1-Bucket-Theta: Map

- Input: tuple \(x \in S \cup T \), matrix-to-reducer mapping lookup table
- 1. If \(x \in S \) then
 - matrixRow = random\(\{1, |S|\} \)
 - For all regionID in lookup.getRegions(matrixRow)
 - Output (regionID, \(\{x, "S"\} \))
- 2. Else
 - matrixCol = random\(\{1, |T|\} \)
 - For all regionID in lookup.getRegions(matrixCol)
 - Output (regionID, \(\{x, "T"\} \))

1-Bucket-Theta: Reduce

- Input: \((ID, [(x_i, \text{origin}_i), ..., (x_k, \text{origin}_k)])\)
- 1. Stuples = \(\emptyset \); Ttuples = \(\emptyset \)
- 2. For all \((x_i, \text{origin}_i) \) in input list do
 - 1. If \(\text{origin}_i = "S" \) then Stuples = Stuples \(\cup \{x_i\} \)
 - 2. Else Ttuples = Ttuples \(\cup \{x_i\} \)
- 3. joinResult = MyFavoriteJoinAlg(Stuples, Ttuples)
- 4. Output joinResult

Remaining Challenges

What is the best way to cover all true-valued cells?

And how do we know which matrix cells have value true?

Why Randomization?

- Avoids pre-processing step to assign row/column IDs to records
- Effectively removes output skew
- Input sizes very close to target
 - Chernoff bound: due to large number of records per reducer, probability of receiving 10% or more over target is virtually zero
- Side-benefit: join matrix does not have to have \(|S| \) by \(|R| \) cells, could be much smaller!

Cartesian Product Computation

- Start with cross-product \(S \times T\)
 - Entire matrix needs to be covered by \(r \) reducer regions
- Lemma 1: use square-shaped regions!
 - A reducer that covers \(c \) cells of join matrix \(M \) will receive at least \(2 \sqrt{c} \) input tuples
Optimal Cover for M

- Need to cover all $|S| \cdot |T|$ matrix cells
 - Lower bound for max-reducer-output: $|S| \cdot |T|/r$
 - Lemma 1 implies lower bound for max-reducer-input: $2\sqrt{r} \cdot |S| \cdot |T|/r$
- Can we match these lower bounds?
 - YES: Use r squares, each $\sqrt{|S| \cdot |T|/r}$ cells wide/tall
- Can this be achieved for given S, T, r?

Easy Case

- $|S|$, $|T|$ are both multiples of $\sqrt{|S| \cdot |T|/r}$
 - Optimal!

![Optimal square region](image)
![Join matrix (cross-product)](image)

Also Easy

- $|S| < |T|/r$
 - Implies $|S| < \sqrt{r} \cdot |S| \cdot |T|/r$
 - Lower bound for input not achievable
- Optimal: use rectangles of size $|S|$ by $|T|/r$

![“Idealistic” square region](image)
![Actual optimal region](image)

Hard Case

- $|T|/r \leq |S| \leq |T|$ and at least one is not multiple of $\sqrt{|S| \cdot |T|/r}$

![Optimal square region](image)
![9 regions: - 6 fit - 3 do not fit](image)

Solution For Hard Case

- “Inflate” squares until they just cover the matrix
 - Worst case: only one square did fit initially, but leftover just too small to fit more rows or columns

![Need to at most double side-length of optimal square](image)

Near-Optimality For Cross-Product

- Every region has less than $4 \cdot \sqrt{r} \cdot |S| \cdot |T|/r$ input records
 - Lower bound: $2 \sqrt{r} \cdot |S| \cdot |T|/r$
- Every region contains less than $4 \cdot |S| \cdot |T|/r$ cells
 - Lower bound: $|S| \cdot |T|/r$
- Summary: max-reducer-input and max-reducer-output are within a factor of 2 and 4 of the lower bound, respectively
 - Usually much better: if 10 by 10 squares fit initially, they are within a factor of 1.1 and 1.21 of lower bound!
From Cross-Product To Joins

