
Semantic Approximation of Data Stream Joins
Abhinandan Das, Johannes Gehrke, Member, IEEE, and Mirek Riedewald, Member, IEEE

Abstract—We consider the problem of approximating sliding window joins over data streams in a data stream processing system with

limited resources. In our model, we deal with resource constraints by shedding load in the form of dropping tuples from the data

streams. We make two main contributions. First, we define the problem space by discussing architectural models for data stream join

processing and surveying suitable measures for the quality of an approximation of a set-valued query result. Second, we examine in

detail a large part of this problem space. More precisely, we consider the number of generated result tuples as the quality measure and

we propose optimal offline and fast online algorithms for it. In a thorough experimental study with synthetic and real data, we show the

efficacy of our solutions.

Index Terms—Data streams, approximation algorithms, semantic load shedding, set approximation error metrics, join processing.

�

1 INTRODUCTION

IN many applications from IP network management to
telephone fraud detection, data arrives in high-speed

streams, and queries over those streams need to be
processed in an online fashion to enable real-time responses
[11], [17], [18]. Data streams pose a serious challenge for
data management systems as the traditional DBMS para-
digm of set-oriented processing of disk-resident tuples does
not apply. Recently, several new proposals for data stream
processing systems have emerged [3], [7], [26]. These systems
are specifically designed to process data streams in real
time.

As for traditional relational database systems, the join
operator is a very important operator in a data stream
processing system. Take, for example, an application that
monitors the traffic at two routers. The first router generates
a stream RðsourceID; destinationID; length; timeÞ, the
second router produces the analogous stream S with the
same schema. To detect traffic patterns, the monitoring
application determines for each incoming packet on one
router, which packets that arrived within the last two hours
on the other router have the same source address. This is a
continuous query, i.e., a long-running query, which com-
putes a join between the two streams by matching tuples
with the same sourceID, restricting the set of possible join
partners to a window of size two hours. The Stream Query
Repository [38] contains further examples of queries
involving joins, e.g., for online auctions, network traffic
monitoring, and military logistics. Joins are needed when-
ever information from several streams has to be combined
in order to compute correlations or to match events. Notice
that these joins are not restricted to foreign-key joins. For
instance, computing the correlation between data streams

typically involves a many-to-many matching of tuples (as in
the example above).

While joins are very important, their computation is
resource intensive. For instance, a standard equi-join carries
conceptually unbounded state for two infinite input streams
since each tuple in one stream could potentially match each
tuple in the other. To address this problem, the semantics of
the join are usually changed to restrict the set of tuples that
participate in the join to a bounded-size window of the most
recent tuples [3]. Since the window conceptually slides over
the input streams, this type of join is often called a sliding
window join. Notice that there are several possibilities to
define the window boundaries—based on time units,
number of tuples, or landmarks.

The online nature of data streams and their potentially
high arrival rates impose high resource requirements on
data stream processing systems. Especially in applications
where several queries are processed concurrently, the
availability of resources that can be devoted to each query
is limited and might vary over time. In addition, it is often
impossible to estimate the peak tuple arrival rate for data
streams and, thus, sizing a data stream system for peak
loads is a hard problem. Even if the peak load was known,
it is often orders of magnitude higher than the average load.
Hence, guaranteeing resource availability for peak loads
would require the system to keep most of its resources idle
during normal operation. Even parallelizing stream queries
(cf. [36]) therefore does not guarantee availability of
sufficient resources at all times. Resource limitations can
have two effects. First, for streams with high arrival rates,
the CPU might not be fast enough to process all incoming
tuples in a timely manner. Second, for large windows w, the
available main memory M might be too small to keep all
relevant tuples in-memory (and frequent access to hard disk
will be too slow when arrival rates are high).

In order to deal with resource limitations in a graceful
way, returning approximate query answers instead of exact
answers has emerged as a promising approach to save
resources [5]. In data stream processing systems, one way of
approximating query answers is to shed load, for example,
by dropping tuples before they naturally expire (i.e., leave
the window) or even before they reach the operator. The
current state of the art consists of two main approaches. The
first relies on random load shedding, i.e., tuples are
removed based on arrival rates, but not their actual values

44 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

. A. Das is with the Department of Computer Science, Cornell University,
4154 Upson Hall, Ithaca, NY 14853. E-mail: asdas@cs.cornell.edu.

. J. Gehrke is with the Department of Computer Science, Cornell University,
4105B Upson Hall, Ithaca, NY 14853. E-mail: johannes@cs.cornell.edu.

. M. Riedewald is with the Department of Computer Science, Cornell
University, 4130 Upson Hall, Ithaca, NY 14853.
E-mail: mirek@cs.cornell.edu.

Manuscript received 4 Sept. 2003; revised 14 Jan. 2004; accepted 10 Feb. 2004;
published online 18 Nov. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0172-0903.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

[29]. The second proposes to include QoS specifications
which assign priorities to tuples and then shed those with
low priority first [7]. However, the result of a join consists of
pairs of matching tuples, hence, both the join attribute of a
tuple and the number of its partner tuples (i.e., those that
match the tuple) in the other stream determine the output.
For this reason, both random load shedding and simple QoS
assignments to single tuples do not fully capture the
semantics of the join. For example, it is well-known that
random sampling from the inputs R and S of a join, or
biased sampling from R and S without taking the
distribution of the other relation into account, can greatly
skew the output of the join and lead in the worst case to an
empty join output even though the actual size of the join is
very large [9].

Semantic Join Approximation.We address the problems
outlined above by introducing the notion of Semantic Join
Approximation (SJA). In SJA, we approximate the output of
an operator by maximizing a user-defined similarity
measure between the exact answer and the (approximate)
answer returned by the system. Semantic join approxima-
tion avoids the problems described above by intelligently
selecting which tuples to drop and when they should be
dropped—all in order to minimize the error in the query
output. This paper contains an in-depth study of this
problem for the case of sliding window joins. We also
discuss a related scenario (static join described below)
where semantic join approximation can lead to great
improvements. This scenario is similar to a join with
tumbling window semantics [7], i.e., consecutive windows
have no tuples in common.

Static Join. Consider a network of small battery-powered
sensors with limited CPU speed and memory which
measure environmental data. Furthermore, there are sensor
proxies in the network that are not power constrained and
have ample CPU and memory resources. The purpose of
the proxies is to collect sensor data and to execute user-
supplied queries (cf. [30]), for instance, a join over an
attribute of the measured data tuples. In order to compute
that join for a given time interval, the proxy needs to query
the sensors for their data. Since transmitting data is very
expensive in terms of sensor battery power [31], the goal of
the system is to transmit as little data as possible to extend
the sensors’ lifetime. Hence, before sending the actual data,
each sensor transmits a compact summary, e.g., a histo-
gram, of the join attribute distribution of its measurements.
The proxy uses this summary information to determine
which data to request from the different sensors (the
requests are also compact summaries, e.g., a list of join
attribute values indicates that the sensor should send all
measurements with these values). Hence, we have an
optimization problem to select the right data to transmit
such that the approximation error of the result is minimized
subject to power consumption constraints (which is
equivalent to data transmission constraints).

Contributions of this Paper. In this paper, we give an in-
depth examination of semantic join approximation for data
streams.We present novel algorithms for approximating set-
valued join results at tuple granularity. Our optimal offline
algorithms obtain the best possible approximate result according
to a given errormeasure subject to given resource constraints.
Specifically, we make the following contributions:

. We outline possible error measures and describe
architectural models for approximating data stream
sliding window joins (Section 2).

. We then present results for one selected error
measure—the MAX-subset measure, which maxi-
mizes the number of tuples in the approximate
output of the join. More precisely, we present
hardness results and algorithms for the static join
case (Section 3) and optimal offline algorithms and
very fast lightweight online heuristics for the sliding
window join problem (Section 4).

. We evaluate our algorithms on a large set of
synthetic and real-life data (Section 5).

. While most of our techniques target equi-joins, we
show how to extend the approaches for sliding
window joins to joins with general predicates and
"-joins which are common in spatial databases
(Section 6).

A discussion of related work (Section 7) and a summary
and outlook to future work conclude this article (Section 8).

2 MODELS AND MEASURES

In this section, we define the problem space. In particular,
we introduce different models for the approximate join
computation problem and discuss measures for evaluating
the quality of an approximate join result.

2.1 Problem Definition

Let R and S be two data streams that contain a common
attribute J , which is selected as the join attribute. The equi-
join R ffl S of R and S is the subset of the cross-product of
the two streams that contains exactly those pairs of tuples
ðr; sÞ such that r 2 R, s 2 S, and r:J ¼ s:J . For the static join
problem, the streams are finite (relations) since the sensors
can only keep a limited amount of data, e.g., temperature
readings from the last 24 hours. Hence, the static join is
equivalent to the join between relations with restricted
access to the input tuples.

A sliding window join is a long-running query. In the
following, we will use w to denote the window size. Let rðiÞ
refer to the tuple of stream R that arrives at time i. For
simplicity, we will also use rðiÞ to denote the value of the
tuple’s join attribute (sðiÞ is defined and used similarly).
According to our model, at each time t, the sliding window
contains all tuples rðiÞ and sðiÞ with t� w < i � t. When-
ever a new tuple rðtÞ arrives at time t in stream R, this tuple
generates output with all matching partners sðiÞ in the
current window t� w < i � t (similar for newly arriving
S-tuples). Hence, the overall output of the join from time t1
to time t2 is

[t2
t¼t1

[t
i¼t�w�1

ððrðtÞ ffl sðiÞÞ [ðsðtÞ ffl rðiÞÞÞ:

Note that the operators have bag-semantics, i.e., produce
multisets and do not remove duplicates.

The sliding window join as defined above applies to
windows whose size is specified in time units. For
simplicity of presentation, we will focus on this type of
join and, furthermore, assume that time is discrete and that
at each time instant t exactly one tuple rðtÞ and sðtÞ arrive
on each stream. Notice that our techniques easily generalize
to tuple-based window definitions and asynchronous tuple

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 45

arrival, including the arrival of several tuples at the same
time. We will also discuss how to generalize to cases where
R and S have different window sizes and where the
window size is allowed to change over time.

2.2 Error Measures

The output of the join operator is a set of tuples, more
precisely a multiset. In the following, for simplicity, the term
set will refer to multisets as well. There is no single
universally accepted measure for evaluating the quality of
an approximation to a set-valued query result [27]. Onewell-
knownandwidely usedmeasure is the symmetric difference.
For two setsX and Y , it is computed as jðX � Y Þ [ðY �XÞj.
For equi-joins, dropping tuples before they expire naturally
leads to a situation where the generated output is a subset of
the exact join result (i.e., the result if there was no resource
shortage). In that case, the symmetric difference simplifies to
the number of missing output tuples. We will therefore refer
to it as the MAX-subset measure. This measure will be the
principal focus of this paper.

