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Abstract

An increasing number of organizations are currently
working on ways to express and provide location infor-
mation to services and applications. A location aware
system knows the position of each component, and it
is able to track devices through changes due to move-
ment. In this context, data management issues such
as efficient storage and retrieval of data through fre-
quent updates pose new challenges. While we believe
that spatial queries in general are going to gain in im-
portance due to the emerging type of applications, we
are particularly interested in the discovery of influence
regions and influence sets around a query point. An
influence set is formed by all points that have ¢ as their
nearest neighbor, and are located within the bound-
aries of an influence region. In this paper we pro-
pose for the first time a technique that reduces such a
query to the more familiar nearest neighbor and range
queries. These queries not only perform well in a dy-
namic environment, but also allow for their domain
to be specified on demand. Additionally, the method
we propose is based on already existing indexing and
retrieval framework, thus facilitating integration with
more complex location queries.

1 Introduction

“Ubiquitous computing spreads intelligence and con-
nectivity to more or less everything. [ --] You name
it, and someone, sooner or later, will put a chip in
it.” [Tha00]. Mobile data management in a ubiquitous
computing context, although a relatively new area, of-
fers challenging research problems with great market
potential. The new set of applications built on top of
the data management layer for mobile devices, require
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the development of new computation models and algo-
rithms. Due to the inherent properties of mobility, an
increasing number of these applications are location,
and in general, context aware. A location aware sys-
tem knows the location of each component, and is able
to use this information to enhance the operation of the
system. By “enhancement” we mean either providing,
improving, or redirecting services. While research has
focused on developing architectures for location aware
systems, less attention has been paid to the funda-
mental and challenging problems from the data man-
agement perspective. Complexity arises at all levels
of data management; in capturing, representing and
processing contextual data. The framework that we
consider to be appropriate for the data management of
mobile devices has several reoccurring features. First,
information about servers (also referred to as sites)
is relatively static, with a very low frequency of up-
dates. This information can be indexed and queried
in traditional ways. Second, customers or mobile de-
vices (which we will call ”points”) change location fre-
quently, and the amount of precomputation based on
their coordinates should be minimal.

We expect that due to the emergence of location
based applications, spatial queries such as range, near-
est neighbor and reverse nearest neighbor will play a
fundamental role in the processing and analysis of lo-
cation data. In most cases, query processing meth-
ods need to be reformulated to take into consideration
requirements of new applications. While a number
of solutions have been proposed for nearest neighbor
queries, reverse nearest neighbors have no existent so-
lution adaptable to the requirements of location based
services. This makes the exploration of possible new
methods a priority in defining an appropriate frame-
work for indexing and querying the location of mobile
devices.

Intuitively, a reverse nearest neighbor query is sig-
nificant because it retrieves the influence set around
the query point ¢g. An influence set is formed by all
points that have ¢ as their nearest neighbor (NN),



and are located within the boundaries of an influ-
ence region. It is interesting to note that, although
the classes of NN and RNN [KMO00] queries are di-
rectly related, solutions from the first type of queries
cannot be directly applied to the latter. The differ-
ence comes from the fact that if a data point p is
an RNN(q) (g is the nearest neighbor of p), it does
not imply that p is the nearest neighbor NN(q) of
g. When formalized in [KMOO], reverse nearest neigh-
bor queries were described as being either mono or
bi-chromatic. The number of colors is dependent on
the number of distinct types of data points. In the
mono-chromatic case, all the points in the database
are considered of the same category. By contrast,
bi-chromatic queries assume that the data points in-
volved in the computation are of two types, grouped
as points and sites. For a query site ¢, an RNN(q)
query retrieves all the points that are closer to ¢ than
to any other site. Although mono-chromatic reverse
nearest neighbor queries have a variety of applications,
in the context of location aware services naturally bi-
chromatic RNN queries have a wider range of appli-
cations. In this setting, queries inherently have two
types of data: the providers (sites) and the consumers
of services (points).

