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Abstract

Multidimensional data cubes are used in large data
warehouses as a tool for online aggregation of information.
As the number of dimensions increases, supporting efficient
queries as well as updates to the data cube becomes diffi-
cult. Another problem that arises with increased dimension-
ality is the sparseness of the data space. In this paper we
develop a new data structure referred to as the pCube (data
cube for progressive querying), to support efficient query-
ing and updating of multidimensional data cubes in large
data warehouses. While the pCube concept is very general
and can be applied to any type of query, we mainly focus
on range queries that summarize the contents of regions of
the data cube. pCube provides intermediate results with ab-
solute error bounds (to allow trading accuracy for fast re-
sponse time), efficient updates, scalability with increasing
dimensionality, and pre-aggregation to support summariza-
tion of large ranges. We present both a general solution
and an implementation of pCube and report the results of
experimental evaluations.

1. Introduction

Data warehouses typically accumulate and store opera-
tional data from a collection of OLTP (On-Line Transaction
Processing) databases. Statistical and scientific databases
(e.g., geographical information systems, census databases)
contain huge amounts of “raw” information. Human ana-
lysts are interested in extracting that part of the data that
is of interest for a certain task, e.g., discovering population
development trends or analyzing the success of a campaign
of TV commercials. That data is described by a set of at-
tributes. One of them is chosen as the measure attribute (the

�This research was supported by NSF grants EIA-9818320, IIS-98-
17432, and IIS-99-70700.

attribute of interest, e.g., number of people). The others are
the functional attributes, or simply dimensions (e.g., age,
income). The data can conceptually be viewed as a hyper-
rectangle, where each single cell is described by a unique
combination of dimension values and contains the corre-
sponding value of the measure attribute. We will henceforth
refer to this hyper-rectangle as the data cube. We should
point out that in this paper the data cube model only repre-
sents a way of viewing the data. It does not imply or exclude
a certain physical data organization, like in relational tables
(ROLAP) or in multidimensional databases (MOLAP).

The more complex dependencies an analyst wants to dis-
cover, the more functional attributes have to be included
into the analysis. This obviously leads to a high dimension-
ality of the data cube. It is, however, important to note that
even though the data itself is massive, the high dimension-
ality causes the data cube to be very sparse. For example, a
U.S. census data cube with the dimensions shown in Table 1
contains more than 2 � 1014 cells. Assuming that the U.S.
census bureau stores data about 200 million Americans, at
most 0.0001% of the cells will be non-empty. Assuming
further, that each value of the measure attribute (in the ex-
ample the number of people) can be encoded with a single
byte, storing all cells will require more than 180 Terabytes.

Attribute Domain Attribute Domain
Age 0 - 150 Income 0 - 99999
Weight 1 - 500 Race 1 - 5
Family type 1 - 5 Marital status 1 - 7
Class of worker 0 - 8 Education 1 - 17

Table 1. Attributes and their domains for a
census data set

An important tool for analyzing data is a range query.
Range queries apply aggregate operators (like the SQL op-
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erators SUM, COUNT, MAX) to data cube cells that are
selected by the given ranges on the dimensions. A range
query could ask to “Return the number of U.S. citizens that
are younger than 30 years and earn more than $50,000 per
year”. In the data cube model a range query selects a hyper-
rectangle of cells. We will use the term query-cube to refer
to this hyper-rectangle. To answer a range query exactly,
the values stored in the cells inside the query-cube must be
known. For large ranges this can lead to a situation where
answering the range query requires a considerable number
of accesses to slow secondary storage. Online Analytical
Processing (OLAP) queries often are more complex than
“simple” range queries and can contain subqueries. Never-
theless OLAP is an interactive process where analysts ex-
pect fast responses in the order of seconds at most. When
exact results are not required, e.g., for exploratory data anal-
ysis when it suffices to get an idea of the order of magnitude
of some phenomenon in the database, queries can be sped
up by returning an approximate answer based on summary
information about the contents of the database.

OLAP applications typically have to deal with updates,
e.g., data warehouses collect constantly changing data from
a company's databases. Often it is regarded to be sufficient
if those updates can be efficiently processed in batches.
There are, however, applications that require fast updates to
single cells. For instance, business leaders will want to con-
struct interactive what-if scenarios using their data cubes, in
much the same way they construct what-if scenarios using
spreadsheets now. These applications require real-time (or
even hypothetical) data to be integrated with historic data
for the purpose of instantaneous analysis and subsequent
action. In a system where updates are only propagated in
batches (possibly during the night), such what-if analysis
will not be possible. Also, while some applications do not
suffer in the presence of stale data, in many emerging appli-
cations like decision support and stock trading the instant
availability of the latest information plays a crucial role. Fi-
nally, the greater the number of updates, the longer batch
updates will make the data in the data cube inaccessible to
an analyst. Finding suitable time slots for batch update win-
dows becomes increasingly harder when businesses demand
flexible work hours and 24 hour availability of their im-
portant data. Especially data collections that are accessible
from all over the world (e.g., for multinational companies)
do not follow a simple “high load at daytime, no accesses at
nighttime” pattern. Consequently even systems that apply
updates in large batches benefit from reduced update costs
which shrink the size of the update window and enable the
system to process more updates in the same time.