In the data mining and information retrieval commu-
nities, several set-theoretic similarity measures have been
used [25], [40]. The most widely used similarity measures
between two sets X and Y are Matching coefficient
jX \ Y j, Dice coefficient 2 jX\Y j

jXjþjY j , Jaccard coefficient jX\Y j
jX[Y j ,

and Cosine coefficient

jX \ Y jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXj þ jY j

p :

For X � Y , all these measures are maximized by maximiz-
ing the size of set X, hence, they are equivalent to MAX-
subset. The Overlap coefficient

jX \ Y j
minfjXj; jY jg

equals 1 for X � Y .
The recently introduced Earth Mover’s Distance (EMD)

[35] is mainly used as a similarity measure in image
processing. It is defined as the amount of work required to
transform a setX into another set Y of equal or greater mass
(number of tuples). If X � Y , it trivially evaluates to 0.

The Match And Compare (MAC) [27] set similarity
measure also requires a distance metric between the tuples
of the two sets. First, a minimum cost cover of the complete
bipartite graph whose nodes correspond to the tuples and
whose edges have the weight of the respective distances is
found.Then, theoverall setdistance is computedasa function
of the weights of the edges in the cover and the number of
edges incident to each node.

We recently introduced a novel “error” measure, the
Archive-metric (ArM) [12]. ArM is relevant for semantic load
smoothing, i.e., for applications that cannot afford to discard
any input tuples during periods of high load. Instead, these
applications store the tuples which could not be processed
in archives. During low-load periods, the tuples from the
archive can be used to refine approximate results which
were obtained during periods of high load. Due to space
constraints, ArM is not discussed here.

2.3 Models for Window Joins

In order to compute the exact result of a sliding window
join, the join operator has to keep track of the contents of the
current window, i.e., the latest tuples from each stream.

Hence, for window size w, the internal state of the operator
consists of 2w stream tuples. Furthermore, to compute the
exact result, the operator should process tuples at least as
fast as they arrive.

As long as the system has sufficient memory and CPU
resources, incoming tuples are added instantly to the join
memory and remain there until they expire, i.e., are not part
of the current window any more. In case of resource
shortage, tuples either have to be dropped from memory
before they expire (and, hence, spend less than w time in
memory) or even never reach the join memory (dropped
before participating in the join). In the following, we discuss
how to model the different cases.

Modular versus Integrated. In practice, the processing of
the join is affected by fluctuations in resource availability
and load. Hence, in addition to the internal join memory for
storing the current window tuples, the join processing unit
needs a queue that buffers incoming tuples and a statistics
unit that gathers statistics about resources and load. The
queue smoothes local fluctuations, while the statistics unit
provides input for the join approximation algorithm for
deciding how many and which tuples to evict from the
internal memory or from the queue.

We identify two general models—modular and integrated
(cf. Fig. 1). In both cases, there is join memory of size M for
the tuples in the current window and a queue for newly
arriving stream tuples. The main difference between the
two models lies in the degree of integration between the
components.

In the modular case, the queue module only has limited
knowledge about the contents of the join memory (for
example, just a histogram about the frequencies of join
attribute values in memory) and vice versa. Each module
uses its own policy for deciding which tuples to drop in
case of resource shortages. These decisions are only
influenced by the input from the statistics module. If
streams provide input for multiple operators, queues can be
shared, increasing memory efficiency. Note that different
operators might have different preferences for which tuples
to evict from the queue. This can be taken into account by
considering input from several statistics modules.

The integrated model combines the queue with the join
memory. The benefits are potentially better decisions based
on the combined knowledge of both memory contents, but
the internal queue cannot be shared easily with other
operators.

Fast CPU versus Slow CPU. For analysis purposes, we
also distinguish between the fast CPU and the slow CPU
case (similar to [29]). The system is a fast CPU system if
incoming tuples can be processed at least as quickly as they

46 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

Fig. 1. Join processing models.

arrive. The queue is not needed since tuples are directly
pushed into the join, therefore, both modular and integrated
model essentially are equivalent. Notice that in practice, one
would still add a small queue to deal with fluctuations in
resource availability and load, but conceptually this queue
is irrelevant. Whenever the queue fills up beyond a certain
threshold, the system could switch to the slow-CPU case
which is discussed below.

In general, we model the fast CPU case such that the join
has internal memory of size M and two additional buffer
cells for the new arriving tuple of each stream. When tuples
arrive they are instantly joined with their partner tuples of
the other relation in the join memory. Then, it is decided if
the tuple will be added to the join memory (potentially
evicting another tuple before it expires, due to lack of
sufficient memory). Hence, an arriving tuple will always be
seen by the join.

In the slow CPU case, tuples arrive faster than they can
be processed. This implies that the queue is necessary for
buffering incoming tuples. The join operator now pulls
tuples from the queue whenever it has processed the
previous input. Clearly, the queue will fill up over time and
overflow, hence, tuples have to be dropped from it without
ever reaching the join. This is referred to as load shedding
in [7]. If a tuple reaches the join, it is processed as discussed
for the fast CPU case. The slow CPU case therefore
constitutes a generalization of the fast CPU case. In the
latter case, approximations arise due to memory restric-
tions, while in the former case, approximations arise due to
both memory and processing constraints. The load shed-
ding in the queue affects the contents of the streams that
reach the join operator.

Notice that we do not explicitly introduce another
independent system resource dimension for available mem-
ory. For the fast CPU model, the sufficient memory case
would not be of interest since there is no resource shortage.
For the slowCPU case, the sufficientmemory case is vacuous
for the following reason: Since the join processes tuples at a
slower speed than they arrive, any amount of available
(queue)memoryat somepointwouldbeexceeded.Hence, for
a given amount of memory the slow CPU case will always be
an insufficient memory case as well.

3 STATIC JOIN APPROXIMATION

Before discussing approaches for sliding window joins over
data streams in the next section, we present hardness
results and algorithms for the static join approximation
case. These results are important in their own right, e.g., for
the sensor network scenario we discussed before or in the
case of approximating tumbling window joins with limited
memory. In addition to that, they provide useful insights for
the hardness of the problem of efficiently approximating
joins of two or more relations, which can be viewed as the
base case for approximating joins of data streams. For
example, the slow CPU case is a generalization of the static
join approximation (see [13], [14] for details).

3.1 Problem Definition

We consider the following two relation (static) join
approximation problem: We wish to compute an equi-join
of two (nonstreaming) relations A and B. However, as
motivated in the Introduction with a sensor network
scenario, due to reasons such as transmission restrictions,
a total of k tuples need to be dropped from the input.

Hence, the join of A and B needs to be computed on the
resultant truncated input. Each of the k dropped tuples may
be chosen from either relation and we call the resultant join
the k-truncated join of A and B. We measure the approxima-
tion quality by using the MAX-subset measure since most of
the popular and common set approximation error and set
similarity measures actually reduce to MAX-subset for our
problem (cf. Section 2.2). Thus, our aim is to find a set of k
tuples to be dropped from the input relations such that the
size of the k-truncated join result is maximized.

We can model the above as a graph problem as follows:
Consider a bipartite graph GðVA; VB;EÞ, with its two
partitions VA and VB representing the relations A and B,
respectively. Each partition has one node for every tuple in
the relation it represents. We have an edge between nodes
nA 2 VA and nB 2 VB if the corresponding tuples satisfy the
join condition. Thus, the bipartite graph G has an edge for
every tuple in the join result of A and B. Since our join
condition is an equality on one or more of the attributes of A
and B, it is easy to see that G will consist of a union of
mutually disjoint fully connected bipartite components
(called Kurotowski components). Fig. 2 shows an example
bipartite graph representing the join graph of an equality
join between two relations A and B. In the figure, nodes
with the same shape denote tuples having identical values
for the join attributes, while nodes with different shapes
represent tuples having different values on the equality join
attributes.

Each Kurotowski component can be represented by a
pair of integers ðm;nÞ, where m and n are the number of
nodes from VA and VB, respectively, in the component. We
denote such a Kurotowski component byKðm;nÞ, as shown
in Fig. 2. Thus, our k-truncated join approximation problem
is equivalent to finding a set of k nodes in the bipartite join-
graph whose deletion results in the deletion of the fewest
edges (which represent join tuples). Note that, since
dropping a tuple from one of the input relations of a join
results in the dropping of all the output tuples it produced,
our definition of node deletion requires that deleting a node
results in the deletion of all the edges incident on that node.
For arbitrary bipartite graphs, i.e., bipartite graphs not
necessarily representing a join, the above problem can be
shown to be NP-Hard.

We are now ready to state two versions of the
k-truncated join approximation problem, modeled as a
graph optimization problem as described below.

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 47

Fig. 2. Equality join as a bipartite graph.

Primal version: Input. A bipartite graph consisting of c
mutually disjoint Kurotowski subgraphs specified by the c
integer pairs Kðm1; n1Þ; Kðm2; n2Þ; . . . ; Kðmc; ncÞ, and an
integer k.

Output. A set of k nodes from the bipartite graph whose
deletion from the graph results in the deletion of the fewest
number of edges.

A potentially useful variant of the above problem is the
ðkA; kBÞ-truncated join approximation problem in which we
are required to delete kA and kB tuples from the two joining
relations, respectively, as opposed to k tuples overall.
While, in the following discussion, we switch between the
two formulations for ease of exposition, in most cases, the
algorithms and hardness proofs developed for one case can
easily be extended to the other. We will point out explicitly
when this is not true.

Dual Version: Input. Same as for primal version.
Output. A set of k nodes to be retained in the bipartite

graph such that the subgraph induced by them has the
highest number of edges among all subgraphs with k nodes.

Since an optimal solution to the primal version where k
nodes are selected for deletion is an optimal solution to the
dual problem where n� k nodes are retained (n denotes the
total number of nodes in the bipartite graph), an optimal
algorithm for either version trivially implies an optimal
algorithm for the other.

In the context of the motivating sensor networks
scenario, a solution to the problem formulated above may
be used for join approximation at a proxy as follows: A
compact value distribution histogram of the join attribute is
transmitted independently by each sensor to the proxy,
which will then run the algorithm for suitable parameters
based on its knowledge of the power constraints (which
may be conveyed to the proxy by the sensors themselves)
and determine the set of tuples to be requested from each
sensor. The aim here is to maximize the size of the truncated
join, subject to an upper bound on the number of input
tuples transmitted by the sensors.

