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Key Learning Goals
• What is an equi-join?

• Give an example for a join that is not an equi-join.

• Write the MapReduce pseudo-code for Reduce-
side join and Replicated join.

• Given some input, argue quantitatively if Reduce-
side (hash + shuffle) or Replicated (partition + 
broadcast) join will move less data through the 
network.

• Give an example when you should use hash + 
shuffle, but not partition + broadcast join.

• Give an example for the opposite.
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Key Learning Goals

• What is a semi-join? Give an example to 
explain it.

• What problem do Bloom filters solve?

• What do we mean by “false positive” and 
“false negative” in the context of Bloom 
filters?
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Introduction
• The join operator defines a surprisingly common 

computation pattern that can be applied to many 
real-world data analysis problems. It combines 
information across different data sets. While 
expensive—in the worst case quadratic in input 
size—it has a regular structure that enables 
efficient algorithms for computing it.

• In this module, the focus is on equi-joins. They 
are probably the most common type of join in 
practice. In fact, in the literature the term “join” 
is often used to implicitly mean “equi-join.” More 
general joins, called theta-joins, will be discussed 
in a future module.
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Join Applications
• The relational join operator combines records from one 

dataset with records in another. It outputs all record pairs 
that satisfy the join condition. Examples:
– In databases, joins are used to connect information stored in 

different tables. The most well-known example is the join on 
foreign keys to combine information in a normalized database. 
They can be used for the same purpose when analyzing big files, 
e.g., to connect user data to their blog posts and tweets.

– Joins can be used to analyze correlations and relationships 
between entities in different data sets. For instance, after 
joining pairs of records with similar elevation values, scientists 
can explore if their precipitation values are similar as well.

– Joins are also applicable to graph problems. For instance, given 
a file containing direct flights, the join operator can derive more 
complex flight connections, e.g., with two intermediate stops.
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Equi-Joins
• We are given two data sets S=(s1,s2,…) and T=(t1,t2,…). In database terminology, the 

records in S and T are tuples. Assume that each tuple has an attribute A. The equi-
join between S and T on attribute A is the set of all pairs (si,tj), such that siS, tjT, 
and si.A=tj.A.
– Property si.A=tj.A is the join condition. When the join condition enforces equality between 

attribute values, the join is called an equi-join. This idea generalizes to more complex equi-
joins such as “s.userName = t.person AND s.age = t.age.”

• Consider tables about students and their book reservations. To analyze the GPA 
distribution of students who reserve certain books, these two tables need to be 
joined on the SID attribute. (This is an example for a join on a foreign key. SID is a 
unique identifier, called a key, in the Students table. In the Reservations table, SID 
serves as a foreign key, “pointing” to the uniquely identified student who reserved 
the book.)
– We use ⋈ to express a join operator, annotated with the attributes the tables are joined on.
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SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

SID BookID Date

2 B10 01/17/12

3 B11 01/18/12

Students Reservations

SID Name Age GPA BookID Date

2 Bob 27 3.4 B10 01/17/12

3 Carla 20 3.8 B11 01/18/12

Students⋈𝑆𝐼𝐷Reservations



Side Note: What Is a Theta-Join?

• Consider tuples sS and tT, and any 
predicate P(S, T) that is defined over the 
attributes of S and T. For each pair (s, t), P(s, t) 
evaluates to either true or false. If it evaluates 
to true, then the pair is in the theta-join 
result, otherwise it is not.

– Equi-joins are a special type of theta-join where P 
is constrained to only contain equality predicates.
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Efficient Join Computation
• Any theta-join, including equi-joins, is a subset of the Cartesian 

product. Hence it could be implemented by first producing all pairs 
(si, tj) and then filtering out those that do not satisfy the join 
condition. This algorithm is inefficient for joins when most pairs do 
not match.

• For equi-joins, hash partitioning on join attribute A can dramatically 
reduce the number of S-T pairs examined.
– Given k bins, assign each input tuple x to bin number hash(x.A) mod k. 

Then all S-tuples and T-tuples with the same A-value end up in the 
same bin. Hence only tuples in the same bin need to be checked for 
matches.

– Assuming each input bin receives about the same number of input 
tuples, the problem of checking |S||T| possible pairs is reduced to 
checking 𝑘

|𝑆|

𝑘

|𝑇|

𝑘
pairs, i.e., 1/k of the cost.