This paper approaches a problem that previously
has not been analyzed in the context of dynamic
databases, although it applies to an emerging class of
applications based on location aware services. We be-
lieve that this paper introduces several contributions
in understanding the class of reverse nearest neighbor
queries and preparing it for emerging mobile applica-
tions. Most importantly:

e we show how the process of discovering influence
sets can be reduced to nearest neighbor and range
queries. Thus an RNN query can be answered
efficiently using standard techniques, without the
need to pre-compute additional information or to
develop new index structures. We therefore avoid
the storage and update overhead due to precom-
putation, an aspect especially important in the
case of dynamic databases such as those keeping
track of mobile devices. Also, simplifying RN N
queries to a sequence of more familiar types of
spatial queries, allows for straight-forward inte-
gration with complex queries.

e RNN query definition such as the partitioning of
the data into service providers and consumers now
can be defined on-demand. 1t is an important as-
pect, especially in mobile applications where the
features between sets of devices can be sometimes
interchanged.

The organization of this paper is the following: We
start by reviewing in Section 2 the previous work on
RNN queries and discuss its shortcomings when placed

in a mobile context. Next, in Section 4, we introduce
our solution for answering reverse nearest neighbor
queries. Finally, an experimental evaluation in Sec-
tion 5 is presented in support of our proposed algo-
rithm. We conclude with a discussion and directions
for future work in Section 6.

2 Background and Related Work

Most applications based on tracking mobile devices
need to support the storage and retrieval of location
related information. For these applications, there is
the need for new efficient algorithms that perform well
under the load of frequently updated databases. We
believe that existing solutions for answering spatial
queries should be revisited from the perspective of
the evolving applications. In this context, one of the
classes of queries that can prove to be fundamental
is that of discovery of influence regions and sets with
reverse nearest neighbors [KMO00]. Unlike the related
nearest neighbor NN (q) queries that return the data
points closest to a given query point ¢, RN N(q) out-
puts the data points that have ¢ as their nearest neigh-
bor. We chose the distance metric to be Euclidean, al-
though the algorithms we propose are not restricted to
this assumption. Formally, if we let the database DB
contain points p € {p1,p2,---p;i-- -}, and the distance
between two points p; and p; is d(p;, p;), then:

e nearest neighbor query NN (q) =
{pi € DB|Vp € (DB — {pi}).d(q.pi) < d(q.p)}-

p; is an answer to query N N(q) if it is not further
(according to a given distance metric) from ¢ than
any other points in database DB.

e mono-chromatic reverse nearest neighbor query
RNN(q)mono =
{pi € DB|Vp € (DB —{pi}),d(qp:) < d(pi,p)}
p; is returned for query RN N (q) only if the dis-
tance from p; to ¢ is not greater than any distance
from p; to another data point in DB.

For the purpose of studying spatial queries on mo-
bile databases, our underlying assumption is that there
are two types of data, namely sites and points. Let
database D By;ses store the location of the sites, while
database DBj,ints indexes the location of all the
points. Note that in the context of bi-chromatic data
it is straight forward to implement nearest neighbor
methods designed for the mono-chromatic case, while
RNN queries are dependent on the distinction be-
tween data sets.

e bi-chromatic nearest neighbor
RNN(q)pi =

{pi € DBpoints|vs € DBsite37d(Q7pi) < d(pl,S)}
Given a query site ¢, RNN(q) retrieves all data
points in DB,,,ints that are closer to g than to any

other site in D Byjzes.

reverse query



Note that, for the remainder of this paper, we will
use the notation RNN(g) to mean RNN(q)p; unless
specified otherwise.

The only previous solution that pertains to bi-
chromatic RNN queries was introduced by [KMO00], to-
gether with the problem formulation. It is based on
the fact that given the data sets D Bgjtes and D Bpoints,
one can precompute nearest neighbor distances and
store them in an RNN — tree. For each data point
D € DBpoints, the RNN — tree stores the description
of the nearest neighbor circle by its radius (p, NN(p)),
where p € DBpyints and NN(p) € DBgjes. For
a query site ¢ € DBgies, RNN(q) retrieves points
P € DBpyints such that ¢ is inside the nearest neigh-
bor circle of p. Reverse nearest neighbor queries are
then answered by point enclosure queries in the RNN-
tree.