- Near-optimality only shown for cross-product
- Randomization of 1-Bucket-Theta tends to distribute output very evenly over regions
 - Join-specific mapping unlikely to improve max-reducer-output significantly
 - 1-Bucket-Theta wins for output-size dominated joins
- Join-specific mapping has to beat 1-Bucket-Theta on input cost!
 - Avoid covering empty matrix regions

Finding Empty Matrix Regions

- For a given matrix region, prove that it contains no join result
- Need statistics about S and T
- Need simple enough join predicate
 - Histogram bucket: $S.A > 8 \land T.A < 7$
 - Join predicate: $S.A = T.A$
 - Easy to show that bucket property implies negation of join predicate
- Not possible for “blackbox” join predicates

Approximate Join Matrix

- For a given matrix region, prove that it contains no join result
- Need statistics about S and T
- Need simple enough join predicate
 - Histogram bucket: $S.A > 8 \land T.A < 7$
 - Join predicate: $S.A = T.A$
 - Easy to show that bucket property implies negation of join predicate
- Not possible for “blackbox” join predicates

What Can We Do?

- Even if we could guess a better algorithm than 1-Bucket-Theta, we cannot use it unless we can prove that it does not miss any join results
- Can do this for many popular join types
 - Equi-join: $S.A = T.A$
 - Inequality-join: $S.A \leq T.A$
 - Band-join: $R.A - \varepsilon_1 \leq S.A \leq R.A + \varepsilon_2$
- Need histograms (easy and cheap to compute)

M-Bucket-I

- Uses multiple-bucket histograms to minimize max-reducer-input
- First identifies candidate cells
- Then tries to cover all candidate cells with r regions
 - Binary search over max-reducer-input values
 - Min: $2 \cdot \sqrt{\text{#candidateCells}} / r$; max: $|S| + |T|$
 - Works on block of consecutive rows
 - Find “best” block (most candidate cells covered per region)
 - Continue with next block, until all candidate cells covered, or running out of regions

M-Bucket-I Illustration

- Uses multiple-bucket histograms to minimize max-reducer-input
- First identifies candidate cells
- Then tries to cover all candidate cells with r regions
 - Binary search over max-reducer-input values
 - Min: $2 \cdot \sqrt{\text{#candidateCells}} / r$; max: $|S| + |T|$
 - Works on block of consecutive rows
 - Find “best” block (most candidate cells covered per region)
 - Continue with next block, until all candidate cells covered, or running out of regions

- Best: 1
- Max input = 3
- And so on.
M-Bucket-O

- Similar to M-Bucket-I, but tries to minimize max-reducer-output
- Binary search over max-reducer-output values
- Problem: estimate number of result cells in regions inside a histogram bucket
 - Estimate can be poor, even for fine-grained histogram
 - Input-size estimation much more accurate than output-size estimation

Extension: Memory-Awareness

- Input for region might exceed reducer memory
- Solutions
 - Use I/O-based join implementation in Reduce, or
 - Create more (and hence smaller) regions
- 1-Bucket-Theta: use squares of side-length Mem/2
- M-Bucket-I: Instead of binary search on max-reducer-input, set it immediately to Mem
- Similar for M-Bucket-O

Experiments: Basic Setup

- 10-machine cluster
 - Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM, two 250GB 7.2K RPM hard disks
- Hadoop 0.20.2
 - One machine head node, other nine worker nodes
 - One Map or Reduce task per core
 - DFS block size of 64MB
 - Data stored on all 10 machines

Data Sets

- Cloud
 - Cloud reports from ships and land stations
 - 382 million records, 28 attributes, 28.8GB total size
- Cloud-5-1, Cloud-5-2
 - Independent random samples from Cloud, each with 5 million records
- Synth-α
 - Pair of data sets of 5 million records each
 - Record is single integer between 1 and 1000
 - Data set 1: uniformly generated
 - Data set 2: Zipf distribution with parameter α
 - For α=0, data is perfectly uniform

