacrificing result quality.

3.4 Sanity Check
There is no guarantee that taking the top-ranked features

from any of these importance measures will yield an ensem-
ble with good predictive power. While prediction accuracy
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Figure 3: Rankings that do not agree well with sin-
gle. The farther from the diagonal each point is, the
larger is the disagreement.
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Figure 4: Performance as a function of the num-
ber of features used for training. Each line repre-
sents a different method for ordering features by
importance—yielding slightly different sets of fea-
tures.

is not the only goal of this study, it is a necessary precon-
dition. Clearly we cannot hope to learn something about
this domain by studying inaccurate models. Also, ecologists
are interested in comparing the important attributes of a
species occurrence in different BCRs. This can be achieved
by comparing rankings, but only after checking that some
minimum predictive performance is met in all analyses.

As a sanity check, we compared the performance of bagged
trees trained using all features with bagged trees trained
using only the top 20 features from the different importance
rankings. With all features, the bagged trees achieve a RMS
of 0.3469, accuracy of 0.8336, and area under the ROC curve
of 0.9012.

Figure 4 plots the ensemble’s RMS performance when only
the top N features from each ranking are used, for different
values of N . Because the rankings differ from each other,
different features are included at each point for the different
lines (Table 2 and the RMS column from Table 1). The
overall pattern is similar for accuracy and ROC area, so we
omit those graphs.

We make several observations from Figure 4. First, the

height path single
1 dayselapsed latitude latitude
2 yearseason dayselapsed halfdays
3 halfdays nf hanging nf hanging
4 temp lo atleast longitude longitude
5 temp hi atleast halfdays dayselapsed
6 precip len atleast yearseason yearseason
7 effort hrs atleast nf thistle nf thistle
8 snow dep atleast effort hrs atleast effort hrs atleast
9 latitude ave fam sz ave fam sz
10 nf hanging elev ned elev ned
11 nf ground asian asian
12 nf suet pop00 sqmi nf suet
13 longitude nf suet count area size
14 snow cov atleast vacant pop00 sqmi
15 nf platfrm count area size vacant
16 pop00 sqmi elev gt30 black
17 elev gt30 black age 65 up
18 nf water ave hh sz elev gt30
19 asian age 65 up ave hh sz
20 black houden houden

Table 2: Top-20 attribute rankings; ‘numfeeders ’ is
abbreviated as ‘nf ’.

ensembles built using only 20 features perform quite well, al-
though not quite as well as ensembles using all the features.
The top 20 features do seem to catch most of the predictive
power found in the full feature set. This gives us some con-
fidence in relying on these measures as indicators of which
features are important for modeling the PFW domain.

Second, while the rankings from single counting, path
counting, and sensitivity-rms analysis show similar behav-
ior, the height-based ranking behaves very differently. This
agrees with the finding above that the height importance
measure is not as highly correlated with the other measures.

One surprising aspect of this graph is that all the lines
go up at least once: path at feature 2, single at feature 5,
sensitivity at feature 6, and height for the first half of the
graph. This phenomenon is partly caused by the feature
dayselapsed; whenever it is added, performance gets worse
in this graph. Given that all the measures rank this fea-
ture highly, and the ecologists believe it to be an important
predictor, this is rather surprising.

Overall, we have identified methods for analyzing the en-
semble model that produce very similar rankings of attribute
importance. We have also shown that the resulting rankings
are reasonable: models generated using only the top 20 fea-
tures show good performance.

3.5 Discussion
While the importance heuristics can be used to choose

reasonable small sets of features, the heuristics will not find
many other sets of important features that perform as well
or even better. We have performed additional experiments
where we trained the model using the top 16 features from
Table 2’s single column. Retraining the model without ac-
cess to the latitude and longitude features (i.e., using only
14 features) results in equivalent performance. In our envi-
ronmental data, attributes tend to be correlated and thus
contain varying degrees of redundant information.

In this sense, the importance heuristics necessarily are in-
ferior to feature selection at determining important features.
The heuristics only find features that are important relative
to the learned model, and not necessarily features that are
important to many or all models.
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4. SELECTED RESULTS
As described in Section 1, one of the main goals for this

project is identifying features that are important in predict-
ing the abundance of bird species. Section 3 presented sev-
eral heuristic methods for finding potentially important fea-
tures. In order to decide if a certain feature requires closer
examination, ecologists need information about how the fea-
ture affects the probability of observing the bird.