In this paper we develop the concept of a progressive
data cube, abbreviated as pCube. The main idea is to build
a data structure that is able to provide the user with fast
approximate answers for aggregation queries. The answer

can then be progressively refined. Since an approximate
answer without quality guarantees is of no use, pCube pro-
vides absolute error bounds for the query result. Compared
to probabilistic error bounds (confidence intervals) absolute
bounds offer the following advantages. First, probabilis-
tic bounds do not guarantee that the final result will be in-
side the confidence interval; especially for small answer sets
with high variance and for queries that look for extremal
values. Second, while non-expert users can easily under-
stand the concept of absolute error bounds, this is not nec-
essarily the case with confidence intervals. This argument is
very important for data exploration tools that are designed
for a diverse group of users.

To be more specific, pCube has the following properties.

� pCube can deal with high-dimensional sparse data
cubes as well as with dense data cubes. Its access, up-
date and resource costs depend on the number of non-
empty cells, not on the size of the complete data cube
(the product of the domain sizes of all dimensions).

� pCube's feedback mechanism provides the user with
quick responses to queries. A response consists of an
approximate answer with absolute error bounds which
are progressively refined.

� The feedback mechanism enables the user

– to interrupt the query execution as soon as the
result is good enough, or

– to set a time limit for the query execution and
get the best possible result according to this limit
(with the possibility to further refine the result by
allowing additional execution time).

� pCube combines pre-aggregation and hierarchical data
organization to speed up query execution and enable
fast updates. It does not depend on batch updates. On
the other hand, pCube benefits from applying updates
in batches. The batch size therefore can be used as a
tuning parameter.

For popular aggregate functions like SUM (sum over all
selected non-empty cells), COUNT (number of data items
that satisfy the selection condition) and others, we state ex-
plicitly which values have to be stored to enable an update-
efficient approximation.

The rest of the paper is organized as follows. Section 2
gives an overview of relevant related work. In Section 3
we develop the general pCube concept. Experimental re-
sults for a pCube implementation are reported in Section 4.
Section 5 concludes this article.
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2. Previous Work

To support the process of extracting and analyzing data
from a data collection, [13] proposes a new SQL opera-
tor — “CUBE” or “data cube”. It is a d-dimensional gen-
eralization of the GROUP BY operator and computes all
possible group-bys for d attributes (given in the SELECT
clause). We will refer to the result of the CUBE operator
as the extended data cube. For a selection of d attributes,
there exist 2d possible group-bys. Due to this exponential
number of results, computing the complete extended data
cube efficiently is one of the major challenges (see [5] for an
overview and references). Especially for high-dimensional
and sparse data sets computing and storing the complete ex-
tended data cube is infeasible ([23] describes the problem of
database explosion). Updates to a single item in one of the
source data sets would cause an aggregate in each of the 2d

views to be updated as well. To overcome the above prob-
lems, efficient algorithms were proposed to choose those
views (and indexes) to be stored that optimize a certain
cost/benefit metric (e.g., [14, 15]). [19] and [20] describe
index structures especially designed for the extended data
cube. The above techniques do not provide fast responses
for all aggregation queries.

In [18], Ho et al. develop techniques to guarantee an ac-
cess time for range SUM queries that is independent of the
size of the query-cube (constant cost) by pre-aggregating
information in the data cube. Their prefix-sum approach
suffers from high update costs (single cell update cost is ex-
ponential in the domain sizes). [6], [9] and [10] address this
issue by balancing the cost of queries and updates. None
of the above approaches can, however, efficiently deal with
high-dimensional sparse data sets. In fact, applying the pro-
posed algorithms to sparse data sets leads to dense sets of
the size of the complete data cube, including empty cells.
Suggested techniques for dealing with sparse data sets are
rather sketchy and not effective for arbitrary data distribu-
tions.

The main idea behind most approaches for handling
sparseness is to find dense chunks or clusters in the data
set. Then dense and sparse regions of the data set are
each handled by a specialized technique. Usually these ap-
proaches try to combine the advantages of special “dense”
and “sparse” storage and access techniques, e.g., [7, 12].
Techniques for sparse data sets mainly focus on space effi-
ciency. Aspects like early feedback for queries and update-
efficiency are not examined.

An established technique to support fast accesses to
databases is to create index structures on them. [8] and [22]
provide an excellent overview of the field. Index structures
that only index non-empty cells (i.e., the data items that are
in the database) can deal with sparseness. On the other hand
just providing fast access to all selected data items does not

suffice. Retrieving and aggregating each selected item on-
the-fly is still too slow for large data collections. In [2] it is
suggested to augment indexes by aggregate data to exploit
summary information for a data set. This idea up to now
was used to support query cost estimation and approximate
answers to queries [29], but to the best of our knowledge
never for progressive feedback with absolute error bounds
on data cubes. Also, in contrast to our approach, the solu-
tion presented in [29] does not consider efficient updates.
Another feature that distinguishes pCube from index struc-
tures is that it is primarily a way of organizing and stor-
ing data for aggregation and summarization. The indexing
comes for “free” by exploiting the data organization.

In an early paper Rowe [25] presents an approach to ap-
proximate query results on databases which is called “an-
tisampling”. The main idea is to maintain statistics about
the contents of a database (a database abstract), e.g., mean,
median, number of data items, and other distribution infor-
mation. Instead of returning the (expensive) exact result to a
query, an approximate answer is returned based on the sta-
tistical information. Antisampling techniques provide ab-
solute error bounds. For instance, the number of non-empty
cells in the data cube is an upper bound for the number of
non-empty cells in any region of the data cube. Combining
different statistics, each possibly providing loose bounds
only, can lead to much tighter bounds. It requires expert
knowledge to determine how much and which information
to store and how to combine it. Guaranteeing tight bounds
for “simple” queries that count the number of non-empty
cells in an arbitrary range of the data cube is a hard task.
How detailed should the information about the data distri-
bution be and how should it be organized for fast accesses
and updates? We will show how pCube answers these ques-
tions.