• This idea can be applied analogously to equi-joins on multiple 
attributes by hashing on all join attributes.

• We now discuss how to apply this idea in a distributed context.
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Distributed Join: Hash + Shuffle

• The basic idea is to group each input by join 
attribute and co-locate the matching groups in 
the same task. This requires shuffling, because 
any join value aA may occur in any input split.

– Join-attribute values can be assigned to tasks, using a 
simple hash function.

• Then each join group performs a local Cartesian 
product between the S-tuples and T-tuples.

– All these tuples match, because we already separated 
them based on A-values.
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Hash Join With Shuffling 
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Hash Join With Shuffling 
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4 1 1 2 3 1 2 11 2 3 3 3 2 4 1

Initial data location

Round 1, task 0 Round 1, task 1

Data partitions Data partitions

S0 T0 S1 T1

hash(1) = 0
hash(2) = 1
hash(3) = 1
hash(4) = 0 Round 2, task 0 Round 2, task 1

Join group 1
1, 1, 1, 1: 1, 1

Join group 4
4: 4

Join group 2
2, 2: 2, 2

Join group 3
3: 3, 3, 3



Hash Join With Shuffling 
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4 1 1 2 3 1 2 11 2 3 3 3 2 4 1

Initial data location

Round 1, task 0 Round 1, task 1

Data partitions Data partitions

S0 T0 S1 T1

hash(1) = 0
hash(2) = 1
hash(3) = 1
hash(4) = 0 Round 2, task 0 Round 2, task 1

Join group 1
1, 1, 1, 1: 1, 1

Join group 4
4: 4

Join group 2
2, 2: 2, 2

Join group 3
3: 3, 3, 3

Output 8 pairs (1, 1) 1 pair (4, 4) 4 pairs (2, 2) 3 pairs (3, 3)



Discussion
• The hash + shuffle algorithm avoids checking non-matching tuples. 

It groups the input by the join attribute (a linear-cost operation), 
then only combines tuples in the same group, which by design are 
matching. It might be hard to imagine that one could do any better 
than this. Unfortunately, there are several drawbacks:
– The approach does not balance load well when the input is highly 

skewed. Consider the join group for A=1 in the example. If the data 
had even more tuples with A=1, then the round-2 task receiving that 
join group could become a bottleneck.

– The approach does not scale well for join attributes with small 
domains. If only k distinct join attribute values occur in the input (k=4 
in the example), then there are only k different join groups. No matter 
how many machines are available, all but k of them would be idle in 
round 2.

– Hash-partitioning on the join attribute inherently limits the algorithm 
to equi-joins. It does not generalize to non-equi joins, such as 
inequality conditions (S.A < T.A) or band-joins (|S.A – T.A| < ).

– Both S and T are read twice—in round 1 and again in round 2.
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Distributed Join: Partition + Broadcast
• Let us attempt to address the shortcomings of hash + shuffle by starting 

with the last problem: Can we compute the entire join in a single round?
– This may seem impossible, because tuples with the same A-value could be 

anywhere in the input file. Without data shuffling, how would one guarantee 
that an S-tuple is joined with a matching T-tuple that could be in any split of 
the T-file?

• Let us start with a gedankenexperiment: Assume a task receives an 
arbitrary input split from S. Which tuples from T should be sent to that 
task so that it can compute all matches?
– Since the S-split could contain any A-value, we must send the entire input T to 

the task. Otherwise it might miss matches for its S-tuples.

• This analysis forms the foundation of the partition + broadcast algorithm:
– Each task receives an arbitrary subset of S-tuples, e.g., a file split. It also 

receives a copy of the entire T, i.e., we partition S and broadcast T.
– For efficient broadcasting, notice that a worker might execute multiple tasks. 

Instead of requesting T repeatedly, the worker should hold on to the first copy 
it receives, and re-use it for all tasks.

– For efficient local lookups, the task could store T in a hash index that maps 
each aA to the set of all T-tuples t with t.A = a.