To provide such information we estimate and plot the
probability of spotting the bird given different values of the
feature in question. Figure 5 contains several examples of
this kind of graph; for convenience we will refer to these
graphs as trend plots. The rest of this section describes how
we generate trend plots and discusses some sample plots.

4.1 Generating Trend Plots
We explore two methods for plotting trends: 1) comput-

ing conditional probabilities directly from the data; and 2)
computing Friedman’s partial dependence function [6] for
the feature of interest, using the previously learned model
to estimate probabilities. We will refer to these methods as
data, and partial, respectively.

Data: Given each value of the feature of interest, we
compute the probability of seeing a bird. This is just the
mean of all the points in our data set that have the given
value of that feature. Points lacking a value for the feature
(i.e., missing value) are not used. Continuous features are
discretized into 5% quantiles to yield twenty distinct values
for plotting, with each data point summarizing roughly the
same number of data records. The top of each bin (quantile)
is plotted on the x-axis. Note that continuous features are
discretized identically for both methods.

Partial: For each value v to plot for feature X, create
an artificial data set Dv by setting X = v for all the points
in the test set.2 Each artificial data set is labeled by the
(previously learned) bagged tree model. The probability
of observation when X = v is computed by averaging the
predictions for the set Dv. Missing values are a non-issue
with this method.

The motivation behind partial dependence functions is
that the target feature X may have high correlation with
another feature Y for some values of X. If X is not an
important influence but Y is, marginalizing to find X’s in-
fluence on seeing a bird (using the data method above) can
make X look like an important indicator for values where it
correlates well with Y (the truly important attribute). As a
result, perceived observation trends as a function of X may
be exaggerated or may not exist at all.

Substituting X = v for all points breaks up potential co-
variances and forces the model to focus more on the impact
of X having value v. The only thing that changes between
plot points is the value of X — holding all other features
constant in some sense, while still maintaining the natural
distribution of their values.

In theory, partial dependence functions can produce mis-
leading plots in cases where we generate many new points in
regions of the feature space unsupported by our data. The
model, which was not trained on the data from those re-
gions, can produce unpredictable results that will harm our
trend plots. The detailed description of a similar problem

2The mean value of each quantile is used as the substitution
value for continuous features.

can be found in [9]. In our analysis, we have not discovered
this problem yet.

4.2 Sample Trend Plots
Because computing partial dependence functions for all

197 features is too computationally expensive, we examined
the top 20 features from the single counting ranking (see
Section 3.2).3 Figure 5 shows six trend plots. Brief descrip-
tions of the features plotted are given below.

Each graph shows the probability of observing the House
Finch in BCR 30 as a function of a given feature. The data
and partial lines are marked with x’s and o’s, respectively.
As a general rule, the partial plots are much smoother than
the data plots, which exhibit much more local variance. In
most cases, however, both methods show the same general
trends. Most of the comments below will focus on the partial
plots, because they are easier to read and interpret.
yearseason: The observed decline in occurrence is con-

sistent with ecologists’ background knowledge that a novel
bacterial pathogen, first appearing in 1994, has caused de-
clines in abundance of House Finches across Northeastern
North America.
latitude/longitude: As we know from Section 3 these

two features both have high importance ranking. Other ex-
periments (omitted due to space constraints) also showed
that they are highly associated both with each other and
with many other attributes. We believe that these attributes
describe spatial gradients and possibly act as proxies for
other attributes that also exhibit spatial variation. The
greater range of variation in the latitude effect may be due
to the large North-South orientation of BCR 30.
numfeeders hanging: This feature counts the number of

hanging bird feeders in the observation area. As the num-
ber of feeders increases from 0 to 5, we see an increasing
probability of observation. The plateau effect past 6 feeders
suggests that once there are sufficient feeders, adding more
does not increase the chances of seeing a bird.
dayselapsed: This variable counts the number of days

elapsed since the beginning of the PFW season. Since the
season begins on November 1, day 31 is the beginning of De-
cember (for example). The observed pattern of probability
of occurrence is consistent with the known partial-winter mi-
gratory behavior of House Finch populations in the Eastern
United States, where a proportion of the winter population
migrates.
pop00 sqmi: This is the human population per square

mile, as measured during the 2000 census. This is a good
example of the partial plot differing from the data plot. The
former suggests that the influence of population density on
House Finch occurrence is relatively small, despite the fact
that the model considers it important. The latter, however,
would indicate that the probability of seeing a House Finch
increases dramatically as population density goes up. Taken
together, it seems more likely that population density cor-
relates with other important indicators (especially given the
large peaks and valleys in the data line).