The New Jersey Data Reduction Report [2] provides an
overview of various techniques that can be useful for online
aggregation. Barbará and Wu [4] describe a technique to use
loglinear models for compressing the data cube and obtain-
ing approximate answers. For the technique to be efficient,
dense clusters in the data cube have to be identified and
are then approximated by loglinear models (other approx-
imation techniques could be used as well, e.g., regression
models [3]). The approach is mainly applicable to dense
low-dimensional data cubes. It is possible to return absolute
error bounds based on the approximation model and a guar-
anteed bound for the approximation error per cell. How-
ever, for queries with large query-cubes this approach leads
to slow responses. Maintaining the approximation models
in the presence of updates requires batch updates that ac-
cess all cells in a chunk. [26] presents a compression tech-
nique that achieves very high compression ratios (1000 and
more) by using density estimations for dense clusters. This
approach, however, is not efficient in the presence of high-
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dimensional sparse data sets and frequent updates. With in-
creasing sparseness, the estimation will become much less
accurate. Higher dimensionality reduces the accuracy of
the query result which is obtained by multiple integrations
over the density functions. Also, the technique can not
provide absolute error bounds for its approximate answers
and a query has to access the data sources if the user re-
quests an exact result. Compressing sparse data cubes using
wavelets is described in [28]. The more wavelet coefficients
are accessed, the more accurate the result. Theoretically
one could select the optimal time-accuracy tradeoff for a
query. But since no error bounds are returned to the user,
he/she can not make use of this possibility. To get an exact
answer, the data sources have to be accessed, because the
wavelet decomposition algorithm drops “unimportant” co-
efficients. Even though wavelets provide good approxima-
tions for most practical applications, they do not fulfill our
requirements of error bounds for approximations and of ef-
ficient updates. Another direction of research aims at using
histograms for fast approximate answers [24]. Histograms
are an efficient technique to summarize data. Systems like
AQUA [1] use small pre-computed statistics, called syn-
opses [11] (which usually are histograms and samples), to
provide fast approximate answers. Synopses can be used
to answer queries. The AQUA system, for instance, returns
fast answers with probabilistic error bounds [1] (confidence
intervals, no absolute bounds). Up to a certain degree the
user can theoretically trade off accuracy for faster responses
by allowing smaller samples to be used. The accuracy of
the query response is limited by the information stored in
the histograms and samples. For further refinements (up to
the exact answer) the query has to access the data in the
sources, which is very expensive. Techniques to efficiently
maintain synopses typically require batch updates, which
makes them inaccessible during the update. pCube on the
other hand can easily deal with concurrent single cell up-
dates and queries by using locks on the tree nodes.

Recent developments show that even though the issue of
fast approximate answering has gained increasing attention,
there are still not many solutions that provide progressive
refinement of the approximate result with error bounds. An
exception is the CONTROL project [16]. Users are pro-
vided with probabilistic error bounds (confidence intervals)
that are progressively refined. CONTROL is based on al-
gorithms especially designed for online aggregation (e.g.,
[17]). While confidence intervals give an idea about the
expected result for a query, they do not guarantee that the
final result will be inside the interval. This holds especially
for skewed data and for queries that search for extremum
statistics (outliers). In contrast to the CONTROL approach,
pCube returns absolute error bounds.

3. The pCube Concept

For large data collections accessing and aggregating the
data that is relevant for a query can consume time in the
order of minutes. Take for example a range query that asks
for the number of Americans that are younger than 30 years.
Obtaining the answer from the “raw” data requires access-
ing at least all those data items (i.e., data cube cells) that
satisfy the selection criterion (which could be some mil-
lions of items), not counting additional index accesses. In
general, for an exact answer the value of each single cell in
the query-cube must be found out and included in the ag-
gregation on-the-fly. Index structures are of little help when
a query-cube contains a large number of non-empty cells.
The alternative way to speed up the query process is by pre-
computing the aggregation values for groups of cells and to
use those results when answering a query. For instance, if
the number of Americans between 0 and 14 and the number
of Americans between 15 and 29 years of age is known,
i.e., was pre-computed and stored, then two accesses to
these pre-computed values provide the answer, thus sav-
ing a large number of disk accesses and CPU time. Pre-
computation (pre-aggregation) leads to the following trade-
offs. The smaller the targeted response time for a query
and the more queries are to be sped up, the more storage
is necessary for pre-computed values. On the other hand,
the more pre-computed values depend on a certain cell, the
more expensive it is to update this cell' s value (since the
pre-computed values have to be updated as well). High
dimensionality and sparseness of the data cube affect the
benefit-cost ratio of these tradeoffs negatively. More dimen-
sions dramatically increase the number of possible range
queries and storing pre-computed values for sparse data
cubes leads to the problem of database explosion [23]. Ap-
proaches which are effective for low-dimensional and dense
data cubes therefore are not feasible for high-dimensional
sparse data cubes.

3.1. Requirements

The only way to guarantee fast responses for any query
on high-dimensional sparse and massive data cubes is to
weaken the requirement to return exact answers. Instead,
pCube returns approximate answers with absolute error
bounds. To get a quick response, the content of the query-
cube has to be approximated with a small number of pa-
rameters. The difficult task is to choose which parameters
to store in order to get tight error bounds (see for instance
[25] for an overview). Different queries and applications
make different demands on the approximation technique.