• We show an example to illustrate this algorithm next.
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Task 0

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7

t0,1 t1,7 t2,9

Distributed File System

Splits of S-file

Splits of T-file

Worker Machine

Task 1

Local File System
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Task 0

Distributed File System

Worker Machine

Task 1

Local File System

Copy T-file

t3,1 t4,7

t0,1 t1,7 t2,9Each worker machine executing join 
tasks receives the entire T-file exactly 
once (!) for this job, no matter how 
many tasks it will execute.

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7

t0,1 t1,7 t2,9
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Task 0

Distributed File System

Worker Machine

Task 1

Local File System

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

The task reads the local copy of T 
and creates an in-memory hash 
index on the join attribute.

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7

t0,1 t1,7 t2,9

t3,1 t4,7

t0,1 t1,7 t2,9
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Task 0

Distributed File System

Worker Machine

Task 1

Local File System

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s0,1

s4,2

The task reads its input split 
tuple-by-tuple.

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7

t0,1 t1,7 t2,9

t3,1 t4,7

t0,1 t1,7 t2,9
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Task 0

Distributed File System

Worker Machine

Local File System

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s0,1
lookup (1)

t0,1 t3,1

Task 1

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s4,2
lookup (2)

empty resultThe task performs a lookup on the 
hash index, which returns all 
matching T-tuples. If the lookup 
result is empty, the corresponding S-
tuple has no matches in T.

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7

t0,1 t1,7 t2,9

t3,1 t4,7

t0,1 t1,7 t2,9
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Task 0

Distributed File System

Worker Machine

Local File System

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s0,1
lookup (1)

t0,1 t3,1

Task 1

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s4,2
lookup (2)

empty result(s0,t0) (s0,t3)

The matching tuple pairs are written to the 
job output file in the distributed file system. 
(To be precise, they would first be written 
to a local file. We simplified this process in 
the image to avoid unnecessary clutter.)

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7

t0,1 t1,7 t2,9

t3,1 t4,7

t0,1 t1,7 t2,9
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Task 0

Distributed File System

Worker Machine

Task 1

Local File System

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s1,2

s5,1

(s0,t0) (s0,t3)

This process continues for the 
remaining input tuples in the S-file 
splits.

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7
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t0,1 t1,7 t2,9
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Task 0

Distributed File System

Worker Machine

Local File System

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s1,2
lookup (2)

t0,1 t3,1

Task 1

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s5,1
lookup (1)

empty result

(s0,t0) (s0,t3)

The task performs a lookup on the hash 
index, which returns all matching T-
tuples.
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Distributed File System

(s0,t0) (s0,t3)

Task 0
Worker Machine

Local File System

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s1,2
lookup (2)

t0,1 t3,1

Task 1

1

7

9

t0,1 t3,1

t1,7 t4,7

t2,9

s5,1
lookup (1)

empty result

(s5,t0) (s5,t3)
Join output

The matching tuple pairs are written to the 
job output file in the distributed file system. 
The next steps will not produce any more 
output.

s0,1 s1,2 s2,5 s3,2

s4,2 s5,1 s6,4

t3,1 t4,7

t0,1 t1,7 t2,9

t3,1 t4,7

t0,1 t1,7 t2,9



Discussion
• Partition + broadcast works best if T is much smaller 

than S and fits in memory. Otherwise, T needs to be 
paged in and out from disk, increasing code complexity 
and access cost.

• This algorithm generalizes to any theta-join!
– To see why, notice that for each pair (s, t) of tuples sS

and tT, there is exactly one task that receives both s 
(because it is in the input split for this task) and t (because 
every task receives the entire T). The task processing input 
tuple s can go through the entire list of T-tuples (instead of 
using the hash index) and evaluate the join predicate for 
each pair (s, t).

• In a future module we will discuss a generalization of 
hash + shuffle and partition + broadcast that works for 
any theta-join and can perform even better.
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Which Join Algorithm is Better?
• Hash + shuffle groups by join attribute and hence does not balance load

well for join attributes with skewed distribution or small domain. Partition 
+ broadcast can create as many partitions as needed. It tends to distribute 
load evenly, because every task receives the same amount of input.

• Hash + shuffle is limited to equi-joins. Partition + broadcast can implement 
any theta-join condition.

• Hash + shuffle can join two large inputs, but for partition + broadcast, one 
of the inputs should fit in memory.

• Which of the two will transfer less data through the network? This 
depends:
– In partition + broadcast, the entire T-file is sent to all machines that execute 

tasks. When using n machines, it reads T once and then sends n|T| data in 
addition to reading S.