Our main interest lies in providing algorithms to
help construct applications for mobile devices. For
static databases, precomputing the nearest neighbor
is an efficient method. However, when applied to
the very dynamic databases found in mobile appli-
cations, this type of solution has two inherent con-
straints. First, the domain of RNN queries has to
be pre-defined. Especially in the poly-chromatic case,
we would like to allow queries to identify on demand
the data sets they access. Second, in the case of dy-
namic databases, updates become fairly expensive. To
support updates, [KMOO] introduce a nearest neighbor
tree NN — tree in addition to the RNN — tree. The
assumption is that the data management framework
supports both point as well as spatial data. Inserting a
point p' leads to the modification of the nearest neigh-
bor circles for all points p = RNN(p') as well as the
computation and insertion of the new nearest neighbor
circle (p', NN(p')) in the RNN — tree. Both the in-
sertion and the deletion of an element involve searches
and modification in both indexing trees N N —tree and
RNN — tree.

The only other published solutions for the class
of reverse nearest neighbor queries referred to mono-
chromatic queries [SAA00]. Recall that in the mono-
chromatic case, there is no distinction between data
sets, as for example between points and sites. In this
framework, the work of [SAA00], takes advantage of
the geometrical properties of reverse nearest neighbors
in the data space. The underlying observation is that,
for a given dimensionality of the data space, there is an
upper bound on the number of points to be returned
by the RN N(q) query. The algorithm in [SAAQQ] par-
titions the space around query point g, finds a nearest
neighbor in each region and then verifies if the candi-
dates are the correct reverse nearest neighbors. The
advantage of this type of approach is that it relies on
the existing indexing structure, a standard R-tree, and
does not require any additional data structures specif-
ically for RNN queries. Our goal is to provide the

same benefits from using the existing database frame-
work, but in the context of a bi-chromatic class of RNN
queries. For our purpose, this method specifically pro-
posed for mono-chromatic RNN queries, cannot ac-
commodate the bi-chromatic case.

3 Preliminaries

Our goal is to add efficient RN N capability without
imposing any update overhead to the databases. We
present a first method that reduces the retrieval of
influence sets to the more thoroughly studied and al-
ready optimized nearest neighbor and range queries.
Since our method does not rely on data structures ad-
ditional to the existing indexing and support for near-
est neighbor and range queries, RN N queries do not
introduce update overhead.

Given a set DBgjtes of sites, a set DBpoints of
points, and a query site ¢, RNN(q) finds all points
that have ¢ as their nearest neighbor site. In order to
implement a fast method for answering bi-chromatic
RN N queries with no pre-computation, we can divide
the problem into two phases, and improve their com-
putation/I/O cost accordingly. Note however that the
distinction between these two phases is done mostly
to clarify the requirements, and it will be modified
slightly during the presentation of the algorithm de-
velopment. For a given query site g, the first phase
involves the processing of information on the location
of sites from D By;tes, and the computation of the re-
gion of influence I, around ¢. I, is defined to have
the property that any point within its boundaries is
closer to ¢ than to any other site s in DBgjes. Then
any point p in DB,ints that is constrained by region
I, (calculated based on the data in DBgjes) must be
closer to ¢q than to any other s in D Bg;.s (Figure 1(a)).
The on-the-fly computation of I, can be very expensive
if all the distances between points and sites are com-
pared; a practical solution should be able to identify
the influence region based only a subset of the data.

The second phase retrieves points in the influence
set, i.e., points in D Bp,inss that are within the range of
region I, (Figure 1(b)). Since the latter is a straight
forward range query, the difficulty is in defining the
constraints of the influence region.

The definition of the influence region I, is equiv-
alent by construction to that of Voronoi diagrams
[BKOS00]. The Voronoi Diagram of a collection of
sites is the partition of space into cells, each of which
consists of the points closer to one particular site than
to any others.

Definition 1 For any site s € DBy and a given dis-
tance function d() the Voronoi cell of order 1 of s is
defined as {p € DBy|V(s' € DBy — {s} : d(p,s) <
d(p,s')}.