(1) When the query-cube is large and contains a large
number of non-empty cells, it can only be approximated
quickly if the approximation model's granularity is coarse.
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Queries with small query-cubes on the other hand are best
approximated by choosing a finer approximation model.
Popular approximation techniques like (multidimensional)
histograms only offer a single granularity to all queries, i.e.,
favor either large or small query-cubes.

(2) Applications require different degrees of accuracy.
The degree of accuracy should be chosen by the user or ap-
plication, not by the system (designer). In some cases the
required accuracy is not determined a priori (e.g., when it
suffices to find out if the result is a positive number, a re-
sult range 100 � x � 10000 is acceptable, but the range
�1 � x � 10 is not).

(3) The requirement of efficient updates rules out tech-
niques where an update to a single cell can cause expensive
recomputations (e.g., with costs in the order of the data cube
size or the number of non-empty cells in the data cube).

3.2. The pCube Structure

In the following a pCube structure that fulfills the above
requirements is described. pCube is organized as a tree.
Each node covers a region of the data cube. We will use
the term node-region to denote this region (the node-region
could be a hyper-rectangle, hyper-sphere, etc.). The root
node covers the complete data cube (or any region that con-
tains all non-empty cells in the data cube). Leaf nodes cover
single non-empty cells. Any other node covers a part of
the node-region of its parent, such that all children together
completely cover their parent's node-region (or at least all
non-empty cells covered by the parent).1 Each leaf node
stores the value of the cell it covers. Internal nodes store
information about the cells in their node-region, which will
henceforth be referred to as node-information. For each ag-
gregate function supported by pCube, the node-information
contains the pre-computed aggregate value for the cells in
the node-region or values that enable the computation of the
aggregate value in constant time. Additional parameters are
stored that allow for the fast computation of absolute error
bounds for each of the supported aggregate functions. To
guarantee space and update efficiency, the size of the node-
information is bounded by a (a priori known) constant.

Figure 1 shows an instance of pCube that supports the
aggregate function COUNT. For a combination of dimen-
sion values the measure attribute stores the number of data
items with this value combination. COUNT range queries
return the number of data items that fall into a certain range.
The node-information simply consists of the sum of the val-
ues of the non-empty cells in the node-region. Since there
are overlapping node-regions of sibling nodes, it has to be
ensured that no data item is counted more than once. Non-

1Note that there might be non-empty intersections, e.g., overlapping
hyper-rectangles for structures similar to the R-tree.
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Figure 1. pCube with R-tree-like structure for
the aggregate function COUNT

empty cells that fall into more than one node-region of sib-
ling nodes have to be assigned to only one of the nodes.

3.3. Querying pCube

A query is answered by descending the tree. At each
node the query result is approximated based on the node-
information (e.g., as described in [25]). The further the
query descends, the smaller the node-regions, i.e., the bet-
ter the approximation based on the node-information. Each
time the query descends to a new node, a finer intermedi-
ate result (with better error bounds) can be output. Thus
the user receives continuous feedback of improving qual-
ity. Both small and large query-cubes can be supported ef-
ficiently. For large query-cubes the coarse granularity in
the beginning allows for fast results which quickly improve.
Small query-cubes typically intersect a smaller number of
tree nodes, and therefore the query quickly reaches lower
level nodes that provide more accurate answers. The pre-
computed aggregate value at a tree node can dramatically
reduce the response time. If a query-cube completely con-
tains a node-region, this value represents the exact aggre-
gate value for all query-cube cells in the node-region. Con-
sequently, no descendents of the node need to be accessed
and the aggregate function does not need to be computed
on-the-fly. In our census example for the aggregate function
COUNT, a tree node whose node-region contains all cells
that satisfy 10 � age < 30 and 0 � income � 30000 (all
other attributes range over their complete domain) stores
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the number of people that fall into this range in its node-
information. If, for instance, a query asks for the number of
people that are younger than 30 and earn less than $40,000,
the pre-computed value in the node contributes the exact
answer for all people between 10 and 30 that earn less than
$30,000. Thus, a single access to the node provides an ex-
act answer for a large number of cells, without requiring to
descend further in that subtree.

The cost of a query (measured as the number of
disk/memory accesses, or response time) in the worst case
depends linearly on the number of node-regions the query-
cube intersects. This cost decreases if node-regions are
completely included in the query-cube and if the user is sat-
isfied with approximate results.

3.4. Obtaining Absolute Error Bounds

The computation of the error bounds is based on the fol-
lowing observation. When a query-cube and a node-region
have no cells in common, the answer is empty (which is
an exact answer). If the query-cube contains the complete
node-region, the aggregate value in the node already pro-
vides the exact answer for those cells (no approximation er-
ror at all). In the non-trivial case when the query-cube con-
tains only some of the node-region's cells, error bounds are
obtained in constant time by only using the information in
the nodes visited so far and properties of the aggregate func-
tion. A node can either store bounds on the extreme values
or store enough information to allow their fast computation.
For the COUNT function a node only needs to store the
sum of the values of the non-empty cells in its node-region.
Storing the number of non-empty cells would not lead to a
correct result, because there might be more than one data
item in the database with a certain combination of dimen-
sion values (i.e., a cell can store a value greater than 1).
The stored sum provides the aggregate over all cells in the
node-region and the upper bound. The value 0 is the trivial
lower bound. Table 2 contains selected aggregate functions
(including the SQL standard aggregate functions) together
with possible auxiliary values (explained in Table 3) for the
computation of absolute error bounds. The last column con-
tains the formula to compute the aggregate value for the
non-empty cells in the node region.