3.2 Optimal Dynamic Programming Solution

We consider the dual formulation, where a total of k nodes
need to be retained. Given c Kurotowski components, we
order the components as per some arbitrary ordering and
let Kðmi; niÞ denote the ith component (0 � i � c) as per
this ordering. In the following, we will first show an
optimal solution for the special case of c ¼ 1. Then, the
general algorithm is presented.

Lemma 1. Let Cm;nðpÞ denote the maximum number of edges
that can be retained when p (� mþ n) nodes are retained from
a Kurotowski Kðm;nÞ component. Then, Cm;nðpÞ is given by:
(w.l.o.g., assume m � n)

Cm;nðpÞ ¼
ðp=2Þ2 if p � 2n; p even
ðp2 � 1Þ=4 if p � 2n; p odd
nðp� nÞ else:

8<
:

Proof. See [13], [14]. tu

For c > 1, we obtain the optimal solution by using
dynamic programming based on the following observation:
The optimal way to retain j nodes from i components is to
choose the best from the following options: Either retain

j nodes optimally from the first i� 1 components, or retain
j� 1 nodes optimally from the first i� 1 components and

retain 1 node optimally from the ith component, or retain
j� 2 nodes optimally from the first i� 1 components and

retain two nodes optimally from the ith component, and so
on. Formally, let T ði; jÞ denote the optimal benefit (i.e., the
maximum number of edges retained) of retaining j nodes

from the first i Kurotowski components, as per our
ordering. Then, for i > 1, 0 � j � k:

T ð1; jÞ ¼
Cm1;n1

ðjÞ if 0 � j � m1 þ n1

�1 if j > m1 þ n1

�

T ði; jÞ ¼ max

T ði� 1; jÞ;
T ði� 1; j� 1Þ þ Cmi;ni

ð1Þ;
T ði� 1; j� 2Þ þ Cmi;ni

ð2Þ;
..
.

T ði� 1; j�mi � niÞ þ Cmi;ni
ðmi þ niÞ:

8>>>>>>><
>>>>>>>:

The value we are interested in is T ðc; kÞ. By keeping track of
the terms which provide the maximum in the second

formula above, we can also maintain the exact set of nodes
retained from each component in the optimal solution.

Analysis. To compute T ðc; kÞ, we need to compute

c � k entries in the dynamic programming matrix T and each
entry takes OðkÞ time to compute (cf. formula above for

T ði; jÞ, which takes the maximum over at most j � k terms).
Thus, the overall running time of the algorithm is Oðc � k2Þ
and space requirement is Oðc � kÞ. By considering a three-
dimensional matrix T with entries of the form T ðc; kA; kBÞ, it
is possible to extend the above algorithm to handle the

variant where one needs to delete kA and kB nodes from the
two bipartite partitions, respectively.

Strictly speaking, the above algorithm is pseudo-poly

nomial in the input size ðOðc � logðmaxifmi; nigÞ þ log kÞÞ
since the input is logarithmic in the parameter k. However,

in our case, since we wish to apply the algorithm for
retaining/deleting k nodes, we need to spend at least OðkÞ
for processing the two relations. Also, note that the
algorithm is polynomial in the sizes of the input relations.

3.3 Fast 2-Approximation Algorithms

We present two fast polynomial-time 2-approximations
—one is applicable to the formulation where one needs to
delete kA and kB nodes from the two bipartite partitions,
respectively, while the other is applicable in the case where
one needs to delete k nodes overall.

3.3.1 Node Degree Greedy (NDG) Algorithm

Suppose we are interested in deleting kA and kB nodes from
the two partitions, respectively (primal version). To select
the kA nodes to be deleted from the A-partition, we sort the
nodes in this partition by their degrees in ascending order.
We then select the kA lowest degree nodes for deletion.
Similarly, we select the nodes with the kB lowest degrees in
the B-partition for deletion. We can select the nodes from
the B-partition either based on their degrees in the original
bipartite graph or based on the graph obtained after the
kA nodes and corresponding edges from the A-partition
have been deleted. It is easy to see that the latter approach

48 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

never does worse than the former one. However, both in the
worst case provide a 2-approximation.

Theorem 1. The node degree greedy algorithm provides a
2-approximation to both the primal and the dual version of the
ðkA; kBÞ-truncated join approximation problem simulta-
neously. Its running time and space requirement are
Oðc log cÞ and OðcÞ, respectively.

Proof. See [13], [14]. tu

3.3.2 Average Degree Greedy (ADG) Algorithm

Consider the primal formulation where we need to delete
k nodes overall. For a Kurotowski component Kðm;nÞ,
define its average degree to be m � n=ðmþ nÞ. Sort the
Kurotowski components by their average degree and select
the p lowest average degree components, where p is such
that the first p� 1 components contain less than k nodes,
while the first p components contain at least k nodes. We
then delete each of the first p� 1 components completely.
The remaining nodes are deleted from the last component
using the optimal strategy for deleting nodes from a single
component (cf. Lemma 1). By choosing the highest degree
nodes for retention, this algorithm can be easily extended to
solving the dual formulation of the k-truncated join
approximation problem.

Theorem 2. The average degree greedy algorithm provides a
2-approximation to both the primal and dual versions
simultaneously. Its running time and space requirement are
Oðc log cÞ and OðcÞ, respectively.

Proof. See [13], [14]. tu

Note that in general for primal-dual algorithms, it is not
necessarily the case that a 2-approximation to the primal is
also a 2-approximation to the dual, and vice versa. Both the
Average Degree and Node Degree Greedy algorithms,
however, guarantee 2-approximations to both primal and
dual at the same time and, thus, provide stronger
approximation guarantees than just 2-approximations to
any one of them.

Note that, since the input is logarithmic in k (or kA; kB),
simply using the strategy of trying out all possible
2-partitions of k (there are kþ 1 of them) does not yield a
polynomial time reduction from the “delete kA; kB” pro-
blem to the “delete k overall” problem.

3.4 A Hardness Result for Multirelation Joins

Consider a join of three relations A, B, and C, and suppose
that we need to delete (or retain) kA, kB, and kC tuples from
the input relations, respectively, or k tuples overall, so as to
maximize the number of join tuples that are produced from
the retained input tuples. We call this the 3-relation static
join approximation problem.

Theorem 3. The 3-relation static join approximation problem is
NP-Hard.

Proof. See [13], [14]. tu
Corollary 1. The m-relation static join approximation problem is

NP-Hard for any m � 3.

However, there is a trivial m-approximation to this
problem for the formulation where one needs to delete (or
retain) ki tuples from join relation Ai (1 � i � m). The idea

is to independently select for each Ai the ki tuples for deletion
which produce the fewest output tuples. Assume the
number of lost output tuples caused by removing ki tuples
from Ai is pi. The optimal algorithm at least loses
maxfp1; p2; . . . ; pmg output tuples. The approximation algo-
rithm will at most lose

Pm
i¼1 pi output tuples, therefore

guaranteeing an m-approximation.

4 DYNAMIC WINDOW JOIN APPROXIMATION

In Section 2, we defined the problem space for computing
sliding window joins by introducing its dimensions
(integratedness of model, resource bottleneck, approxima-
tion error measure). Examining each point in this space in
detail is beyond the scope of this paper. Instead, we will
present an in-depth analysis for a large and important
subspace. More precisely, we will restrict our attention to
the fast CPU model and the MAX-subset error measure.
Notice that this covers a large part of the problem space. As
mentioned before, for a fast CPU system integrated and
modular architecture are equivalent. Furthermore, recall
that most of the popular and common set approximation
error and set similarity measures reduce to MAX-subset for
our problem. We present optimal offline and efficient online
algorithms.

4.1 Fast CPU and Offline

We are now considering the sliding window join as
discussed in Section 2.3. We develop an algorithm OPT-
offline that minimizes the MAX-subset error in the fast CPU
case under the assumption that all tuples that will arrive in
future are already known to the algorithm. Note that
streams are infinite and, therefore, knowing the whole
future cannot be modeled. However, this idealized algo-
rithm is used to provide the baseline for measuring the
efficiency of any real online algorithm over any given finite
subset of the overall stream. For this subset, we can compute
the optimal result using OPT-offline and compare this
result to how an online technique which does not know the
future performs on the same input. Since in the slow CPU
case even more tuples have to be dropped, OPT-offline also
constitutes an upper bound for any technique for the slow
CPU case.

Recall that the join memory holds a total of M tuples, not
necessarily distributed evenly between R and S. We will
now describe how to formulate the OPT-offline optimiza-
tion problem as a network flow problem that allows the
efficient computation of the best possible approximation
under the MAX-subset measure.

4.1.1 The Flow Graph

The main idea is to define a flow graph such that each node
corresponds to a tuple being in memory at a certain time.
The arcs implicitly model all possible combinations of
keeping or dropping tuples. Sending flow through an arc
intuitively indicates that the corresponding tuple is in
memory, i.e., was not dropped. Since we want to minimize
the MAX-subset error, our goal is to find the optimal
strategy of keeping and dropping tuples such that the
overall result size is maximized.

We assign costs to the arcs in such a way that an optimal
flow corresponds to the strategy which produces the most
output tuples. To do so, we assign cost factor -1 to each arc
which corresponds to a result tuple, all other arcs have cost
factor 0. Solving a min-cost linear flow problem will then

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 49

find the optimal strategy efficiently. For the sake of
simplicity, we will illustrate the flow graph construction
with an example where the memory M is evenly shared
between streams R and S. Later, we generalize the
approach.

Let the input “streams” be R ¼ 1; 1; 1; 3; 2 and S ¼
2; 3; 1; 1; 3 and assume the first value arrives at time 0, the
next at time 1, and so on. Furthermore, let the window size
be w ¼ 3 and the available join memory M ¼ 2. Recall that
R and S each receive M=2, i.e., one memory unit to keep
tuples in the current window. The corresponding flow
network is shown in Fig. 3. For simplicity, arc cost factors
are only indicated for arcs with cost -1. Overall, the nodes
on the upper half correspond to events related to R-tuples,
while the nodes on the lower half correspond to the events
related to S-tuples. Nodes with label xðiÞ : j correspond to
the event that the tuple that arrived at time i in stream X is
in memory at time j. Nodes s and t are the source and sink
of the flow graph, respectively. The node labeled t ¼ 2
models the fact that at time 2 the tuples arriving in both
streams have the same join attribute value (equal to 1).