In the field of data management, the properties of
Voronoi cells have recently received more attention.
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(a) phase 1: compute influence
region Iq in DBsites

(b) phase 2: retrieve pointsin
DBpointsbased on Iq

Figure 1: Answering RNN Queries in Two Phases

In [BKKS98] it was proposed to store approximations
of Voronoi cells in an indexing Vornoi-tree in order
to support fast nearest neighbor queries. The signifi-
cance of a Voronoi cell in this case is that, if the query
point ¢ falls within a point p’s Voronoi cell, then q is
closer to p than to any other point and therefore p
is a nearest neighbor. The key to the solution pro-
posed by [BKKS98] is that it uses approzimations
to Voronoi cells, i.e., minimum bounding boxes as
an upper bound to the Voronoi cells. A first argu-
ment against using this type of approach for RNN
queries is that, to exploit its benefits, the query site
q is constrained to already indexed points in D Byites
and in the Voronoi-tree. Second, while an approxima-
tion is sufficient to answer nearest neighbor queries,
answering reverse nearest neighbor queries requires in-
formation about the exact constraints of the Voronoi
cell. Unlike the nearest neighbor queries, comparison
is then needed between distances from all points in
D Bypoints inside the approximation with all the sites in
DBy;tes. Additionally, in cases such as location aware
applications tracking mobile devices, updates are fre-
quent. The overhead of maintaining the pre-computed
Voronoi diagram in the form of a Voronoi-tree becomes
more critical.

The discovery of influence sets requires a method to
retrieve all information necessary in defining an influ-
ence region (or Voronoi cell), without pre-computation
(to avoid high maintenance costs). More, the retrieval
of this information should be efficient. We next give
the details of such a method.

4 The Approximate, Refine and Filter
Method

Recall that, for clarity in the presentation of the al-
gorithm’s development, we divided the method for
answering poly-chromatic RNN(q) queries into two
phases:

1. First, given a set of sites in the database D Biijtes
and a query point ¢, we calculate the boundaries
of the influence region I,.

2. Following the computation of the influence region,
we retrieve all the points in the database D Bpoints
that lie within the range of I,. These points form
the influence set of q.

Since the second phase of the algorithm is simply
a range query, we will concentrate on defining the
boundaries of an influence region I,. Computing the
boundaries of influence region I, by comparing the lo-
cation of ¢ with that of all the sites in D Bgjjes is im-
practical. The way to reduce this cost is to make use
of approximations as a first step in retrieving the exact
boundaries of region I,, without accessing all the data
in DBgjtes. For a correct and efficient computation of
the influence region, we further subdivide this phase
into the following:

e Compute Approz(I;), a first approximation to I,
based only on the location of a small subset of sites
from D Bgtes

e Refine the approximation by inferring boundaries
on the location of all the sites needed to define
the exact I,. Based on this approximation to the
influence region I, Approxz(I;), we can define the
constraints of a region Refine(I;) such that it
includes all the sites in D By;;e5 needed to improve
the first approximation to /.

Compute Approximation to I, Approz(l,)

A first approximation Approz(I;) can generally be
computed by considering only the location of query
site ¢ and a subset of the sites in DBgjses. We choose
this subset to be the nearest neighbors in each quad-
rant formed by axes centered at g and parallel with the
original axes. This selection of sites is semi-arbitrary.
The sites in D Bgtes found by performing simultane-
ous NN queries [BEKS00, BBK0(] in all quadrants,
together with the query site, are then used to compute
Approz(I;). Since the nearest neighbors are closer
to the site ¢ than other sites, there is a considerable
chance that they indeed restrict the exact influence
region I,.



Finding the boundaries of Approz(I;) is a neces-
sary step, but not sufficient. If the second phase of
the algorithm uses the approximation to the Voronoi
cell rather than the exact constraints, then the RN N
query returns a superset of the reverse nearest neigh-
bors of g. Consequently, some of the data points in the
answer to RN N (q) may be closer to a site in D Bgjtes
than to ¢. In this case ,without computing the exact
boundaries of I, a range query based on Approz(1,)
can return an incorrect answer.