Note that AVG, Variance and Standard deviation are not
approximated by combining the aggregate values of differ-
ent nodes directly. We illustrate this for the aggregate func-
tion AVG. If a query contains two pCube nodes such that
for one node an average value v1 and for the other a value
v2 is computed, the overall average value is still not deter-
mined. It can be any value between v1 and v2, depending
on the number of base values that contributed to each of
the two partial results. A simple solution to this problem
is to compute the auxiliary values for the nodes, i.e., the

sum and the count value that produce the corresponding av-
erage, and to combine those in order to obtain the query
result. Thus, instead of combining the aggregate values di-
rectly, the corresponding auxiliary values are computed for
the pCube nodes and then combined to get the value for the
aggregate function.

Figure 2 illustrates the technique for the aggregate func-
tion COUNT for a non-overlapping tree structure. The
shaded region indicates the intersection between node-
region and query-cube for all nodes that have to be accessed
to get the exact result. Note that the node-region of one
of the internal nodes is completely included in the query-
cube, therefore the corresponding leaf nodes do not need
to be accessed, even though their node-regions are covered
by the query-cube. Each node stores the sum of the val-
ues of the non-empty cells it covers. In case the query-
cube completely contains the node-region, upper and lower
bounds for the result are equal to the count value stored in
the node. Otherwise, when query-cube and node-region in-
tersect, at least none and at most all non-empty cells of the
node-region can fall into the intersection, providing the er-
ror bounds. Even though the approximation is very coarse
at the upper nodes near the root, it is refined quickly when
the query descends the tree. In the example, the approxi-
mate value is obtained based on the assumption that the non-
empty cells are uniformly distributed over the node-region.
Thus the query result is approximated as 9.4 at the root (the
query contains 6 out of 16 cells, the aggregate value for the
16 cells is 25) and as 10.5 at the next level of nodes. Finally,
after accessing the values in the leaves the exact result of 12
is returned.

3.5. Updating pCube

We define an update to be any operation that changes
the value of a data cube cell (e.g., an insert is an update
that changes a cell' s value from “empty” to a certain value;
a delete is defined similarly). An update to a cell affects
the node-information of all nodes that cover this cell. It
takes advantage of the tree structure by first descending the
tree until the corresponding leaf node is reached. The leaf's
value is changed. Then, knowing the former and the new
value of the updated cell, all affected nodes on the path from
the root to the leaf are updated (bottom-up). The overall up-
date cost depends not only on the number of nodes that are
affected, but also on the cost of updating a node's informa-
tion about the cells in its node-region. Ideally the node-
information can be updated in constant time without addi-
tional disk accesses. Then, for trees with non-overlapping
node-regions of sibling nodes, the update cost is linear in
the height of the tree. Otherwise, in the worst case all inter-
nal tree nodes might have to be accessed. Also, updates can
lead to node/page overflow or underflow. How these cases
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Function Auxiliary values Upper Lower Aggregate for node-region
COUNT sum sum 0 sum
SUM sum+, sum� sum+ sum� sum+ + sum�

AVG (average) cnt, sum+, sum� sum+ sum� (sum+ + sum�)=cnt
AVG, alternative implementation cnt, sum, max, min max min sum=cnt
MAX max, min max min max
MIN max, min max min min
Variance cnt, sum, sum2 sum2 0 sum2=cnt � (sum=cnt)2

Standard deviation cnt, sum, sum2

p
sum2 0

p
sum2=cnt � (sum=cnt)2

Table 2. Values that provide absolute error bounds for aggregate functions

Symbols Meaning
sum Sum of the values of all non-empty cells in the node-region
sum2 Sum of the squares of the values of all non-empty cells in the node-region
sum+ Sum of the positive values in the node-region
sum� Sum of the negative values in the node-region
cnt Number of non-empty cells in the node-region
max Maximum value in the node-region
min Minimum value in the node-region

Table 3. Node-information values and their meaning

are handled depends on the specific tree structure used to
implement the pCube. Basically techniques similar to those
known from index structures can be applied. Figure 3 illus-
trates the insertion of a new value into a pCube; deleting the
cell would reverse the changes.

3.6. Applicability of pCube

The way pCube's nodes divide the space determines
pCube's structure and therefore heavily influences the query
and update costs. In general, techniques have to be cho-
sen that guarantee that both costs depend on the number of
non-empty cells, rather than on the dimensionality or the
size of the data cube (which includes empty cells). Possi-
ble choices include structures that are similar to the R-tree,
X-tree, kdB-tree, etc. (see [8] for references). In addition to
the structure, it must be determined which kind of informa-
tion to store at the nodes for supporting efficient aggregation
and good approximation.

Generally a pCube can be constructed for any aggregate
function. There are, however, functions that can not be sup-
ported efficiently. The main problem is caused by nodes
in the upper tree levels (close to the root) that aggregate a
large number of values. We require the cost of recomputing
the aggregate to be independent of the number of aggre-
gated values, i.e., to be bounded by a constant. It should
be possible to compute the new aggregate value only from
the knowledge about the update operation (previous con-
tents of the updated data cube cell, new contents of that
cell) and a small amount of auxiliary information about the
values. Note that any set of aggregate functions that is self-
maintainable with respect to insertions and updates can be

efficiently implemented by pCube. Such a set of aggregate
functions is self-maintainable if the new values of the func-
tions can be computed solely from the old values and from
the changes caused by the update operation [21].