– The hash + shuffle algorithm sends |S|+|T| data from round 1 to round 2, in 
addition to reading S and T.

– Unless |T| is about n times smaller than |S|, partition + broadcast might send 
more data through the network than hash + shuffle, despite not shuffling.
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Cost Reduction through Co-Partitioning

• Sometimes the same dataset participates in 
multiple joins on the same key, or in a group-by 
followed by a join on the same key.

• In those cases, it pays off to hash-partition both 
inputs by the join key once—using the same 
Partitioner—and to maintain the partitions on 
the worker machines for repeated re-use. This is 
called co-partitioning or co-grouping.
– This is not possible in Hadoop MapReduce, because 

each job reads the data “from scratch” from HDFS.

• Co-partitioning enables the use of the hash + 
shuffle algorithm, without the need for shuffling!
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Cogrouping in Spark

• rdd1.cogroup(rdd2) transformation: for pair RDD 
rdd1 of type (K, V) and pair RDD rdd2 of type (K, 
W), it returns a pair RDD of type (K, (Iterable(V), 
Iterable(W)))—one element for each key that 
exists in either input.

– If a key exists only in one but not the other input, then 
the corresponding iterator is empty.

– Elements in the Iterable can be accessed as usual with 
foreach().

• Cogroup is like an outer join, except the matching 
pairs are implicitly stored in the Iterables.
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Let us now see how the join algorithms 
are expressed and implemented in 
Hadoop MapReduce, Spark, and DBMS.



Hash + Shuffle in MapReduce
• In MapReduce, this algorithm is called Reduce-side join—for obvious reasons. It is 

implemented by making join attribute A the intermediate key and by using a hash 
Partitioner. For each input tuple, Map emits the tuple with its A value as the key. 
The Reduce call for an A value receives all matching S- and T-tuples. To distinguish 
where a tuple came from, Map adds flag “S” or “T” to the value.

• The Reduce function shown loads all input values into memory. If S_list and T_list
do not fit in memory, they can be written to local files. Instead of simple nested 
loops pairing up S- and T-tuples, a file-I/O optimized algorithm could be used to 
page chunks of these files in and out of memory when needed.

• One can also use secondary sort to ensure that Reduce’s input list is sorted by the 
data origin flag, e.g., “S” tuples before “T” tuples. Then only one of the lists needs 
to fit in memory. The other can be accessed through the iterator provided by 
MapReduce for the Reduce input value list.
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map( …, tuple x )
if (x is from S)
emit( x.A, (x, “S”) )

else    // x is from T
emit( x.A, (x, “T”) )

reduce( A-value, [(x1, flag1), (x2, flag2),…] )
initialize S_list and T_list

// Separate the input list by the input the tuples came from
for all (x, flag) in input list do
if (flag = “S”) then S_list.add( x ) else T_list.add( x )

// Since they have the same A value, each tuple in the S_list
// matches with each tuple in the T_list. Generate all these pairs.
for each s in S_list
for each t in T_list
emit( s, t )



DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

• In this example, each si and tj is an S- or T-tuple, 
respectively. For clarity, the value of join attribute A is 
shown as well, e.g., (s5,1) indicates s5.A = 1.

• The matching input tuples are usually scattered over 
multiple file splits and might be assigned to different 
Mappers.
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DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

• The input tuples are transferred to the 
Mappers.

31

s1,1

s5,1

t3,1

t8,1

s3,2

t1,2



DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

• Map emits each tuple with its A value as the 
key.
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1,(s1,1)

1,(s5,1)

1,(t3,1)

1,(t8,1)

2,(t1,2)

2,(s3,2)



DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

• In this example, only two Reducers receive the 
Map output—one for key 1 and the other for 
key 2.
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1,[(s5,1)(t3,1)(s1,1)(t8,1)]

2,[(s3,2)(t1,2)]



DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

• The Reducers then write their output to files 
that are chunked up and assigned to 
distributed file system (DFS) nodes.
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Implementation Details
• Usually S and T are stored in separate files, especially when S and T 

have different schemas or formats. This causes a problem for 
Mappers as discussed so far:
– If there is only one Mapper class for a MapReduce job, how can it read 

files and parse tuples differently depending on it being a split of the 
file containing S or T?