Skew Resistance: Equi-Join

- 1-Bucket-Theta vs. standard equi-join algorithm
- Output-size dominated join
 - Max-reducer-output determines runtime

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Output size (billion)</th>
<th>1-Bucket-Theta</th>
<th>Standard algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Output imbalance</td>
<td>Runtime (sec)</td>
</tr>
<tr>
<td>Synth-0</td>
<td>25.00</td>
<td>1.0030</td>
<td>857</td>
</tr>
<tr>
<td>Synth-0.4</td>
<td>24.99</td>
<td>1.0023</td>
<td>650</td>
</tr>
<tr>
<td>Synth-0.6</td>
<td>24.98</td>
<td>1.0033</td>
<td>676</td>
</tr>
<tr>
<td>Synth-0.8</td>
<td>24.95</td>
<td>1.0068</td>
<td>678</td>
</tr>
<tr>
<td>Synth-1</td>
<td>24.91</td>
<td>1.0089</td>
<td>667</td>
</tr>
</tbody>
</table>

Selective Band-Join

```
SELECT S.date, S.longitude, S.latitude, T.latitude
FROM Cloud AS S, Cloud AS T
WHERE S.date = T.date
AND S.longitude = T.longitude AND
ABS(S.latitude - T.latitude) <= 10
```

- 390M output vs. 764M input records
- M-Bucket-I for different histogram granularities
M-Bucket-I Results

- 10-run averages (stdev < 15%)

M-Bucket-I Details

- M-Bucket-I for 1-bucket histogram is improved version of original 1-Bucket-Theta
 - 1-Bucket-Theta might keep reducers idle
- Out-of-memory for 1-bucket and 100-bucket cases
 - Used memory-aware version of algorithm
 - Creates $c \cdot r$ regions for r reducers for smallest integer c that allows in-memory processing
- Input duplication rate: total mapper output size vs. total mapper input size
 - 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms with 1, 10, 100, 1000, 10K, 100k, and 1M buckets

M-Bucket-O Results

- 10-run averages (stdev < 4%)

Not-So-Selective Band-Join

```
SELECT S.latitude, T.latitude
FROM Cloud-5-1 AS S, Cloud-5-2 AS T
WHERE ABS(S.latitude-T.latitude) <= 2
```

- 22 billion output vs. 10 million input records
- M-Bucket-O for different histogram granularities

M-Bucket-O Details

- M-Bucket-O for 1-bucket histogram is improved version of original 1-Bucket-Theta
- Data set has 5951 distinct latitude values
- Input duplication rate: total mapper output size vs. total mapper input size
 - 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with 1, 10, 100, 1000, and 5951 buckets

Detailed cost breakdown

<table>
<thead>
<tr>
<th>Step</th>
<th>Number of histogram buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quantiles</td>
<td>0</td>
</tr>
<tr>
<td>Histogram</td>
<td>0</td>
</tr>
<tr>
<td>Heuristic</td>
<td>74</td>
</tr>
<tr>
<td>Join</td>
<td>49,384</td>
</tr>
<tr>
<td>Total</td>
<td>49,458</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Number of histogram buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quantiles</td>
<td>0</td>
</tr>
<tr>
<td>Histogram</td>
<td>0</td>
</tr>
<tr>
<td>Heuristic</td>
<td>0.04</td>
</tr>
<tr>
<td>Join</td>
<td>1279</td>
</tr>
<tr>
<td>Total</td>
<td>1279</td>
</tr>
</tbody>
</table>
Summary

- Join model for creation and reasoning about parallel algorithms
- Near-optimal randomized algorithm for output-size dominated joins
- Improved heuristics for popular very selective joins

Future Directions

- Explore broader model applicability
 - Very general model
 - Works for size-skewed joins where one set fits in memory
 - Improves completion time of Map-only implementation
 - Algorithm can be executed sequentially
 - Can tune it to available memory
- Multi-way theta-joins
- Optimizer to select best implementation for given join problem