The flow graph is constructed as follows: All arcs have
capacity 1, i.e., they can transmit any flow between 0 and 1
(both inclusive). Node s has supply M þ 1 and node t has
demand M þ 1. All other nodes have no supply/demand.
Except for the top path s ! ðt ¼ 2Þ ! t which has a special
purpose and will be discussed later, s has M outgoing arcs.
M=2 of them point to R-tuple nodes, the other M=2 to
S-tuple nodes, modeling the arrival of the first M=2 tuples
from each stream (arcs from s to rð0Þ : 0 and sð0Þ : 0 in the
example). The idea behind these arcs is that the first M
arriving tuples will always fit in memory, which will be
reflected by a flow of 1 through each arc (a total flow of M).

Since the memory is now filled, the next arriving tuples
could replace existing tuples in memory. Recall that we
currently fix the memory allocated to R and S, therefore, a
newly arriving R-tuple can only replace another R-tuple in
memory, but not an S-tuple (and vice versa). The possibility
of replacement is modeled by the nonhorizontal arcs. In the
example, arc rð0Þ : 1 ! rð1Þ : 1 indicates that tuple rð0Þ
which is currently in memory could be replaced at time 1 by
the newly arriving rð1Þ. The horizontal arcs model the fact
that a tuple survives in memory. For instance, rð0Þ : 1 !
rð0Þ : 2 indicates that rð0Þ could still be in memory at time 2.
Notice that w ¼ 3, therefore, rð0Þ will expire at time 3. This
means there is no benefit in keeping rð0Þ in memory after it
has been matched with a partner tuple arriving at time 2,
therefore, there is no outgoing horizontal arc from node

rð0Þ : 2. Finally, at the end of the input sequence, all nodes
that correspond to tuples in the current window are
connected to the sink t.

In Fig. 3, the general design patterns of the flow graph
are marked by dotted line boxes. The tall box shows a
subset of nodes which correspond to the events at a certain
time t ¼ 3. At that time, the window contains rð1Þ, rð2Þ, sð1Þ,
sð2Þ, and the newly arriving rð3Þ and sð3Þ. Which tuples are
actually in memory after the arrival of the new tuples is
determined by where flow is sent. Similarly, the wide box
corresponds to the events of a tuple (sð1Þ) being in memory
at time 1, 2, and 3, respectively.

The path on the top contains a node for each pair
ðrðiÞ; sðiÞÞ, where rðiÞ ¼ sðiÞ. In our fast CPU processing
model, the newly arriving tuples are always joined with
their partners in the join memory and also with the tuple
that arrives on the other stream at the same time. The latter
is modeled by the top path.

As mentioned before, all arcs i ! j in the flow graph
have capacity 1, i.e., they can transport any flow fði; jÞ with
0 � fði; jÞ � 1. The cost of an arc flow is computed as
fði; jÞ � cði; jÞ, where cði; jÞ 2 f0;�1g. The cði; jÞ values are
determined as follows: Recall that a flow through an arc
corresponds to a tuple being in memory. The tuple in
memory produces exactly one output tuple iff the tuple
arriving at the corresponding time in the other stream has
the same join attribute value. If that is the case, the arc cost
is set to -1, otherwise to 0. In the example, we have rð0Þ ¼ 1.
Hence, when sð2Þ ¼ 1 arrives and rð0Þ is still in memory, an
output tuple is produced. This is modeled by arc rð0Þ : 1 !
rð0Þ : 2 which has cost factor -1. In Fig. 3, the optimal flow is
indicated by the bold arcs. The output corresponding to this
optimal flow is shown in the figure. Note that, because of
insufficient memory, two output tuples are missed
(ðrð1Þ; sð2ÞÞ, and ðrð1Þ; sð3ÞÞ).

The generalization to variable memory allocation, i.e., sharing
the memory in any ratio between R and S-tuples is easy. We
just need to add “cross-arcs” between R-nodes and S-nodes
in the graph which model the fact that now an R-tuple can
replace an S-tuple and vice versa. In Fig. 3, such arcs would
be rð0Þ : 1 ! sð1Þ : 1, sð0Þ : 1 ! rð1Þ : 1, rð0Þ : 2 ! sð2Þ : 2,
rð1Þ : 2 ! sð2Þ : 2, and so on. In general, each node (except s,
t, and the top path nodes) now not only has an outgoing arc
to the newly arriving tuple of its own stream, by also another
arc to the newly arriving tuple in the other stream.

4.1.2 OPT-Offline Algorithm

It is not hard to show that the flow graph discussed above
correctly models the offline algorithm. Note that the arcs do
not allow more than a flow of M through the main network,
and exactly a flow of 1 through the top path. This ensures
the memory constraint. Also, the way the arcs are
combined, correctly models the tuple events. It is not
possible for a dropped tuple to reenter the memory and
only tuples in memory produce output. Furthermore, it is
ensured by construction that no tuple can produce output
after it has expired.

There is one major property left to be shown in order to
establish the correctness of the model. We have to ensure
that there are no partial flows, i.e., flows fði; jÞ which are not
either 0 or 1. This is ensured by the following theorem.

50 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

Fig. 3. Example flow graph.

Theorem 4. If the flow problem has an optimal solution, and all
capacity constraints and costs are integral, then there is an
optimal solution which is also integral.

Proof. See [34, p. 239]. tu

We can use any standard linear minimum cost flow
algorithm that finds the optimal integer solution of the
flow problem. Since the highest absolute arc cost in our
network is 1, known algorithms find the optimal integer
solution in time Oðn2m lognÞ [20] or Oðnm logn logmÞ [1],
where m is the number of arcs and n the number of nodes.

For our problem, we can derive the following upper
bounds for the number of nodes and arcs. Let N denote the
number of tuples in each stream. Each node belongs to at
most w windows. Furthermore, there are at most N pairs
ðrðiÞ; sðiÞÞ with rðiÞ ¼ sðiÞ. Together with source and sink
node there are at most 2wN þN þ 2 ¼ �ðwNÞ nodes. Each
node has at most three outgoing arcs (for the events
“remain in memory,” “being replaced by new R-tuple,”
“being replaced by new S-tuple”). Only the source node has
M þ 1 outgoing arcs, the sink has none. Hence, the total
number of arcs is at most ðM þ 1þ 3 � ðnumberNodes� 2ÞÞ,
i.e., is OðwN þMÞ. The formulation as a flow problem
enables the computation of the optimal offline solution in
time polynomial in stream, window, and memory size
(OððwNÞ � ðwN þMÞ � logðwNÞ � logðwN þMÞÞ).

4.2 Fast CPU and Online

An online algorithm does not know which tuples will arrive
in the future. Hence, all we can do is maximize the expected
output size assuming certain arrival probabilities. However,
even such probabilities and possible independence assump-
tions only approximate the true future. At the same time,
any real online algorithm faces the challenge that the
memory and CPU resources it consumes are not available
for the actual join processing. Hence, our goal is to design
very fast and lightweight techniques which add the lowest
possible overhead but nevertheless try to maximize the
output size based on approximate future knowledge. We
present two deterministic heuristics, PROB, and LIFE,
which are intuitively appealing and extremely simple and
lightweight.

4.2.1 PROB Heuristic

PROB estimates for each value in the domain of the join
attribute the probability of a tuple with this value arriving
on stream R and stream S. For attribute value a, let these
probabilities be pRðaÞ and pSðaÞ. A tuple’s priority is
equivalent to the corresponding probability of arrival of a
tuple with the same join attribute value on the other stream.
For instance, for rðiÞ the priority is pSðrðiÞÞ. Whenever the
buffer overflows, PROB ejects the tuple with the lowest
priority. Ties are broken by giving higher priority to the
tuple that arrived later. Note that the newly arriving tuple is
also a candidate for eviction.

This heuristic is motivated by the expectation that tuples
with a higher probability of finding incoming partner tuples
are the ones that produce the most output results. Even if a
newly arriving tuple with low partner-arrival probability
was admitted to memory, it would soon be replaced by a
later arriving tuple with higher partner-arrival probability,
hence, it seems better to greedily “hold on” to the best
tuples available.

Assuming that the arrival probabilities can be estimated
fairly accurately (if this is not possible, any online strategy
will perform poorly and, hence, one could use random-
tuple eviction instead) there is another intuitive reason why
PROB performs well: The probability of those inputs which
cause PROB to perform poorly is low. There are two main
scenarios where one expects PROB (or any online algorithm
for that matter) to perform poorly:

. PROB drops a tuple when in fact it should have
retained it since many joining partner tuples arrive
soon afterward on the other joining stream. How-
ever, the fact that PROB did not retain the tuple
implies that it had comparably low partner tuple
arrival probability and, hence, the probability that
several partner tuples of the discarded tuple arrive
in close succession while very few partner tuples
arrive for the retained tuples is low.

. The second scenario where PROB performs poorly
arises when PROB retains a tuple in memory for a
long time and very few or no partner tuples arrive
for that tuple on the other stream (S) during this
interval. In this case, since PROB has retained the
tuple in memory for a fairly long time, it implies that
the partner arrival probability for the retained tuple
is comparably high. Hence, the likelihood of the
event that very few partner tuples arrive on S for
this retained tuple while many more partners arrive
for some other tuple that arrived on stream R and
was dropped is low.

PROB can be used both for fixed memory allocation
between R and S, and also when the allocation is variable.
In the former case, there are two priority queues—one for R
and one for S-tuples. In the latter case, there is a single
priority queue for all in-memory tuples of both streams.

A practical issue is to compute the values of pRðÞ and pSðÞ.
Any online algorithm that with high probability produces
more output than an algorithm that randomly replaces
tuples in memory needs at least “good” approximations of
these probabilities. One possibility to estimate pRðÞ and pSðÞ
is to assume that their future distribution will be similar to
the distribution in recent history (similar to approaches for
online caching). Depending on the amount of available
memory the history statistics can be exact or approximate,
e.g., any of the previously proposed data stream histograms
or wavelets (see discussion of related work). Such statistics
over data streams are usually maintained by default in most
data stream processing systems since they constitute a basic
primitive and can be shared between multiple queries. Note
that rather than an exact knowledge of partner tuple arrival
probabilities, PROB only needs information corresponding
to the relative ordering between the partner tuple arrival
probabilities in order to evict the correct tuples. Also, the
performance of PROB is not affected much if the approx-
imate summary statistics interchanges the relative ordering
of the partner tuple arrival probabilities of tuples with
“similar” partner tuple arrival probabilities and, hence, the
estimates of the value probabilities do not need to be very
precise. The performance of PROB is fairly stable as long as
the priorities of tuples with vastly different partner tuple
arrival probabilities are correctly ordered by the summary
statistics used.