• For cases where a MapReduce job processes input files of different 
formats, Hadoop offers the MultipleInputs class in 
org.apache.hadoop.mapreduce.lib.input. It allows creation of 
different input paths and defining specialized Mappers for each—all 
in the same MapReduce job. This functionality can be exploited for 
the join problem:
– Create two Mapper classes, S_Mapper and T_Mapper. S_Mapper

parses only S-tuples and adds flag “S” to the emitted value; T_Mapper
parses only T-tuples and adds flag “T” to the emitted value.

– In the driver, both Mappers need to be set up with their appropriate 
input paths using commands like
• MultipleInputs.addInputPath(job, new Path(args[0]),…, S_Mapper.class);
• MultipleInputs.addInputPath(job, new Path(args[1]),…, T_Mapper.class);
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Real Code

• Check out the example code from the 
Miner/Shook book at 
http://khoury.northeastern.edu/home/mirek/
code/ReduceSideJoinDriver.java

• It joins a file of users on the user ID attribute 
with another file containing their comments. 
Notice the use of MultipleInputs.

• In addition to the equi-join as discussed 
before (called “inner join” in the program) it 
also supports variations called “outer joins.”
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http://khoury.northeastern.edu/home/mirek/code/ReduceSideJoinDriver.java


Partition + Broadcast in MapReduce
• This algorithm is called Replicated join or Map-only join in MapReduce.
• It sets S as the job input and broadcasts T through the file cache:

– The Map task’s setup function loads T from the file cache into a task-local data 
structure, e.g., a hash index on join attribute A.

– The Map function processes only S (not T). For each S-tuple, it probes the hash 
index to find all matching T-tuples.
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Class Mapper {
// Index H maps a join-attribute value to all T-tuples with that value
hashIndex H

setup() {
// Load T from the file cache into H, indexing on join attribute A.
H = new hashMap
for each tuple t in T
H.insert( t.A, t )

}

map(…, S-tuple s ) {
// The index lookup returns an iterator to access all matching T-tuples in H.
for each tuple t in H.lookup( s.A ) do
emit( s, t )

}

cleanup() { clean up H }
}



Real Code
• Check out the example code from the Miner/Shook book at 

http://khoury.northeastern.edu/home/mirek/code/Replica
tedJoinDriver.java

• It uses the Map-only approach to join a file of users with 
another file with their comments based on a user ID 
attribute.

• The user file is copied to all Mappers, using the 
DistributedCache. (This feature is now deprecated. Find out 
what replaces it.) The setup() function reads it and 
constructs a hash index of users on their ID.

• For an input comment record, Map extracts the user ID and 
uses it to look up the matching user record in the hash 
index. Since the user ID uniquely identifies a user, the 
lookup will never return more than one user.
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http://khoury.northeastern.edu/home/mirek/code/ReplicatedJoinDriver.java


Joins in a DBMS
• Any join can be expressed in SQL as SELECT * 

FROM S, T WHERE joinCondition(S, T). A typical 
equi-join condition is S.A = T.A AND S.B = T.B.

• Instead, one can also specify inequalities such as 
S.A < T.A or |S.A – T.A| < 2, or even a user-defined 
Boolean function over the attributes of S and T.

• The DBMS optimizer will automatically choose 
the join implementation it considers superior. 
Options include block nested loop, index nested 
loop, sort-merge join, and hash join.
– Hash + shuffle is the parallel version of the hash join.
– The parallel version of index nested loop join is the 

partition + broadcast algorithm.
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Joins in Spark

• In Spark, join options and their 
implementation depend on the data 
representation used: RDD versus DataSet and 
DataFrame.

• The following discussion on joins in Spark is 
partially based on [H. Karau and R. Warren. 
High Performance Spark. O’Reilly, 2017]
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Join Basics
• Spark only offers equi-joins. For pair RDDs, there are join, leftOuterJoin, 

rightOuterJoin, and fullOuterJoin.
• When called on an RDD of type (K, V), with an RDD of type (K, W) as 

input, they return an RDD of type
– (K, (V, W)) for the join
– (K, (V, Option(W))) for the left outer join
– (K, (Option(V), W)) for the right outer join
– (K, (Option(V), Option(W))) for the full outer join.
– Here Option(T) represents any object of type T or None (i.e., NULL). This 

is needed, because outer joins emit results also for elements from one 
RDD that have no matches in the other.

