1-Bucket-Theta: Map

- Input: tuple $x \in S \cup T$, matrix-to-reducer mapping lookup table

1. If $x \in S$ then
 1. matrixRow = random(1, |S|)
 2. Forall regionID in lookup.getRegions(matrixRow)
 1. Output (regionID, (x, “S”))

2. Else
 1. matrixCol = random(1, |T|)
 2. Forall regionID in lookup.getRegions(matrixCol)
 1. Output (regionID, (x, “T”))

1-Bucket-Theta: Reduce

- Input: (ID, [(x₁, origin₁),..., (xₖ, originₖ)])

1. Stuples = \emptyset; Ttuples = \emptyset
2. Forall (x_i, origin_i) in input list do
 1. If $\text{origin}_i = “S”$ then Stuples = Stuples $\cup \{x_i\}$
 2. Else Ttuples = Ttuples $\cup \{x_i\}$
3. joinResult = MyFavoriteJoinAlg(Stuples, Ttuples)
4. Output joinResult
1-Bucket-Theta Example

Why Randomization?

- Avoids pre-processing step to assign row/column IDs to records
- Effectively removes output skew
- Input sizes very close to target
 - Chernoff bound: due to large number of records per reducer, probability of receiving 10% or more over target is virtually zero
- Side-benefit: join matrix does not have to have |S| by |R| cells, could be much smaller!
Remaining Challenges

What is the best way to cover all true-valued cells?

And how do we know which matrix cells have value true?

Cartesian Product Computation

• Start with cross-product $S \times T$
 – Entire matrix needs to be covered by r reducer regions

• Lemma 1: use square-shaped regions!
 – A reducer that covers c cells of join matrix M will receive at least $2 \cdot \sqrt{c}$ input tuples
Optimal Cover for M

• Need to cover all $|S| \cdot |T|$ matrix cells
 – Lower bound for max-reducer-output: $|S| \cdot |T|/r$
 – Lemma 1 implies lower bound for max-reducer-input: $2 \cdot \sqrt{|S| \cdot |T|/r}$
• Can we match these lower bounds?
 – YES: Use r squares, each $\sqrt{|S| \cdot |T|/r}$ cells wide/tall

• Can this be achieved for given S, T, r?

Easy Case

• $|S|, |T|$ are both multiples of $\sqrt{|S| \cdot |T|/r}$
• Optimal!
Also Easy

- \(|S| < \frac{|T|}{r}\)
 - Implies \(|S| < \sqrt{|S| \cdot \frac{|T|}{r}}\)
 - Lower bound for input not achievable
- Optimal: use rectangles of size \(|S|\) by \(|T|/r\)

```
... Actual optimal region ...
```

Hard Case

- \(|\frac{|T|}{r} \leq |S| \leq |T|\) and at least one is not multiple of \(\sqrt{|S| \cdot \frac{|T|}{r}}\)

```
... Optimal square region ...
```
Solution For Hard Case

• “Inflate” squares until they just cover the matrix
 – Worst case: only one square did fit initially, but leftover just too small to fit more rows or columns

Near-Optimality For Cross-Product

• Every region has less than $4 \cdot \sqrt{|S| \cdot |T|/r}$ input records
 – Lower bound: $2 \cdot \sqrt{|S| \cdot |T|/r}$
• Every region contains less than $4 \cdot |S| \cdot |T|/r$ cells
 – Lower bound: $|S| \cdot |T|/r$
• Summary: max-reducer-input and max-reducer-output are within a factor of 2 and 4 of the lower bound, respectively
 – Usually much better: if 10 by 10 squares fit initially, they are within a factor of 1.1 and 1.21 of lower bound!
From Cross-Product To Joins

• Near-optimality only shown for cross-product
• Randomization of 1-Bucket-Theta tends to distribute output very evenly over regions
 – Join-specific mapping unlikely to improve max-reducer-output significantly
 – 1-Bucket-Theta wins for output-size dominated joins
• Join-specific mapping has to beat 1-Bucket-Theta on input cost!
 – Avoid covering empty matrix regions

Finding Empty Matrix Regions

• For a given matrix region, prove that it contains no join result
• Need statistics about S and T
• Need simple enough join predicate
 – Histogram bucket: S.A > 8 ∧ T.A < 7
 – Join predicate: S.A = T.A
 – Easy to show that bucket property implies negation of join predicate
• Not possible for “blackbox” join predicates
What Can We Do?