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 51

4.2.2 LIFE Heuristic

The LIFE heuristic is also based on estimates of the pRðÞ and
pSðÞ values. However, LIFE aims at giving more weight to
the remaining lifetime of a tuple. The priority of a tuple rðiÞ
with remaining lifetime t is computed as t � pSðrðiÞÞ. As with
PROB, the LIFE heuristic ejects the tuple with lowest
priority, with ties being broken by giving a higher
probability to a tuple that arrived later. Like PROB, LIFE
can be used for both fixed and variable memory allocation
between R and S-tuples.

Note that for a large window size, newly arriving tuples
are almost guaranteed to enter the memory because of their
high lifetime value. LIFE in general overestimates the
expected number of output tuples because tuples might
be evicted before they expire, whereas the priority calcula-
tions are based on time to expiry. This holds especially for
tuples with low pRðÞ or pSðÞ values. A better approach
would be to use the expected lifetime of a tuple for
computing the priority. This will be addressed in future
work (note that more complex algorithms which are based
on expected lifetime are also less robust against errors in
estimating pRðÞ and pSðÞ).

5 EXPERIMENTS

5.1 Static Join Approximation

In this section, we compare the performance of the Average
Degree Greedy (ADG) approximation algorithm with the
optimal dynamic programming-based algorithm (hence-
forth called OPTDP). We consider the dual version of the
static join approximation problem (maximize number of
retained output tuples). Recall that ADG guarantees a
2-approximation, and that the running times of ADG and
OPTDP are Oðc log cÞ and Oðck2Þ, respectively. In this
section, we evaluate the actual running times of ADG and
OPTDP as well as the approximation quality of ADG.

The input data is generated synthetically. For each
relation, we use a Zipfian distribution with skew parameter
z to generate the number of nodes in each of the c disjoint
Kurotowski components. The same skew parameter is used
for generating data in both bipartite partitions, however,
both distributions are generated independently. All running
times reported in the experiments below are the averages of
at least five runs on a 1.8 GHz Intel PIII machine running
RedHat Linux 9.

5.1.1 Approximation Quality

Fig. 4 compares the performance of ADG and the optimal
algorithm OPTDP for varying degrees of skew in the
distribution of the Kurotowski component sizes. In these

experiments, the size of the joining input relations was
50K tuples each, and the number of retained input tuples
(k) was set to 5K, while the number of Kurotowski
components ðcÞ was 1K. As can be seen from the figure,
ADG performs extremely well, producing over 99.5 percent
of the output tuples produced by OPTDP for varying
degrees of skew (note that the y-scale starts at 0.99). For
moderate skew, the performance of ADG is marginally
worse than OPTDP, but for very low and very high skew
ADG produces almost the same number of output tuples as
OPTDP. This behavior at low and high skews can be
explained as follows: At very low skew, most of the
Kurotowski components are of the same size and, hence,
choosing one over the other does not affect the join output
by much. At very high skew, some Kurotowski components
are clear “winners,” producing a large number of output
tuples, and these are selected by both OPTDP and ADG.
These components dominate the total number of join tuples
produced and, thus, the performance of ADG is very close
to OPTDP. Similar results were observed for other values of
k and c. In the above experiments, the average running time
of OPTDP was 26 seconds, as compared to 0:002 seconds
for ADG.

5.1.2 Running Time

Figs. 5 and 6 show (on a logscale) the running times of ADG
and OPTDP as the number of input tuples to be retained (k)
and the number of Kurotowski components (c) is varied. In
these experiments, the size of the joining relations was
50K tuples each, and the Kurotowski components were
generated using a Zipfian distribution with skew parameter
0:5. In the experiments in Fig. 5, the number of Kurotowski
components ðcÞ was 1K, while in the experiments in Fig. 6,
the number of retained tuples (k) was held constant at 5K.

As can be seen from Fig. 5, the running time of ADG is
three to four orders of magnitude less than that of OPTDP.
The running time of ADG is independent of k and remains

52 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

Fig. 4. ADG approximation. Fig. 5. Running time versus k.

Fig. 6. Running time versus c.

constant at 0:002 seconds. As we showed analytically, the
running time of OPTDP in the worst case increases
quadratically with k. In practice, the growth was almost
linear. (This linear growth is not obvious in the figure
because of the logarithmic y-scale.)

The effect of varying c on running times is shown in
Fig. 6. As expected, the running time of OPTDP increases
linearly with c, while ADG’s running time grows at a
slightly faster rate (Oðc log cÞ). However, the running time of
ADG, which is always below 0:02 seconds, still remains
much smaller than OPTDP whose running time varies
between 23 to 33 seconds.

5.1.3 Discussion of Experimental Results

The aim of the above experiments was to bring out the
tradeoffs involved between running time and approxima-
tion quality of the OPTDP and the ADG algorithms. As can
be seen from the graphs, the running time of ADG is orders
of magnitude below that of OPTDP, while the number of
outputs produced is almost identical. Hence, ADG provides
a viable alternative for scenarios where faster responses are
required or where the processors are already heavily
loaded, without sacrificing approximation quality by much.
In addition, the space requirement of ADG, which can be
implemented “in-place” and, thus, requires only OðcÞ space,
is lower than that of OPTDP (OðckÞ).

5.2 Dynamic Window Join Approximation

We perform an extensive evaluation of the sliding window
join approximation techniques suggested in Section 4.2 on
both synthetic and real-life data sets. We compare the
performance with the state of the art, i.e., dropping tuples
randomly from the join input buffers (henceforth referred to
as RAND), as well as with the optimal offline approach
OPT-offline described in Section 4.1. We will abbreviate
OPT-offline as OPT where appropriate. Our experiments
indicate that the simple heuristic approach (PROB) of
dropping tuples from buffers based on the probabilities of
the corresponding tuples arriving in the other stream does
surprisingly well in practice.

For solving the linear min-cost network flow problem
arising out of the optimal offline join approximation
algorithm, we used the CS2 network flow solver as
described in [20]. This solver is based on one of the fastest
known algorithms for min-cost flow problems, which still is
superlinear in the input size (cf. Section 4.1.2). Hence, for
all the experiments involving comparison with OPT, we
restrict the input length to 5,600 tuples. Note that all
algorithms store the first M=2 tuples from each stream in
memory and, therefore, output the same set of resulting join
tuples for these tuples. Hence, in order to prevent such
startup effects from dominating the number of output
tuples produced, we introduce a warmup phase during
which output is not counted. The warmup phase is selected
as twice the window size. This ensures that all the tuples
that filled the memory at the start of the experiment will
have expired, and the join approximation algorithm will
have reached a stable phase before generating output. Since
in our experiments, the join window size was at most 800,
the chosen input length of 5,600 tuples guarantees that for
any window size w, at least 4,000 tuples are processed after
the warmup phase of 2w. In our experiments, it turned out
that larger input size does not affect the validity of the
conclusions drawn from the graphs obtained on these
streams.

For our synthetic data sets, we used Zipfian distributions
with varying degrees of skew and correlation between the
data in the two joining streams. Within a stream, the data
values were generated in iid (independently and identically
distributed) fashion from the corresponding Zipfian dis-
tribution. For our real-life data set experiments, we used a
weather data set [23]. The input streams had the same tuple
arrival rates, with a tuple arriving on each stream at every
timestep.

For all experiments, the probabilities pRðÞ and pSðÞ used
by the heuristics (cf. Sections 4.2.1 and 4.2.2) are set
according to the actual distribution over the whole input
stream (determined empirically). Hence, at each moment in
time, both PROB and LIFE are in fact using approximate
values which might differ considerably from the true
“local” distribution for a given window.

5.2.1 Effect of Window Size

Our first set of experiments was aimed at studying the
behavior of the various join approximation algorithms for
different window sizes. Figs. 7 and 8 show the number of
join output tuples as the amount of available memory is
varied for the different algorithms for window sizes (w) of
400 and 800, respectively. In all our experiments where we
vary memory M, we vary it as 0:1w, 0:25w, 0:5w, w, and
1:5w. To guarantee exact computation of the join result,
M ¼ 2w would be necessary.1 The input data streams in
Figs. 7 and 8 are generated from Zipf distributions with
parameters 1 and 0. The domain size of the data was set to
50 (see [13], [14] for justification).

As expected, the behavior of the various algorithms is
similar for different window sizes. In the figures, EXACT
refers to the number of output tuples generated if the
sliding window join were to be computed exactly, i.e., with
2w memory. The number of output tuples generated by

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 53

1. Strictly speaking, only M ¼ 2w� 2 is needed because of the extra
memory cells provided by the two input buffer cells in the fast CPU model
(cf. Section 2.3).

Fig. 7. Window size w ¼ 400.

Fig. 8. Window size w ¼ 800.

RAND increases linearly with available memory, as ex-
pected. As can be seen from Figs. 7 and 8, the PROB
heuristic by far outperforms the RAND and LIFE ap-
proaches, and is very close to the OPT curve, which is the
optimal offline algorithm representing an upper bound on
the best performance (in terms of number of output tuples
generated) possible by any online algorithm. The poor
performance of LIFE is caused by the way it computes the
tuple priorities based on remaining lifetime and not
expected lifetime (cf. Section 4.2.2). Even though w ¼ 400
and w ¼ 800 are fairly small window sizes from a practical
point of view, they are large enough to give even tuples
with low pRðÞ and pSðÞ values a high enough priority to
replace better tuples which have a lower remaining lifetime.

Since the window size does not impact the nature of the
graphs obtained, the results for the rest of the experiments
in this section are shown only for a window size of 400.
Similar graphs were obtained for various other window
sizes in each of these cases.

5.2.2 Effect of Skew

If both data streams consist of tuples with uniformly
distributed join attribute values, we expect all online
algorithms to produce about the same number of output
tuples. The reason for this is that all the tuples in memory
have the same probability of seeing a counterpart (i.e., a
tuple with the same join attribute value) in the other stream,
therefore, there is no reason to prefer keeping one tuple
over another. This is equivalent to RAND’s strategy of
evicting random tuples from memory. Fig. 9 confirms our
prediction, showing the performance of the different
algorithms for a window size of 400 when both the input
streams have a uniform data distribution. Notice that, even
knowing the future (OPT curve) does not result in a major
improvement. This is in contrast to the results shown in
Fig. 7. There for an almost identical setup (the difference
being Zipf 1.0 distributed join attribute values in one
stream) both OPT and PROB are much more rapidly
approaching the exact result with increasing memory. The
nonuniform distribution generates tuples which are more
valuable than others because of the frequency of their join
attribute value in the stream. Both OPT and PROB
successfully identify these tuples and keep them in
memory.