0O site E can improve

or

! OB the approximation

A)

/Y
[ 8

Approx(l1q)
based on sites e)
A,B,CD

C

Figure 2: Point E Can Improve the First Approxima-
tion of the Voronoi Cell

Example: Consider the subset of the database
D Bgites, with sites {A, B,C, D, E} in Figure 2. If we
divide the space around query site ¢ into quadrants,
the computation of the Voronoi cell based on a nearest
neighbor from each quadrant ,({A, B,C,D}), defines
a region Approz(I;) that includes and is larger than
the exact influence region I;. The boundaries of this
approximation to the influence region are easily ob-
tained by calculating the intersection of the bisectors
of |gA|, |¢B|, 1¢C|, |¢D|. Since Approx(I;) is calcu-
lated using only a subset of the constraints that define
the exact I, it spans over a superset of the points in
DBpoints- If in the second phase of the RNN algo-
rithm we perform a range query with the boundaries
of Approz(I,) on data in DBjginis, the set of points
returned is a superset of the correct answer. To filter
out the points within the boundaries of Approz(1,)
that are not in I;, we need to compare these points
with all the data points in D By;es. Site E for exam-
ple contributes to bounding the exact region I, and a
point in Approz(I,;) that is closest to E but included
in Approx(1,) is an incorrect answer to RNN(q).

Defining the constraints of Approz(I,) is only a first
step in the computation of the exact influence region
I,.

Refine Approximation to Influence Region
Based on the coordinates of Approz(l,), it is pos-
sible to efficiently obtain the boundaries of a region

Refine(I;) around the query site ¢, such that it con-
tains all data points in D Bg;es that further constrain
the influence region I, (Figure 2). A range query based
on Refine(I;) and applied to data set DBg;es, thus
enables the computation of the exact I,. The goal
is to compute I, based only on a subset of points in
D Bgites, which significantly improves the performance
of retrieving reverse nearest neighbors.

Assume for now that the computation of a correct
Refine(l,) is defined. Since it is a challenging prob-
lem in itself, we will present it in detail in a separate
section. The retrieval of points in Refine(l,) facili-
tates the computation of the exact boundaries of I,
and a correct range query in DBj,ints Over the set of
reverse nearest neighbors (Figure 3,4).

Notation:

q = query site

I, = influence region around ¢

Approx(I,) = a fist approximation to influence region I, based
on nearest neighbors in D Bgjes

Refine(Iy) = region containing all points in DBg;ses used to
refine the approximation to I

Phase I:

1. find Approz(I,) based on a set of nearest neighbors;

2. using the coordinates of Approz(ly), find Refine(Iq);

3. perform range query Refine(ly) in DBgjtes and output
the respective data points in S;

4. based on the location of the ¢ and the sites in P, compute
14 = exact Voronoi cell around the query site;

Figure 3: Calculate Voronoi Cell around ¢

Phase 2:
1. answer = retrieve range query constrained by Ig4, in|
DBpoints?

Figure 4: Retrieval of Influence Set

Although it answers correctly, the retrieval of points
in the exact Voronoi cell of ¢ may involve a complex
range query. Once there is a method to calculate
Refine(I,), the actual refinement of the influence re-
gion can be done either before or after the range query
over DBpints. On one hand, the algorithm can com-
pute the exact I, and then retrieve the exact influence
set from D Bj,ints- On the other hand, the refinement
step can be delayed. If the influence region is based on
the approximation to I, Refine(I;) is used as a filter-
ing step to check the correctness of the influence set.
Note that in this case, the filtering step requires com-
parison between distances from points from DBpints
in the first approximation to the influence set and the
sites contained within Refine(l;) in DBgjzes. In the
performance section we choose to evaluate the second



version of the algorithm, since it involves simple rect-
angular range queries (Figure 5, 6).

Phase I:

1. find Approz(ly);

2. calculate the boundaries of Refine(Ig);

3. perform range query in DBg;ies based on Refine(ly), and

store the result in set S.

Figure 5: Calculate Boundaries of Influence Region

Phase 2:

1. retrieve range query based on the minimum bounding
rectangle of Approxz(I;) in DBpoints, store in P;

2. answer = filter out incorrect reverse nearest neighbors
based on S and P;

Figure 6: Retrieval of Influence Set

In order to give a clear overview of the algorithms,
we delayed the details of computing Re fine(I;). Next,
we present a method to define (Refine(l;) , whose
correct computation plays a crucial role in the solution
we proposed.