- Even if we could guess a better algorithm than 1-Bucket-Theta, we cannot use it unless we can prove that it does not miss any join results.
- Can do this for many popular join types:
 - Equi-join: $S.A = T.A$
 - Inequality-join: $S.A \leq T.A$
 - Band-join: $R.A - \varepsilon_1 \leq S.A \leq R.A + \varepsilon_2$
- Need histograms (easy and cheap to compute)
M-Bucket-1

- Uses Multiple-bucket histograms to minimize max-reducer-input
- First identifies candidate cells
- Then tries to cover all candidate cells with r regions
 - Binary search over max-reducer-input values
 - Min: \(2 \cdot \sqrt{\frac{\text{#candidateCells}}{r}}\); max: |S|+|T|
 - Works on block of consecutive rows
 - Find “best” block (most candidate cells covered per region)
 - Continue with next block, until all candidate cells covered, or running out of regions

M-Bucket-1 Illustration

Block: row 1

Score: 1

Block: rows 1-2

Score: 1.5

Best:

And so on.

MaxInput = 3
M-Bucket-O

- Similar to M-Bucket-I, but tries to minimize max-reducer-output
- Binary search over max-reducer-output values
- Problem: estimate number of result cells in regions inside a histogram bucket
 - Estimate can be poor, even for fine-grained histogram
 - Input-size estimation much more accurate than output-size estimation

Extension: Memory-Awareness

- Input for region might exceed reducer memory
- Solutions
 - Use I/O-based join implementation in Reduce, or
 - Create more (and hence smaller) regions
- 1-Bucket-Theta: use squares of side-length Mem/2
- M-Bucket-I: Instead of binary search on max-reducer-input, set it immediately to Mem
- Similar for M-Bucket-O
Experiments: Basic Setup

- 10-machine cluster
 - Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM, two 250GB 7.2K RPM hard disks
- Hadoop 0.20.2
 - One machine head node, other nine worker nodes
 - One Map or Reduce task per core
 - DFS block size of 64MB
 - Data stored on all 10 machines

Data Sets

- Cloud
 - Cloud reports from ships and land stations
 - 382 million records, 28 attributes, 28.8GB total size
- Cloud-5-1, Cloud-5-2
 - Independent random samples from Cloud, each with 5 million records
- Synth-α
 - Pair of data sets of 5 million records each
 - Record is single integer between 1 and 1000
 - Data set 1: uniformly generated
 - Data set 2: Zipf distribution with parameter α
 - For $\alpha=0$, data is perfectly uniform
Skew Resistance: Equi-Join

- 1-Bucket-Theta vs. standard equi-join algorithm
- Output-size dominated join
 - Max-reducer-output determines runtime

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Output size (billion)</th>
<th>Output imbalance</th>
<th>Runtime (secs)</th>
<th>Output Imbalance</th>
<th>Runtime (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synth-0</td>
<td>25.00</td>
<td>1.0030</td>
<td>657</td>
<td>1.001</td>
<td>701</td>
</tr>
<tr>
<td>Synth-0.4</td>
<td>24.99</td>
<td>1.0023</td>
<td>650</td>
<td>1.254</td>
<td>722</td>
</tr>
<tr>
<td>Synth-0.6</td>
<td>24.98</td>
<td>1.0033</td>
<td>676</td>
<td>1.778</td>
<td>923</td>
</tr>
<tr>
<td>Synth-0.8</td>
<td>24.95</td>
<td>1.0068</td>
<td>678</td>
<td>3.010</td>
<td>1482</td>
</tr>
<tr>
<td>Synth-1</td>
<td>24.91</td>
<td>1.0089</td>
<td>667</td>
<td>5.312</td>
<td>2489</td>
</tr>
</tbody>
</table>

Selective Band-Join

```
SELECT S.date, S.longitude, S.latitude, T.latitude
FROM Cloud AS S, Cloud AS T
WHERE S.date = T.date
  AND S.longitude = T.longitude AND
  ABS(S.latitude - T.latitude) <= 10
```

- 390M output vs. 764M input records
- M-Bucket-I for different histogram granularities
M-Bucket-I Results

10-run averages (stdev < 15%)

Runtime for MapReduce only!