The example of pop00 sqmi also shows that an attribute
can be important for model prediction even though its par-
tial line is close to a flat line. A flat trend line does not
prove that a feature is unimportant. Rather, it just shows

3Given the high correlation between the ranking methods for
the top 20 features, the choice of ranking method is basically
arbitrary.
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Figure 5: House Finch observation trends in BCR 30. Each graph shows the data (x line) and partial (o line)
plots for a different feature. Note that the y-axes cover different ranges.

that in this marginalized setting the feature does not carry
much predictive weight. Combined with other features, how-
ever, it may be very important for making good predictions.
Therefore, examining trend plots is not a viable way to iden-
tify important feature sets by itself.

5. CONCLUSIONS AND FUTURE WORK
Finding important features for predicting the presence or

absence of species is one of the major goals of ecology. The
large data size, the large number of features, and the inher-
ent quality issues of data collected by citizen science projects
make this a truly challenging problem. In this paper we
analyzed techniques where the importance of a feature is
determined by how heavily an accurate data mining model
relies on the feature for its predictions. More expensive ap-
proaches like feature selection did not scale, resulting in poor
response times even for this limited study.

We presented very fast heuristics for measuring attribute
importance that are based on analyzing the structure of de-
cision trees. An interesting outcome of this study is that all
heuristics that measure importance by the number of train-
ing cases affected by a node split produce almost identical
feature rankings. Furthermore, the top 20 of these rank-
ings are also highly correlated with those computed by much
more expensive sensitivity analysis.

Once a small set of interesting features is identified, ex-
pensive trend plots can be generated to gain a better un-
derstanding of how certain features affect the observation
probability for a species.

The analysis presented in this paper was applied to 9
BCR-species pairs, for a single project (PFW). As pointed
out earlier, ecologists ultimately want to compare and con-
trast such results for all of the roughly 600+ pairs containing
sufficient data. This, together with the rapid growth of data
poses further demands for even faster techniques. For ex-
ample, sensitivity analysis will not be a practical option at
this scale.

Major directions of our future work include further anal-

ysis of resulting models, important features and relation-
ships between them. We plan to extend our analysis from
identifying single important features to detecting groups of
interacting attributes.

6. REFERENCES
[1] E. Bauer and R. Kohavi. An empirical comparison of voting

classification algorithms: Bagging, boosting, and variants.
Machine Learning, 36(1–2), 1999.

[2] L. Breiman. Bagging predictors. Machine Learning,
24:123–140, 1996.

[3] L. Breiman. Random forests. Technical Report 567, University
of California Berkeley, Statistics Department, 2001.

[4] W. Buntine. Artificial Intelligence Frontiers in Statistics,
chapter Learning Classification Trees. Chapman and Hall,
1993.

[5] R. Caruana, A. Niculescu, B. Rao, and C. Simms. Evaluating
the C-section rate of different physician practices: Using
machine learning to model standard practice. In The
American Medical Informatics Conference (AMIA), 2003.

[6] J. Friedman. Greedy function approximation: A gradient
boosting machine. Annals of Statistics, 29(5):1189–1232, 2001.

[7] J. Friedman and B. Popescu. Predictive learning via rule
ensembles. Technical report, Stanford University, 2005.

[8] I. Guyon and A.Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157–1182, 2003.

[9] G. Hooker. Generalized functional ANOVA diagnostics for high
dimensional functions of dependent variables. Available at
http://ego.psych.mcgill.ca/perpg/pstdc/giles, 2005.

[10] K. Kira and L. Rendell. The feature selection problem:
Traditional methods and a new algorithm. In Proc. Int. Conf.
on Artificial Intelligence (AAAI), 1992.

[11] R. Kohavi and G. John. The wrapper approach. Artificial
Intelligence, 97(1–2), 1997.

[12] E. L. Lehmann. Nonparametrics: Statistical Methods Based
on Ranks. Chapman and Hall/CRC, 1989.

[13] P. McCullagh and J. A. Nelder. Generalized Linear Models.
Mcgraw-Hill, 1989.

[14] A. Niculescu-Mizil and R. Caruana. Predicting good
probabilities with supervised learning. In Proc. Int. Conf. on
Machine Learning (ICML), 2005.

[15] F. Provost and T. Fawcett. Robust classification for imprecise
environments. Machine Learning, 42(3):203–231, 2001.

Industrial and Government Applications Track Poster

915



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