As can be seen from Figs. 7, 8, and 9, the LIFE heuristic
does only marginally better than RAND for reasons
explained earlier. Similar behavior was obtained for other
data, hence, the LIFE approach is not included for
comparison in the remaining experiments in this section.

Figs. 10 and 11 nicely bring out the effect of skew in the
input data streams on the performance of the algorithms.
The number of output tuples generated by the RAND and

PROB algorithms is plotted as a fraction of the number of
tuples generated by OPT as a function of the Zipfian skew
parameter. Both the arriving input streams have Zipfian
distribution with the same parameter. In Fig. 10, the
distributions of the two input streams are uncorrelated,
while in Fig. 11, the two Zipfian distributions are perfectly
correlated, in the sense that the high (low) frequency values
on one stream are also high (respectively, low) frequency
values on the other stream. As can be seen from the graph,
for uniform data distribution (Zipf with parameter 0), the
performance of RAND and PROB is essentially identical as
has been noted earlier. However, as the skew in the input is
increased, PROB gains an advantage over RAND because it
is able to distinguish between tuples that have different
probabilities of joining with tuples on the other stream.

The graphs for both cases are similar, indicating that the
correlation between the two data streams does not affect the
relative performance of the algorithms. This is because, in
the case of PROB, the decision to retain or drop tuples from
one relation only depends on the data distribution of the
other joining relation and not on the its own data
distribution or the correlation between the two. Clearly in
the case of RAND, the eviction policy does not depend on
the data distributions at all. Thus, while most of the Zipfian
distribution experiments have been performed for uncorre-
lated streams, the results obtained hold for correlated and
“anticorrelated” (i.e., the high frequency values on one
stream are the low frequency values on the other stream
and vice versa) distributions as well. Note, however, that
correlation does affect the total number of output tuples
generated by the joins.

Both window and memory size in the experiment were
set to 400. Similarly shaped graphs were obtained for other
memory sizes. Note that, even for M ¼ w (i.e., at only
50 percent of the actually needed memory for exact
computation), the PROB approach does extremely well,
generating over 96 percent of the output tuples for input

54 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

Fig. 9. Uniform input. Fig. 10. Uncorrelated Zipf.

Fig. 11. Correlated Zipf.

with moderate to high skew that can be generated by the
optimal offline algorithm (OPT).

5.2.3 Variable Memory Allocation and Varying

Domain Size

The experimental results discussed so far were obtained for
a fixed memory allocation of M=2 to R and S, i.e., incoming
R-tuples (S-tuples) could only replace another R-tuple
(S-tuple) in memory. We also compared the performance
for the case when the memory allocated to each stream can
vary, while the total amount of memory is kept constant.
Hence, an incoming R-tuple can replace an S-tuple in
memory and vice versa. In the following, we will use PROB,
RAND, and OPT for the fixed memory algorithms, and
PROBV, RANDV, and OPTV for their variable memory
counterparts. Our experiments for uniform and Zipf
distributed data streams led to the expected results. Both
PROBV and OPTV performed better than their fixed-
allocation counterparts. The performance difference in-
creased with increasing difference in skew between the
distributions of R and S, but never exceeded 10 percent
(output size). As a tendency, the stream with the higher
Zipf parameter received more memory, up to a share of
75 percent. A more detailed discussion of the results can be
found in [13], [14].

In our experiments, it turned out that an increase in
domain size has opposite effects on the performance of OPT
and PROB. We observed that the performance of PROB gets
worse as compared to OPT, while the number of tuples
generated by OPT approaches the number of tuples in the
EXACT sliding window join. The main reason for this
behavior is that as the domain size becomes larger, the
distribution for a given Zipf parameter is less skewed. More
precisely, the distribution has a longer heavy tail and its
maximum frequency becomes smaller as the size of the
domain increases. The relative improvement of OPT versus
EXACT with increasing domain size is caused by the
increasing number of tuples with low arrival probabilities
in the tail of the Zipf distribution. This results in a higher
percentage of tuples for which no matching partner tuple
will arrive within the window. Since OPT knows the future,
it can safely discard these tuples without much effect on the
result size. In [13], [14], experimental results on the effect of
the domain size are discussed in detail.

5.2.4 Real-Life Data Set Experiments

For our real-life data set experiments, we used weather data
available at [23] which consists of cloud measurements
organized by month and collected over several years by
thousands of sensors located all over the globe, in land and
water. The data sets contain measurements such as the time

the reading was taken, sensor location, sky brightness,
cloud cover, solar altitude and others. For our experiments,
we chose the readings taken by the land sensors in the
month of September over two consecutive years (1985,
1986). These data sets contain just over a million tuples
each. The attributes of interest were the latitude and
longitude information, pinpointing the location of the
sensor. We performed a streaming sliding window join on
the two data sets using the latitude and longitude attributes
to identify sensors located physically near each other. We
divided locations on the earth into a 18 by 36 square grid
consisting of 10 degrees of latitude and longitude each, and
mapped sensors falling in the same grid cell to the same
location for the purpose of the join. (There were about
650 distinct location values). Such a join query could
potentially be used to examine correlations between values
measured by sensors in the same region, with the join
window enforcing that the matched readings are taken at
nearby points in time. For PROB, the frequency table of the
data values in the whole data set was used to estimate the
probabilities of the next incoming tuple.

The size of the join window was set to 5,000 and a plot of
the number of tuples output by the various join approxima-
tion methods with varying memory size is shown in Fig. 12.
This graph closely resembles those obtained for smaller
stream lengths and window and domain sizes (see Figs. 7
and 8). The performance of the variable and fixed memory
allocation versions PROB and PROBV were almost iden-
tical, indicating that the two input streams had similar data
distributions. This is made more apparent by the graph in
Fig. 13 which indicates that the memory allocation
remained more or less at the 50-50 mark (2,500) for the
entire duration of the join. The PROB and PROBV methods
again performed very well, generating over 90 percent of
the output tuples produced by EXACT with only 50 percent
of the memory. Note that we did not include a comparison
to OPT because the time and memory requirements of the
flow solver exceeded available resources.

5.2.5 Discussion of Experimental Results

We presented a comparison of the performance of several
join approximation techniques for computing sliding
window joins with limited memory. We showed the
efficacy of the fixed and variable memory versions of the
PROB technique on both synthetic and real-life data sets.
PROB clearly improves on the state of the art, i.e., random
tuple eviction and it can perform almost as well as the
optimal offline algorithm OPT-offline. As seen from the
graphs, the performance of PROB (measured in terms of the
number of join tuples output) degrades gracefully as the
amount of available memory decreases, and it performs
exceptionally well for skewed data, typically producing

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 55

Fig. 12. Weather data: performance. Fig. 13. Weather data: memory allocation.

over 90 percent of the total output with as little as 50 percent
of the memory (compared to the EXACT algorithm). In
cases where both the input streams have join attribute
values distributed uniformly at random, no online algo-
rithm can do better than evict tuples at random. In cases
where there is a large disparity in the skew of the two
joining streams, the variable memory allocation approaches
fare better than the fixed memory approaches.

The question of how to split the available memory
between the buffer space for join processing and any
summary structures is an important and complex one that
is beyond the scope of this article. However, we would like
to note that summary statistics about the frequencies of the
various domain values occurring in each stream are usually
a basic primitive required for answering and optimizing
virtually any type of query (not just joins) over the
corresponding streams. Hence, this summary space can be
shared by several queries, similar to the summary statistics
stored in a relational database system.

6 GENERALIZATION OF THE DYNAMIC WINDOW

JOIN APPROXIMATION

In Section 4, we introduced an optimal offline algorithm
and proposed two online heuristics. All three were
developed for standard equi-joins, i.e., where two tuples
join if the values of the join attribute(s) are equal.
Furthermore, we assumed that the tuples of streams R
and S arrive in synchrony, one per time unit. The window
size w and available memory M were fixed. These
assumptions obviously will not be satisfied by most
applications. In this section, we show how to generalize
the approaches.

6.1 Extensions of OPT-Offline

The flownetworkmodel forOPT-offline (cf. Section 4.1.1) has
the great advantage of enabling the efficient computation of a
baseline for evaluating the approximation quality of any real
online algorithm. In addition to that, it is fairly flexible.

6.1.1 More General Application Parameters

Varying window size. Variations of the window size w
over time can easily be incorporated into the flow graph.
Consider the wide box in Fig. 3 which highlights the
lifetime of tuple sð1Þ. Instead of all such boxes having the
same number of horizontal arcs (two in the example),
varying window size can be reflected by a correspondingly
larger or smaller number of these arcs. For instance, if the
window size temporarily shrinks to w ¼ 2 at time t ¼ 1,
then node sð1Þ : 3 would not exist and sð1Þ : 2 would only
have a single outgoing edge to sð2Þ : 2. It is interesting to
note that we can even model a different lifetime for each
single tuple.

As an extreme case, we can also model unbounded joins,
i.e., joins with no window restrictions. This can be done by
adding the corresponding horizontal arcs for each tuple and
each time instant after this tuple has arrived. For instance,
in Fig. 3, there would be horizontal arcs to new nodes rð0Þ :
3 and rð0Þ : 4, indicating that rð0Þ never expires.

Varying amount of memory. Dealing with resource
fluctuations, in this case memory, is of paramount
importance for applications. We show how such fluctua-
tions can be modeled by the flow graph. Recall that the
source node s has M outgoing arcs (ignoring the path for

output generated by matching input tuples which arrive at
the same time, e.g., the top path through node t ¼ 2 in
Fig. 3). Through these arcs a total flow of M is pushed,
modeling the amount of available memory. Allowing
variable memory implies that memory is added or removed
at certain time instants. The flow graph can reflect these
changes by introducing additional source and sink nodes
that adjust the flow for these time instants.

Consider time instant t ¼ 3 in Fig. 3 (tall box). Suppose
that at this time not only the new tuples rð3Þ and sð3Þ arrive,
but also the memory is reduced by m units. Fig. 14 shows
the modified section of the flow graph. We model the event
by adding a new sink node sinkð3Þ with demand m.
Furthermore, nodes rð1Þ : 3, rð2Þ : 3, sð1Þ : 3, and sð2Þ : 3
now each have an additional outgoing arc to sinkð3Þ. Hence,
at time t ¼ 3, exactly a flow of m will be redirected from the
tuples which are in memory at that time to the sink node,
reducing the flow and, hence, the modeled amount of
memory as desired.