M-Bucket-I Details

• M-Bucket-I for 1-bucket histogram is improved version of original 1-Bucket-Theta
 – 1-Bucket-Theta might keep reducers idle
• Out-of-memory for 1-bucket and 100-bucket cases
 – Used memory-aware version of algorithm
 – Creates \(c \cdot r \) regions for \(r \) reducers for smallest integer \(c \) that allows in-memory processing
• Input duplication rate: total mapper output size vs. total mapper input size
 – 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms with 1, 10, 100, 1000, 10K, 100k, and 1M buckets
Not-So-Selective Band-Join

SELECT S.latitude, T.latitude
FROM Cloud-5-1 AS S, Cloud-5-2 AS T
WHERE ABS(S.latitude-T.latitude) <= 2

• 22 billion output vs. 10 million input records
• M-Bucket-O for different histogram granularities

M-Bucket-O Results

10-run averages (stdev < 4%)

Runtime for MapReduce only!
M-Bucket-O Details

- M-Bucket-O for 1-bucket histogram is improved version of original 1-Bucket-Theta

- Data set has 5951 distinct latitude values

- Input duplication rate: total mapper output size vs. total mapper input size
 - 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with 1, 10, 100, 1000, and 5951 buckets

M-Bucket-O on Cloud data set (input-size dominated join):

<table>
<thead>
<tr>
<th>Step</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10,000</th>
<th>100,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantiles</td>
<td>0</td>
<td>115</td>
<td>120</td>
<td>117</td>
<td>122</td>
<td>124</td>
<td>122</td>
</tr>
<tr>
<td>Histogram</td>
<td>0</td>
<td>140</td>
<td>145</td>
<td>147</td>
<td>157</td>
<td>167</td>
<td>604</td>
</tr>
<tr>
<td>Heuristic</td>
<td>74</td>
<td>9</td>
<td>0.8</td>
<td>1.5</td>
<td>17</td>
<td>118</td>
<td>111</td>
</tr>
<tr>
<td>Join</td>
<td>49,384</td>
<td>10,905</td>
<td>1157</td>
<td>595</td>
<td>548</td>
<td>540</td>
<td>536</td>
</tr>
<tr>
<td>Total</td>
<td>49,458</td>
<td>11169</td>
<td>1423</td>
<td>861</td>
<td>844</td>
<td>949</td>
<td>1373</td>
</tr>
</tbody>
</table>

M-Bucket-O on Cloud-5 data sets (output-size dominated join):

<table>
<thead>
<tr>
<th>Step</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>5951</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantiles</td>
<td>0</td>
<td>4.5</td>
<td>4.5</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Histogram</td>
<td>0</td>
<td>26.2</td>
<td>25.8</td>
<td>25.6</td>
<td>25.6</td>
</tr>
<tr>
<td>Heuristic</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.24</td>
<td>0.81</td>
</tr>
<tr>
<td>Join</td>
<td>1279</td>
<td>2483</td>
<td>1597</td>
<td>1369</td>
<td>1188</td>
</tr>
<tr>
<td>Total</td>
<td>1279</td>
<td>2514</td>
<td>1627</td>
<td>1399</td>
<td>1219</td>
</tr>
</tbody>
</table>
Summary

• Join model for creation and reasoning about parallel algorithms
• Near-optimal randomized algorithm for output-size dominated joins
• Improved heuristics for popular very selective joins

Future Directions

• Explore broader model applicability
 – Very general model
 – Works for size-skewed joins where one set fits in memory
 • Improves completion time of Map-only implementation
 – Algorithm can be executed sequentially
 • Can tune it to available memory
• Multi-way theta-joins
• Optimizer to select best implementation for given join problem