The SQL aggregate functions COUNT and SUM are
self-maintainable. COUNT can be supported efficiently
by storing the number of data items that are in the node-
region; SUM is handled similarly. For AVG this direct ap-
proach fails. Knowing the former average for the cells in
the node-region and the update on a single cell does not
provide enough information for computing the new aver-
age. However, if instead the sum and the number of val-
ues (i.e., the COUNT) are known, the average can easily be
computed and incrementally updated. Consequently, even
though AVG is not self-maintainable, it can be made self-
maintainable by adding a small amount of additional infor-
mation.

There are other aggregate functions like MAX, MIN and
Median, that can not be made self-maintainable. It is not
possible to efficiently maintain them based only on the in-
formation stored at single nodes, e.g., for MAX, when the
current maximum value is deleted. pCube's hierarchical
structure provides a powerful tool that solves this problem
for some aggregate functions. We describe a technique for
the function MAX. Since updates have to descend the tree,
one can take advantage of the combined information of the
visited nodes. Let each node store the maximum of the val-
ues in its node-region and assume that an update deletes the
current maximum of a node. Then the new maximum can
be computed by a function that returns the maximum over
the maximum values of all child nodes. Since the update
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Figure 2. Obtaining error bounds for a pCube
with quadtree-like structure

will affect the maximum value of at least one child node,
this function proceeds recursively. A similar technique can
be applied to MIN. This way both functions are maintain-
able at a cost which is at most b times higher than main-
taining COUNT, b being the largest number of children of
a node. Similar “workarounds” as for MAX and MIN are
possible for other aggregate functions which are not self-
maintainable. Details are not provided here and are part of
our future work.

Table 2 contains some popular aggregate functions and
formulas for obtaining absolute error bounds and aggregate
values from auxiliary values that can be efficiently incre-
mentally maintained (see Table 3). Note that the auxiliary
values are chosen with update-efficiency being the priority.
By storing more information, the error bounds can be tight-
ened. Essentially the choice of which kind of information to
store at a tree node depends on the application (which types
of queries are supported, how sensitive the query result is to
approximation errors).

4. Experimental Results

To evaluate the pCube concept we performed extensive
experimental evaluations. We start with a short descrip-
tion of a pCube implementation for aggregation over hyper-
rectangular ranges of the data cube. Then experimental re-

1

3 4

10

6

2

Position of new cell (value=4)

Insert

1

6

23

Figure 3. Effects of an update on a pCube with
quadtree-like structure

sults for this implementation are discussed.

4.1. Implementation Issues

The concept of pCubes is very general, and leaves much
freedom for an implementation to be optimized for a par-
ticular application. The only assumption we make for this
implementation is that the values of the dimensions and
the measure attribute can be expressed with data types of
a small bounded size, e.g., integer, long, float, double (32
or 64 bits, respectively). Most attributes of real-world data
collections have this property. For attributes with large data
types, like strings, functions can often be found that com-
press the attribute's range.

For tree structures where the regions of sibling nodes
are allowed to overlap, accessing a single cell of the data
cube possibly results in multiple search paths from the root
down to the leaves. Also, counting data items in the over-
lap twice has to be avoided. We therefore decided to im-
plement pCube such that the node-regions of sibling nodes
do not overlap. A simple way to ensure this property is
to use spatial decomposition. This can be done based on
a certain division factor (e.g., partition the space along di-
mensionX in halves) or based on attribute hierarchies (e.g.,
partition year into 12 months). To take the data distribution
into account, the spatial partitioning is “optimized” to avoid
storing empty nodes. We performed the experiments on a
pCube with quadtree-like structure, which is described in
the next section.

4.2. The pCube Implementation

The structure used for this pCube implementation is
based on spatial decomposition. The children of a node par-
tition the node-region of their parent into non-overlapping
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regions of equal size by dividing each dimension in half.
Among all possible tree nodes, we materialize in the tree
only those nodes that contain non-empty cells and have
two or more children containing non-empty cells. Figure 4
shows an example. Thus it is guaranteed that the number of
internal tree nodes is less than the number of leaves. Since
the number of leaves equals the number of non-empty cells
in the data cube, our pCube implementation's space require-
ment depends linearly on the number on non-empty cells.

pCube

MLKIHGFE

DCB

A

A, B, C, D, E, F, G, H, I, K, L, M

Order in which the nodes are stored:

1

1 1

1

1

1 1

1

Data cube

Figure 4. Example for the pCube structure

Depending on which aggregate functions pCube sup-
ports, the nodes store values that summarize the informa-
tion in their node-region (see Tables 2 and 3). For instance,
to support the aggregate function SUM, each internal node
stores the sum of the positive and the sum of the negative
values of its node-region.

Queries are performed as described for pCube in general.
Their cost in the worst case depends linearly on the number
of node-regions that intersect the query-cube. Consequently
the cost of a query is in the worst case linear in the number
of non-empty cells. On the average, however, better behav-
ior can be expected because queries can take advantage of
pre-computed values.

To update a cell, first the tree is descended to find the
region where the cell is located. If the update inserts a new
cell or deletes a cell, it could be necessary to insert a new
node or shrink/delete a node, respectively. These opera-
tions, however, due to the spatial decomposition approach,
do not propagate for more than one level of the tree. After
changing the cell' s value, the node-information is updated
for all nodes on the path from the cell up to the root. For
efficiently maintainable functions (see Section 3.6) this re-
sults in an overall worst case update cost that is linear in
the height of the tree. Since we assumed that the data types
of the attributes are of bounded size, the spatial decompo-
sition guarantees that the height of the tree is also bounded
by a constant. Consider an example where no data type uses
more than 32 bits. At each level of the spatial decomposi-

tion each dimension is divided in half. Hence the height
of the tree is bounded by 32.2 Thus the overall cost of an
update is bounded by a constant.