Increasing amounts of memory can be modeled similarly,
but requires more care. Ifmmorememory slots are available
beginning at time t ¼ 3, we add a new source node sourceð3Þ
with supply m. This node has outgoing arcs to the next
dm=2e incoming pairs of R and S-tuples with the next higher
arrival times. In the example for m � 2, node sourceð3Þ is
connected to rð3Þ : 3 and sð3Þ : 3. For 2 < m � 4, it is
connected to rð3Þ : 3, sð3Þ : 3, rð4Þ : 4, and sð4Þ : 4, and so
on. This way of modeling larger memory increments by
more than two slots might appear artificial, but it perfectly
models reality. Even if more than two memory slots are
added at a certain time, there are only two newly arriving
tuples to fill them. Hence, the m� 2 remaining additional
memory slots are essentially irrelevant in that moment and
can only be filled at later times, two tuples at each time
instant.

There is one more subtlety to be considered when
modeling increasing memory. We illustrate it with an
example. Assume at time t the memory increases by 10 slots,
followed by a decrease by 16 slots at time tþ 2. In this case,
the increment by 10 would be distributed over five
consecutive time instants, hence, overlapping with the
decrement at time tþ 2. In such cases of artificial overlap,
we simply compute the aggregate change in memory and
only add the corresponding nodes. In the example, there
would be a source node with supply 4 and four outgoing
arcs to the tuples arriving at times t and tþ 1. For time tþ 2,
we add a sink node with demand 10 (=16-10+4). Notice that
this accurately reflects the real situation. At times t and
tþ 1, the effect of the added four memory slots is equivalent

56 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

Fig. 14. Memory shrinks at time 3.

to the effect of adding 10 new slots at time t (recall that only
at most two slots can be filled per time unit). From time
tþ 2, we have ensured that the memory reflects the overall
loss of six memory slots (compared to time t� 1).
Interestingly, if we have several phases of memory
increases overlapping each other, this simply leads to a
cascading effect of adding arcs from source nodes to tuples
at later time instants.

Asynchronous tuple arrival. Instead of exactly one tuple
per time unit, we allow any number of tuples to arrive at a
given time unit (including zero tuples). Notice that a sliding
window defined based on time units might contain a
varying number of tuples over time.

This case can be incorporated into the flow graph very
easily. Consider the tall box in Fig. 3 which highlights the
window contents at time t ¼ 3. Tuples rð3Þ : 3 and sð3Þ : 3
are the new tuples that arrive at that time. If asynchronous
arrival is possible, there might be no such tuple or several of
them. We can model this by adding the appropriate number
of nodes for each stream and by connecting the nodes from
previous tuples to them. In the example rð1Þ : 3, rð2Þ : 3,
sð1Þ : 3 and sð2Þ : 3 would have additional outgoing arcs to
these new tuples or would directly point to the tuples
arriving at time t ¼ 4.

Notice that we can even model continuous time
domains. All we need for our model is the arrival order
of the tuples. As before, we can model both fixed and
variable memory allocation between R and S.

6.1.2 Other Join Operators

The equi-join is arguably the most commonly used join
operator in database systems. In general, any predicate
over the schemas’ attributes could be used to match the
tuples of streams R and S. Common examples are join
conditions which are conjunctions of terms of the form
r:J1�s:J1, r:J1�c, and s:J1�c, where r and s are tuples
arriving in streams R and S, respectively; c denotes a
constant and � 2 f<;�;¼; 6¼;�; >g. Another popular join
operator from spatial applications is the spatial or "-join
that matches tuples r and s if their distance is less than or
equal to ".

Our flow model can handle all these join operators. In
fact, it can handle any subset of the cross-product
(including the cross product itself) of two data streams.
Hence, our model can by definition handle any join [33].
Notice that for each element of the cross-product of R and
S, limited to the contents of a window of size w, there is a
corresponding horizontal arc in the flow graph. In Fig. 3, arc
rð2Þ : 2 ! rð2Þ : 3 corresponds to the pair ðrð2Þ; sð3ÞÞ,
because it models that rð2Þ remained in memory until
time 3 when tuple sð3Þ : 3 arrives. In general, arc rðiÞ : j !
rðiÞ : jþ 1 corresponds to the pair ðrðiÞ; sðjþ 1ÞÞ, similarly
for the corresponding horizontal S-arcs. If the tuple pair
satisfies the join condition, the arc has cost factor -1,
otherwise zero.

6.1.3 Other Approximation Error Measures

The MAX-subset measure assigns the same benefit value to
all output tuples of the join. In practice, certain tuples might
be more valuable than others. For instance, in network
monitoring systems, packages that might indicate a denial
of service attack are of higher importance than others. Our
model is general enough to assign a different priority to

each single output tuple. Hence, we cannot only handle
applications where tuples with the same value have the
same priority, but also cases where the priority of an output
tuple is defined by an arbitrary function val : R� S ! IR,
i.e., a function that assigns a real number independently to
each possible output tuple. In the model, we simply add the
cost factor �valððrðiÞ; sðjþ 1ÞÞ to arc rðiÞ : j ! rðiÞ : jþ 1,
similarly for the horizontal S-arcs.

The measure we are optimizing now is to approximate
the sliding window join with limited memory such that the
sum of the priorities of the join tuples output by the
approximation is as large as possible. This enables our
model to support value-based QoS specifications [7].

6.1.4 Discussion of the OPT-Offline Extensions

With the above extensions, we can model any application
with synchronous or asynchronous tuple arrival, discrete or
continuous time, fixed or varying window size, windows
defined based on time or number of tuples, fixed or varying
memory size, fixed or varying memory allocation between
R and S, any type of join condition, and any approximation
quality measures that assign weights (priorities) to output
tuples. In fact, the only relevant property we could think of,
which cannot be modeled by the flow graph, are tuple
priorities that depend on the output history, i.e., if certain
previous output tuples have been generated or not.

All generalizations we proposed for the flow graph
model retain the polynomial complexity and, hence, enable
efficient computation of the offline benchmark.

6.2 Extensions of the Online Heuristics

Recall that the PROB and LIFE heuristics assign priorities to
input tuples in the current window in order to decide which
tuples to drop in case of resource shortage. Both heuristics
generalize to varying window size, varying amount of
memory, and asynchronous tuple arrival (including a
continuous time domain) in a straightforward manner.
For example, if the window size changes, the behavior of
PROB does not change (except for expiring tuples at the
appropriate time), while LIFE modifies the priority estima-
tion calculation where the remaining lifetime is computed
by taking into account the new window size. For unbounded
joins, i.e., joins with no window restriction, LIFE would be
meaningless (since no tuple ever expires), but PROB would
just work in the same manner as before. Note that over time,
all memory slots will fill up with high-priority tuples.

If other join operators or other approximation error
measures are used, one simply needs to change the priority
computation accordingly. This is identical to the way we
change the cost factor of horizontal edges in the flow model.
The only difference is that here we do not know the future,
hence, the benefit of an input tuple is weighted by the
probability of seeing a matching partner in the other stream.

Interestingly, the heuristics can even handle the case
when priorities of current tuples depend on past output (or
drops). All we need is some compact synopsis data
structure that summarizes the relevant properties of the
previous output. Here, we can select from a variety of
efficient stream synopsis techniques (see discussion in
Section 7).

7 RELATED WORK

There is a growing interest in the general field of data stream
processing. The general issues and some architectures for

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 57

stream processing systems are discussed in [3], [4](Stan-
ford’s STREAM) and [7] (Aurora). The latter introduces the
notions of QoS-optimization based on QoS graphs for
response times, tuple drops, and values produced. Our
work is the first to examine in detail efficient drop-based
QoS optimization for window joins. As such, our techniques
can well be integrated into the Aurora query processor.

In a recent paper, Kang et al. [29] propose a unit-time-
based cost model for selecting the appropriate implementa-
tion and memory allocation for the join of two input
streams according to their arrival rates. Load is shed by
simple random eviction. Our work addresses more complex
memory allocation problems based on the values of single
tuples (hence, the notion of semantic join approximation
introduced in this paper). In that respect, our work is also
related to uniform sampling over joins [9]. However, our
goal is to maximize the accuracy of the output, not its
statistical properties (e.g., being a uniform sample).

In a recent paper, Tatbul et al. [37] propose several load
shedding approaches for data stream processing. The goal
is to find the optimal position and drop rate of operators
which are inserted into the query plan of the Aurora query
network. This work is complementary to ours in the sense
that our techniques specifically target load shedding for
joins and provide results about the theoretical foundations
of approximating static and dynamic joins.

Hammad et al. [24] propose new techniques for schedul-
ing for shared window joins over data streams. In other
recent work on joins over data streams, Viglas et al. [41]
propose multiway join operators to speed up the generation
of a prefix of the overall join output. Shah et al. [36] examine
how to process stream queries in parallel on a cluster.

Adaptive query processing systems like Telegraph [26],
NiagaraCQ [10], sensor database systems [6], and adaptive
techniques as proposed in [8], [28], [32] aim at providing the
best possible query performance in continuously changing
environments like the Internet. Our algorithms can also
adapt to changing amounts of available resources and
hence can be used in adaptive query processing systems.

Arasu et al. [2] examine when stream queries can be
computed with bounded storage. Joins in general might
require unbounded memory, hence, in data stream systems,
they are restricted to computation over sliding windows as
discussed earlier.

For maintaining online data stream statistics, e.g., in
order to compute the tuple priorities for join memory
replacement, some of the recently proposed stream aggre-
gation approaches could be applied. Recent work includes
[15], [16], [19], [21], [22], [39].

8 CONCLUSIONS AND FUTURE WORK

We discussed the problem of approximately computing
sliding window joins for data streams. We defined the
problem space of fine grained tuple-based join approxima-
tions using different set error measures and we examined
the MAX-subset measure in depth and gave optimal offline
and good online algorithms for sliding window joins. We
believe that this work shows that semantic join approximation,
i.e., adapting to resource shortages by dropping tuples
based on their values, is clearly superior to random load
shedding at the cost of a small overhead for maintaining
simple stream statistics.

We showed how our techniques for sliding window join
approximation, both the optimal offline benchmark algo-
rithm and the online heuristics, can be extended to capture

almost any possible application scenario, including a
general class of approximation quality measures, asynchro-
nous tuple arrival, continuous time domain, any join
operator, windows defined based on tuples or time, and
variations in window size and resources. For the static join
case, we provided hardness results and optimal and
approximate algorithms for the MAX-subset measure.