4.1 Computing the boundaries of Refine(I,)

Recall that, for a query site ¢, Refine(I;) is the
region containing all sites in D Bges that constrain
the Voronoi cell I, around ¢. The boundaries of
Refine(l,) should be calculated efficiently, based on a
subset of DBy;es rather than based on a comparison
of all distances between ¢ and sites in DBg;tes. A site
s constrains I, iff computing I, with and without s
in the database leads to different results. Our goal is
to define region Refine(l,), given only the vertices of
Approx(l,) and query site ¢. In general, the vertices
of Approxz(I,) are computed as the intersection of the
bisectors of segments |q, NN;| where NN; is a quad-
rant nearest neighbor of q. To refine the first approx-
imation to the exact influence region I,, we want to
find the region Refine(l,;) that contains all the sites
s such that the bisector of |gs| intersects an edge of
Approx(Iy).

Consider a set of sites in database D Bgjes, and
a query site ¢ (Figure 7). The approximation
Approz(I;) of the Voronoi cell of ¢, polygon [m, n, 0, p],
is obtained by retrieving nearest neighbor points
{4, B,C,D}. Region Refine(I;) then includes all the
points whose bisectors with ¢ can intersect any of the
lines |m, n, |n, |, o, pl, |p, m|.

For notation purposes, we refer to the middle
of the segment between ¢ and a site s, |q,s|, as
mid|q,s|. In general, the bisectors of a segment
lg, NN;| (NN; = quadrant nearest neighbor) through
avertex v of Approzi(I,) is by definition perpendicular
to |q, NN;|. Let the middle point of segment |q, NN,|
be mid|q, NN;|. Then segments |q,mid|q, NN,

|mid|g, NN;|,v| and |g,v| form a right triangle cir-
cumscribed in a circle with diameter |g,v|. Let
MBR_ircies be the minimum bounding rectangle con-
taining all circles with diameters |q, v| for all vertices v
of Approxz(I;). Going back to our example, |g, c| is by
definition perpendicular to |e¢,0| and |q,b| is perpen-
dicular to |b, 0|. They form two right triangles [c, g, 0]
and [b, ¢, 0] that are circumscribed in a circle of diam-
eter |g,0|. In Figure 8 we show all circumscribing cir-
cles corresponding to |q,m|,|q,n|,|q,0l,|q, p| and their
minimum bounding rectangle M BR ;ycies-

Lemma 1 Let s be a site such that mid|q,s| lies
outside M BR ;cies. Then s does not constrain the
Voronoi cell I, of q.

Assume by contradiction that s does constrain
I,, i.e., the bisector of |g,s| intersects the edges of
Approz(I;). Then the bisector must also intersect one
of the diameters |q, m/|, |q,n|, |q, 0|, |q, p|. Without loss
of generality, assume that the intersected diameter be
lg, o, the point of intersection is o’ and the circle with
diameter |g,0| is C. Then points mid|q, s|,q and o'
form a right triangle whose circumscribing circle C'
has a diameter |g,0'|. Since o' is a point between ¢
and o on |g,0|, then C' must be contained in C. Con-
sequently, mid|q, s| lies inside of C', which contradicts
our assumption.

The above argument can be easily generalized for
any M BReircies for a region Approz(I;). The proof of
correctness is only a generalization of the proof above,
taking in consideration all circumscribing circles of di-
ameter |q,v| (where v is a vertex of Approz(ly)).

We showed that, for any site s € DBy that con-
tributes to the computation of the Voronoi cell around
q, mid|q, s| must be included in one of the circumscrib-
ing circles C;. Let the coordinates of C;’s center be ¢;z
and ¢;y. A minimum bounding rectangle M BRrcles
that contains all the circumscribing circles C; with di-
ameter |q,v;| and radius r; = d(q,v;)/2) has coordi-
nates lowg, high,,low,, high,, where

lowy = min((crz—m1), (cax—12), - (

high, = max((ciz+r1), (caz+r2), -
lowy, = min((c1y —r1), (c2y —72)," (Czy_rz
highy = maz((c1y+711), (c2y+r2),- - (ciy+1i),