For large data sets the complete pCube structure will not
fit into a computer's main memory and has to be stored on
disk (secondary memory). We store pCube in a packed for-
mat onto disk pages where a page can contain more than one
node. Approximate results with error bounds can be output
after accessing all relevant nodes in a page, while the next
page is retrieved from disk.

The nodes on the disk pages are ordered by their level
(i.e., how often the space was divided), nodes on the same
level are stored in Z-order (space-filling curve, see for
instance [8]). See Figure 4 for an example. Thus for
queries that need to access a high percentage of the inter-
nal nodes, the corresponding pages can efficiently be ac-
cessed with sequential I/O. By keeping the first pages that
contain the high-level (close to the root) nodes in fast stor-
age (cache/memory) pCube quickly returns results without
accessing the disk. Note, that maintaining the node order on
the disk pages results in extra costs for insert and delete op-
erations. Whenever an insert creates a new node or a delete
causes a node to be shrunken, the correct page for inserting
the node must be located. By indexing the page numbers
with a B-tree and using the “greatest” node (according to
the ordering of the nodes) in the page as the index attribute,
the page can be found at an extra cost which is logarithmic
in the number of non-empty cells.

4.3. Results

We ran various experiments for real-world and artificial
data. Artificial data sets included dense and sparse data
cubes. We examined the effect of skew (Zipf distributed
values [30]), clusters and dimensions with different domain
sizes.

The results presented here were obtained by executing
30,000 random range queries of varying selectivity on dif-
ferent data cubes (Table 4). In each dimension, a range
was independently and uniformly selected based on selec-
tion predicates. Let [a : : : b] denote the set fa; a+1; : : : ; bg
and let dimension D' s domain be [minD : : :maxD]. Then
the following ranges were selected for dimensionD (where
x and y are the randomly determined bounds):

1. [minD : : : x] with 30% probability

2. [x : : : y] with 10% probability

3. [x : : : x] (single value) with 10% probability

2For floating point data types that encode a large range with a com-
parably small number of bits, the floating point numbers are mapped to
corresponding bit strings (order-preserving). Then the spatial decomposi-
tion and the accesses are performed based on the “encoded” numbers.
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4. [minD : : :maxD ] (complete domain) with 50% proba-
bility

Note, that this selection favors queries that are disadvanta-
geous for our pCube implementation. It is very likely that
range queries are generated that cut through many dimen-
sions, i.e., that intersect a large number of tree nodes, with-
out completely covering their node-regions. Furthermore,
in many high-dimensional applications, it is realistic to as-
sume users to specify a range over a limited number of di-
mensions and leave other dimension attributes unspecified.

In each experiment we measured the number of page ac-
cesses for obtaining results of different approximation qual-
ities for queries with a selectivity between 0% and 100%.
Those numbers are compared to two benchmark algorithms.
For our experiments we set pCube's parameters such that
the cells are stored in Z-order. We used the same ordering
to pack the data onto disk pages for the benchmark algo-
rithms.

The first comparison benchmark algorithm (“Ideal In-
dex”) behaves like an optimal index structure where an in-
dex on each dimension exists. It is motivated by real index
structures in database systems. If an index exists on an at-
tribute A, then pointers to all data items whose A-value sat-
isfies the selection condition of the query can be obtained
from the index. Instead of scanning the whole database,
only the selected data items are retrieved. By creating an
index on each dimension attribute, this technique general-
izes to selections where conditions on more than one at-
tribute are given in the query. First, for each dimension
the set of data items that satisfy the selection condition for
the dimension are obtained from the corresponding (one-
dimensional) index. Then, by intersecting the result sets,
the set of all data items that satisfy the whole selection con-
dition is computed. Finally only the selected data items are
retrieved from the database. Our Ideal Index benchmark
simulates this behavior. In contrast to the real index, we as-
sume that it gets the pointers to the selected data items (i.e.,
cells) “for free”. Thus the Ideal Index only accesses those
disk pages that contain the selected data items. Note that
this gives the Ideal Index benchmark a great advantage over
any real technique. It not only saves the accesses to the in-
dex pages, but also the cost of combining the result sets. For
high-dimensional data sets those costs can be very high. For
instance, a range query with a selectivity of 80% in each di-
mension only selects about (80%)15 = 3:5% of the cells of
a 15-dimensional data cube. Thus the costs of obtaining the
large intermediate result sets for each dimension are high,
while the final result set will be rather small.

When using index structures like B-trees, the index
pages are accessed with random I/O (each access incurs
seek and rotational latency). Random I/O are much slower
than sequential I/O where disk pages are read sequentially.
We therefore implemented a second benchmark algorithm

(“Ideal Scan”) that is based on sequential I/O. We assume
that this algorithm “magically” knows about the first and
the last page on disk that contain data items (cells) that are
selected by the query. The access cost is then measured as
the number of sequential page accesses to pages between
and including the given pages.

Note that both benchmark algorithms are highly ideal-
ized. They constitute a lower bound for the correspond-
ing classes of techniques that do not use pre-aggregation
and do not provide any early feedback with error bounds.
Also, it should be kept in mind that all page accesses of the
Ideal Scan are sequential I/O. For pCube and the Ideal Index
some accesses will be sequential, some random. pCube can
take advantage of the order in which the nodes are stored
on disk. For queries that are expected to intersect a high
percentage of tree nodes, it can be decided to perform a se-
quential scan on the pages that contain the internal nodes.