Nevertheless, this work only examined part of the
overall problem space, and many problems remain open,
e.g., developing efficient algorithms for the Archive-metric
and examining the other join processing models, especially
the slow-CPU case. Another interesting direction of future
work is to examine how multiple queries can efficiently
share resources and how to combine semantic join approx-
imation with the join implementation selection in [29]. Also,
for complex queries which involve joins and other
operators, new approximation techniques are required.
We could easily integrate aggregate operators like SUM on
the join output, and selections on the join inputs. On the
other hand, for instance, optimizing MAX-subset for each
single node of a join tree will not optimize MAX-subset
overall. Examining complex queries therefore is another
challenging problem which will be addressed as part of our
future work.

Supplemental materials can be found on the Computer
Society Digital Library at http://computer.org/tkde/
archives.htm.

ACKNOWLEDGMENTS

The authors would like to thank Rohit Ananthakrishna, Al
Demers, and Alin Dobra for helpful discussions. They
would also like to thank the anonymous reviewers for their
valuable feedback which greatly helped in improving this
paper. The authors are supported by US National Science
Foundation grants IIS-0330201, CCF-0205452, and IIS-
0133481, and by a gift from Microsoft. Any opinions,
findings, conclusions, or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the sponsors.

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, 1993.

[2] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom,
“Characterizing Memory Requirements for Queries over Contin-
uous Data Streams,” Proc. Symp. Principles of Database Systems
(PODS), pp. 221-232, 2002.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and Issues in Data Stream Systems,” Proc. Symp.
Principles of Database Systems (PODS), pp. 1-16, 2002.

[4] S. Babu and J. Widom, “Continuous Queries over Data Streams,”
ACM SIGMOD Record, vol. 30, no. 3, pp. 109-120, 2001.

[5] D. Barbará, W. DuMouchel, C. Faloutsos, P.J. Haas, J.M.
Hellerstein, Y.E. Ioannidis, H.V. Jagadish, T. Johnson, R.T. Ng,
V. Poosala, K.A. Ross, and K.C. Sevcik, “The New Jersey Data
Reduction Report,” IEEE Data Eng. Bull., vol. 20, no. 4, pp. 3-45,
1997.

[6] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards Sensor Database
Systems,” Proc. Int’l Conf. Mobile Data Management (MDM), pp. 3-
14, 2001.

[7] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G.
Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring
Streams—A New Class of Data Management Applications,” Proc.
Int’l Conf. Very Large Databases (VLDB), 2002.

[8] S. Chandrasekaran and M.J. Franklin, “Streaming Queries over
Streaming Data,” Proc. Int’l Conf. Very Large Databases (VLDB),
2002.

58 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 1, JANUARY 2005

[9] S. Chaudhuri, R. Motwani, and V.R. Narasayya, “On Random
Sampling over Joins,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 263-274, 1999.

[10] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A
Scalable Continuous Query System for Internet Databases,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 379-390, 2000.

[11] C.D. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O.
Spatscheck, “Gigascope: High Performance Network Monitoring
with an SQL Interface,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, p. 623, 2002.

[12] A. Das, J. Gehrke, and M. Riedewald, “Approximate Join
Processing over Data Streams,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 40-51, 2003.

[13] A. Das, J. Gehrke, and M. Riedewald, “Semantic Approximation
of Data Stream Joins,” Technical Report TR2004-1932, Cornell
Univ., 2004, http://techreports.library.cornell.edu.

[14] A. Das, J. Gehrke, and M. Riedewald, “Semantic Approximation
of Data Stream Joins (supplementary material),” CS Digital
Library, available at http://computer.org/tkde/archives.htm,
2004.

[15] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
Stream Statistics over Sliding Windows,” Proc. ACM-SIAM Symp.
Discrete Algorithms (SODA), pp. 635-644, 2002.

[16] A. Dobra, M.N. Garofalakis, J. Gehrke, and R. Rastogi, “Processing
Complex Aggregate Queries over Data Streams,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 61-72, 2002.

[17] M.N. Garofalakis, J. Gehrke, and R. Rastogi, “Querying and
Mining Data Streams: You Only Get One Look, Proc. ACM
SIGMOD Int’l Conf. Management of Data, 2002.

[18] IEEE Data Eng. Bull., special issue on data stream processing,
J. Gehrke, ed., vol. 26, 2003.

[19] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss,
“Surfing Wavelets on Streams: One-Pass Summaries for Approx-
imate Aggregate Queries,” Proc. Int’l Conf. Very Large Databases
(VLDB), pp. 79-88, 2001.

[20] A.V. Goldberg, “An Efficient Implementation of a Scaling
Minimum-Cost Flow Algorithm,” J. Algorithms, vol. 22, no. 1,
pp. 1-29, 1997.

[21] M. Greenwald and S. Khanna, “Space-Efficient Online Computa-
tion of Quantile Summaries,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 58-65, 2001.

[22] S. Guha, N. Koudas, and K. Shim, “Data-Streams and Histo-
grams,” Proc. ACM Symp. Theory of Computing (STOC), pp. 471-
475, 2001.

[23] C.J. Hahn, S.G. Warren, and J. London, “Edited Synoptic Cloud
Reports from Ships and Land Stations over the Globe,” 1982-1991,
http://cdiac.esd.ornl.gov/ftp/ndp026b, 1996.

[24] M.A. Hammad, M.J. Franklin, W.G. Aref, and A.K. Elmagarmid,
“Scheduling for Shared Window Joins over Data Streams,” Proc.
Int’l Conf. Very Large Databases (VLDB), pp. 297-308, 2003.

[25] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining.MIT
Press, 2001.

[26] J.M. Hellerstein, M.J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hildrum, S. Madden, V. Raman, and M.A. Shah, “Adaptive
Query Processing: Technology in Evolution,” IEEE Data Eng. Bull.,
vol. 23, no. 2, pp. 7-18, 2000.

[27] Y. E. Ioannidis and V. Poosala, “Histogram-Based Approximation
of Set-Valued Query-Answers,” Proc. Int’l Conf. Very Large
Databases (VLDB), pp. 174-185, 1999.

[28] Z.G. Ives, D. Florescu, M. Friedman, A.Y. Levy, and D.S. Weld,
“An Adaptive Query Execution System for Data Integration,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 299-310,
1999.

[29] J. Kang, J.F. Naughton, and S.D. Viglas, “Evaluating Window
Joins over Unbounded Streams,” Proc. Int’l Conf. Data Eng. (ICDE),
2003.

[30] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse Nearest
Neighbor Aggregates over Data Streams,” Proc. Int’l Conf. Very
Large Databases (VLDB), 2002.

[31] S. Madden and M.J. Franklin, “Fjording the Stream: An
Architecture for Queries over Streaming Sensor Data,” Proc. Int’l
Conf. Data Eng. (ICDE), 2002.

[32] S.R. Madden, M.A. Shah, J.M. Hellerstein, and V. Raman,
“Continuously Adaptive Continuous Queries over Streams,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, 2002.

[33] R. Ramakrishnan and J. Gehrke, Database Management Systems,
third ed. McGraw-Hill, 2003.

[34] R.T. Rockafellar, Network Flows and Monotropic Optimization. John
Wiley & Sons, 1984.

[35] Y. Rubner, C. Tomasi, and L.J. Guibas, “A Metric for Distributions
with Applications to Image Databases,” Proc. Int’l Conf. Computer
Vision (ICCV), pp. 207-214, 1998.

[36] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, and M.J. Franklin,
“Flux: An Adaptive Partitioning Operator for Continuous Query
Systems,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 25-36, 2003.

[37] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M.
Stonebraker, “Load Shedding in a Data Stream Manager,” Proc.
Int’l Conf. Very Large Databases (VLDB), pp. 309-320, 2003.

[38] Stanford STREAM Team, Stream Query Repository, http://
www-db.stanford.edu/stream/sqr, 2004.

[39] N. Thaper, S. Guha, P. Indyk, and N. Koudas, “Dynamic
Multidimensional Histograms,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, 2002.

[40] C.J. van Rijsbergen, Information Retrieval, second ed. Butterworths,
1979.

[41] S.D. Viglas, J. Burger, and J.F. Naughton, “Maximizing the Output
Rate of Multi-Way Join Queries over Streaming Information
Sources,” Proc. Int’l Conf. Very Large Databases (VLDB), pp. 285-296,
2003.

Abhinandan Das received the BTech degree in
computer science from the Indian Institute of
Technology (Bombay) in 2000. He is currently
pursuing the PhD degree in computer science at
Cornell University under the supervision of
Professor Johannes Gehrke. His graduate stu-
dies are supported in part by a Cornell Sage
Graduate Fellowship. His research interests
include design and analysis of algorithms,
databases, data stream algorithms, and distrib-
uted systems.

Johannes Gehrke received the PhD degree in
computer science from the University of Wis-
consin-Madison in 1999. His graduate studies
were supported by a Fulbright fellowship and an
IBM fellowship. He is an assistant professor in
the Department of Computer Science at Cornell
University. Dr. Gehrke’s research interests are in
the areas of data mining, data stream proces-
sing, and distributed data management for
sensor networks and peer-to-peer networks.

He has received a US National Science Foundation Career Award, an
Arthur P. Sloan Fellowship, an IBM Faculty Award, and the Cornell
College of Engineering James and Mary Tien Excellence in Teaching
Award. He is the author of numerous publications on data mining and
database systems, and he coauthor of the undergraduate textbook
Database Management Systems (McGraw-Hill, 2002), used at uni-
versities all over the world. He is a member of the IEEE and the IEEE
Computer Society.

Mirek Riedewald received the undergraduate
degree (diploma) in computer science from the
University of the Saarland, Germany, in 1998
and the PhD degree in computer science from
the University of California, Santa Barbara, in
2002. Currently, he holds a research associate
position at Cornell University. Dr. Riedewald’s
research interests include database and infor-
mation systems, especially data stream proces-
sing, Online Analytical Processing (OLAP),

digital libraries, and distributed systems. His work has been published
in the proceedings of prestigious scientific conferences like VLDB and
ACM SIGMOD, and in books by Kluwer Academic Publishers and Idea
Group Publishing. He has been member of the program committee for
leading conferences like ACM SIGMOD, ACM SIGKDD, and ICML. He
is a member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DAS ET AL.: SEMANTIC APPROXIMATION OF DATA STREAM JOINS 59