Recall that our goal was to define Re fine(l, ) the
location of all sites s that can contribute to the Voron01
cell of q. If mid|q, s| is within M BR,;ycies, site s can
only be twice as far from ¢. Since we already defined
M BR_jreles, it is now straight forward to calculate the
coordinates of Refine(l;): 2 X lowy — ¢z, 2 X high, —
0z, 2 % lowy — qy,2 X highy — q,. That is, the distance
from the vertices of Refine(I;) to ¢ is double the dis-
tance between g and the edges of the minimum bound-
ing rectangle that includes all the circumscribing cir-
cles C; (Figure 8). In general, the steps to compute
Refine(l;) and M BRymax are shown in Figure 9.
There are a few special cases, for a query site ¢ that is

E
E

E

—~
)
S
ff_
3
!
\_/\_/\_/\_/
\_/\_/\_/\_/



,
oD /
/
;
7~/.d
a
e q /
7 <b ’c RV
\ / ¢
\ ) <
/
/
/
/
/
/
/
. /
N
S
/\O
' \\
v \\
/

Figure 7: Example of Circumscribing Circle

Figure 8: Find the Boundaries of Refine(I;)
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close to the boundary of the data space. One such case
is when there are no points in a quadrant, and there-
fore a nearest neighbor cannot be found. Then the
data space boundaries of the corresponding quadrant
will be considered as bisectors, and the Voronoi cell is
computed accordingly. Another special case is if the
minimum bounding rectangle of the region Refine(l,)
is greater in a dimension d than the limit of the data
space; then for dimension d, Refine(I;) be restricted
by the data space.

1. find nearest neighbors {NNi, NNa,--- NN} in each
quadrant

2. calculate approximation to Ig,
VoronoiCell(q, NN1, NNa,--- NNy)

3. define Cy,---Cy,---Cp as the circumscribing circles
centered at the middle of each segment between ¢ and
the vertices vy, vj,- v, of Approz(ly). The radius
r; of a circumscribing circle C; is the distance from its
center to ¢, r; = d(v;, q)/2.

Approz(Iy) =

4. calculate boundaries of minimum bounding rectangle
around all circumscribing circles

5. Refine(Iq) = (2 x lowg — qz,2 X highy — qz,2 X lowy —
Qy,2 X highy — qy)

Figure 9: Calculating the Boundaries of Re fine(I,)

5 Experimental Results

In the following, we describe several experiments per-
formed to test the efficiency of the proposed RNN
method. First, we compared our algorithm for RN N
queries with a brute-force approach. Although the re-
sults are intuitive, this comparison is relevant because
there is no other existing algorithm based on on-the-fly
computation. Second, we implemented and compared
with the method of [KMO0O]. Finally, we show the cost
distribution of the different components of our algo-
rithm.

In our experiments we used the Montgomery
County data set representing the longitude/ latitude
of road crossings. From the initial database of 60,000
points, we created two data sets to represent D Bg;tes
and DBpyints, and indexed them in an R*-tree. We
varied the size ratio between D Bg;ies and D Bypoints in
order to better analyze a wide variety of applications.
The 60000 point road crossing set was divided into two
data sets whose relative sizes are varied between 1/5
(for a ratio of 10000 sites to 50000 points), 2/4, 3/3,
4/2, and 5/1. In each of these cases, we ran 5000 RN N
queries, where query sites were randomly chosen from
DBgjtes. For the nearest neighbor method incorpo-
rated into our RN N algorithm, we used the solution
proposed by [HS95] that was proven by [BBKK97] to
be optimal.

A naive attempt to answer RNN(q) queries with
no pre-computation is to compare, for each point p;
in DBpoints its distance to all sites s, d(p;, s), versus

its distance d(p;, ¢) to the query site ¢. If, as a result
of the comparison, data point p; is the closest to ¢
(d(pi,q) < d(pi,s)), then p; € RNN(q). However, it
is easy to note that if the size of the data in D Byt
is ny and the size of the DBp,ints is n2, then the com-
plexity of the brute force approach is that of comput-
ing nearest neighbors for each point in DBjsints, i.€.,
O(n2 x log(ny)). By contrast, our algorithm incurs
the cost of several nearest neighbor queries as well as
range queries in both DBgjtes and DBjyints In order
to make the comparison independent of cache size and
to give the naive algorithm the best possible setup, we
assumed that leaf pages can be stored in a cache after
being read once. However, we did not make the same
assumption for our algorithm. As expected, the re-
sults of our experiments also showed that the method
we proposed greatly outperforms the naive approach.
The average number of leaf page accessed by queries
based on the brute-force approach was 240 pages, while
our method accessed only 5 to 6 leaf pages on average.
While in most cases, our method takes advantage of
the proximity of the nearest neighbors retrieved, the
naive approach accesses all pages in D Bj,ints and most
pages in D Bygijtes.
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Figure 10: Number of Leaf Accesses for Different Data
Set Sizes, Queries Based on Our Algorithm