Figure 5 contain the experimental results for a real-world
data set (CENSUS, see Table 4). The data was obtained
from the U.S. Census Bureau database [27]. We extracted
the 1995 Current Population Survey's person data file. The
data cube has 10 dimensions (age, class of worker, fam-
ily type, age recode, educational attainment, marital sta-
tus, race, Hispanic origin, sex, household summary). The
data cube is extremely sparse (less than 0.001% non-empty
cells). Figures 5(a) and 5(b) show that queries with large
query-cubes benefit from storing aggregate information at
internal nodes, irrespective of whether the query runs till
completion (exact result) or is aborted earlier (when the ap-
proximation is good enough). Recall that in the case of
large query-cubes when the query-cube is expected to in-
tersect a high percentage of tree nodes, the disk accesses
are performed sequentially. If a user is satisfied with a rela-
tive approximation error of 20%, the savings in access costs
are substantial. In the case of the Ideal Index (Figure 5(c)),
the larger the query-cube, the more non-empty cells are in-
cluded and the more pages have to be accessed. Note, that
real-world algorithms require additional accesses to index
pages to find the relevant data pages. Index accesses are
slow random I/O. In contrast, when simply scanning the
data sequentially, one can take advantage of faster sequen-
tial I/O. The Ideal Scan benchmark (Figure 5(d)) scans the
smallest possible set of data pages, such that the relevant
data is retrieved. It has to access almost the entire set of
data pages, even for small ranges. Thus it is not efficient for
queries that select a small number of data items only. The
results generally show that the user can be provided with
fast approximate answers at almost no extra costs. When the
application does not require exact results, savings in query
costs can be expected.

For a dense data set pCube performs even better (Fig-
ure 6). The results shown here were obtained for a four-
dimensional data cube where each dimension has 16 pos-
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Data set Dimensions Aggregate function Non-empty cells Internal nodes (pCube only)
CENSUS 10 COUNT 45988 (352 pages) 11598 (161 pages)
DENSE 4 SUM 39319 (151 pages) 4369 (80 pages)
ZIPF 11 SUM 49996 (404 pages) 10698 (170 pages)

Table 4. Data sets used in the experiments

sible values (see Table 4 for more details). Especially for
large query-cubes pCube clearly outperforms the bench-
mark algorithms. The main reason is that for a dense data
cube the spatial decomposition produces a balanced tree
where almost all possible internal nodes are created. Thus
the number of leaf nodes accessed is dramatically reduced.

Since our pCube implementation is based on a regu-
lar spatial decomposition technique, we expected a per-
formance degradation with increasing skew in the data
distribution. The worst results were obtained for an 11-
dimensional data cube (dimension domains of size 2, 4, 8,
16, 32, 64 and the others 128) where the values for eight di-
mensions are Zipf distributed (skew parameter between 1.8
and 1.2), and the values for the other three are uniformly
distributed. Due to the skew the tree is poorly balanced.
Queries that access nodes in the dense region of the data
cube intersect many tree nodes, resulting in a large num-
ber of disk accesses. However, even for this “worst case
scenario” the pCube implementation provides fast answers
with error bounds at moderate extra costs (Figure 7).

5. Conclusion

The experiments show that pCube is a powerful concept
for supporting efficient online aggregation. In contrast to
earlier approaches, pCube provides early feedback with ab-
solute error bounds for queries on data cubes. Since the
worst case update and query costs depend on the number
of non-empty cells, rather than on the dimensionality or the
size of the data cube (including empty cells), our technique
can efficiently handle high-dimensional and sparse data
cubes. The combination of a hierarchical data structure and
simple approximation models at the tree nodes enables fast
updates and progressively improving error bounds. Also, by
taking advantage of the hierarchical structure, some aggre-
gate functions that are not self-maintainable and can not be
made self-maintainable, e.g., MAX and MIN, can be han-
dled efficiently by pCube.

An important goal of statistical analysis and decision
support queries lies in finding unusual information in the
data set, for instance extremum statistics. Techniques that
primarily capture “typical” or “average” data items (e.g.,
most types of histograms, sampling) and only provide prob-
abilistic error bounds, are not well-suited for this type of
analysis. In contrast to that, pCube's absolute error bounds

guarantee that the unusual information is contained in the
approximate answer.

In real-world applications attributes often form hierar-
chies. The selection of ranges then typically corresponds
to those hierarchies (e.g., one can expect more queries
that summarize over the range 01/01/1999-12/31/1999, than
for the range 01/14/1999-01/13/2000). Incorporating this
knowledge into the pCube implementation would lead to a
better “match” of query boundaries and node-regions. For
pCubes that are based on spatial decomposition a fixed hier-
archy can be chosen for an attribute. Then the partitioning
is performed based on the hierarchy (e.g., instead of par-
titioning a week into two “half-weeks” it will be split into
seven days). We expect such a partitioning to result in per-
formance improvements.

The concept of pCube is very general. Our experi-
ments were performed for just one of its many possible im-
plementations. Still the results are very encouraging and
show, that early feedback with absolute error bounds can be
added to data analysis tools at a low extra cost. There are,
however, aggregate functions like MostFrequentValue, for
which pCube in its current version is not applicable. Our
future work includes the development of concepts that pro-
vide pCube's properties for diverse functions and hierarchy
based partitioning.
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(a) pCube, page accesses for the exact result
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(b) pCube, page accesses for a relative error of 20%
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(c) Ideal Index, page accesses for the exact result
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(d) Ideal Scan, page accesses for the exact result

Figure 7. ZIPF dataset
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