We also compared our method with the solution
proposed in [KMO00].The distribution of its query cost
is shown in Figure 11 Note that most queries access
around 5 pages, similarly to the results obtained by
using our method without pre-computation (Figure
10). The cost of updates using our technique is that
of a single insert into the underlying indexing tree.
Note however that RNN queries do not impose any
update overhead with respect to the already existing
data management cost. If reverse nearest neighbors
are facilitated by pre-computed results stored in an
RNN — tree, then an insert update requires the fol-
lowing sequence of steps:

1. query of the RNN — tree. The cost of such a query is
equivalent to that shown in Figure 11



2. changing of all affected radii in RNN — tree. Considering
a lower bound on the update overhead, this step might
access pages that are already in the cache and do not cause
additional 1/0O.

3. query in NN-tree. This step is comparable with that of
updating the underlying indexing tree if using our method.

4. insert of a point into NN-tree.

5. insert of a circle into RNN-tree.
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Figure 11: Number of Leaf Accesses for Different Data
Set Sizes, Queries Based on [KMO00]

As a result, an advantage of using our method is
that we do not need to query the RN N tree during
updates. Additionally, we only need to store point
data. By comparison, precomputed NN circles are
stored as spatial objects, which leads to more page
overlap and /or more complex index structures. Fi-
nally, an important advantage of our method is that
the size of the data set does not influence the cost
of RNN queries; what matters is the distribution of
points into pages. Since the algorithm we propose per-
tains mostly to 2-dimensional data (for location aware
applications), finding quadrant nearest neighbor, or
defining Re fine(I,), will usually access a single page.
Although comparable query performance, our method
has the advantage of eliminating update overhead.

In Figure 12 we illustrate the cost of the various
components of our RNN method. Note that the x-
axes represent the size of DBgjes only (the size of
DByjoints can be inferred), while the y-axes corre-
sponds to the number of leaf page accesses of the
R*-tree. The results were obtained for the same set
of 5000 queries. We show the cumulative number of
page accesses at every step of the algorithm: follow-
ing the retrieval of the quadrant nearest neighbors,
following the computation of the first approximation
Approz(I;), and the total number of page accesses nec-
essary for the range query Refine(l;). The overall
cost is not greater than a total of 5 to 6 page accesses.
It is interesting to note that although the cost of near-
est neighbor queries involved is lower than that of the
two range queries, the difference is not significant. As

expected, nearest neighbor queries access on average
one to two leaf pages. The number of page accesses
is very low because the boundaries of the range query
in most cases falls within the boundaries of a few leaf
pages. The algorithm is shown to perform very well
in finding a good approximation to the exact Voronoi
cells.
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Figure 12: The Costs of Various Components in the
Proposed Method

6 Conclusion

Emerging applications necessitate increasing sophisti-
cation in ways to express and provide location infor-
mation. Being able to track moving objects introduces
new challenges for data management that should be
able to support frequent updates as well as fast query
processing. In this paper we described a first method
to compute on demand influence sets around a query
site, by reducing them to nearest neighbor and range
queries. Our approach also facilitates integration with
more complex location queries, using the already ex-
iting indexing and retrieval framework. Since it does
not create any additional data structures for the spe-
cific support of RN N queries, the method we propose
does not impose any overhead with respect to database
maintenance.

As spatial queries in general are going to gain in
importance due to the increasing market for location
aware services, we plan to analyze in more depth the
modifications that should be brought not only to spa-
tial queries, but also to the appropriate indexing struc-
tures. Additionally, we plan to analyze the behavior
of RNN queries for applications that require higher
dimensional data. In this case, an algorithm should
make use of approximate nearest neighbors and avoid
the cost [BBKT01] of high-dimensional nearest neigh-
bor queries.
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