• These operations have versions that take a Partitioner object or a 
number of partitions as parameter.
– If no Partitioner or number of partitions is specified, Spark takes the 

Partitioner of the first RDD. If the input RDDs have no Partitioners, 
Spark uses the hash Partitioner with either the default number of 
partitions set in spark.default.partitions, or, if the default is not 
defined, the largest number of partitions of the input RDDs.
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Cartesian Product
• rdd1.cartesian(rdd2) transformation: for rdd1 of 

type T and rdd2 of type U, it returns an RDD of 
type (T, U). This RDD contains all pairs of 
elements from rdd1 and rdd2.

• This operation tends to be very expensive. If rdd1 
has m elements and rdd2 has n, then there are 
m·n results.

• It can be used to implement any theta-join, but 
often more efficient solutions exist, e.g., as we 
discussed for equi-joins.
– Challenge: How is cartesian() implemented in Spark?
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Hash + Shuffle Join with Pair RDDs
• In the example below, the key is of type Long. 

Note that in the result RDD, the key is of type 
Long as well. The value is of type (Double, String), 
i.e., the value columns from left and right input.
– There is no need to store both input keys, because 

they have the same value. The join here is an equi-
join!

• By default, the join is implemented as hash + 
shuffle.
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def joinOnKey( leftRDD : RDD[(Long, Double)], rightRDD : RDD[(Long, String )])
: RDD[(Long, (Double, String))]= {

val joinedRDD = leftRDD.join(rightRDD)
}



Avoiding Join Shuffling
• The pair-RDD join can only avoid shuffling if both RDDs are co-

partitioned, i.e., both have a known Partitioner and the Partitioners
are identical.
– This situation may arise when joining after a _ByKey operation, as 

shown in the example from the Karau/Warren book below. There 
reduceByKey explicitly assigns the right input’s Partitioner to the 
aggregated left input.

• We will see another example when discussing PageRank.
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def joinWithoutShuffle(leftRDD: RDD[(Long, Double)], rightRDD: RDD[(Long, String)])
: RDD[(Long, (Double, String))]= {

// If rightRDD has a known Partitioner we should use that, otherwise it has a default
// hash parttioner, which we can reconstruct by getting the number of partitions.
val rightDataPartitioner = rightRDD.partitioner match {

case (Some(p)) => p
case (None) => new HashPartitioner(rightRDD.partitions.length)

}
val maxValueLeftData = leftRDD.reduceByKey(rightDataPartitioner, (x, y) => if(x > y) x else y)
maxValueLeftData.join(rightRDD)

}



Partition + Broadcast with Pair RDDs

• This is called broadcast hash join in Spark.

• It is not supported for RDDs, but only in Spark 
SQL for DataFrames. The example from the 
Karau/Warren book on the next page shows an 
implementation for pair RDDs in user code.
– It collects the smaller RDD as a map (i.e., a dictionary 

data structure) to the driver, who broadcasts it to all 
workers.

– Notice the use of mapPartitions for pairing up the 
matching tuples. The iterator goes through the 
partition of the large RDD, looking up matches in the 
dictionary that stores the small RDD as a mapping 
from key to value.
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Partition + Broadcast for RDDs in User 
Code
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def manualBroadCastHashJoin[K : Ordering : ClassTag, V1 : ClassTag, V2 : ClassTag]
(bigRDD : RDD[(K, V1)], smallRDD : RDD[(K, V2)])= {

val smallRDDLocal: Map[K, V2] = smallRDD.collectAsMap()
bigRDD.sparkContext.broadcast(smallRDDLocal)
bigRDD.mapPartitions(iter => {

iter.flatMap{
case (k,v1 ) =>

smallRDDLocal.get(k) match {
case None => Seq.empty[(K, (V1, V2))]
case Some(v2) => Seq((k, (v1, v2)))

}
}

}, preservesPartitioning = true)
}
//end:coreBroadCast[]

}



Simpler Version for RDDs
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// There is a size limit for broadcasting a collection, which can be increased.

// Turn the small pair RDD into a hash-map style collection for broadcasting
val smallAsMap = sc.broadcast( smallRDD.collect.toMap )

// For each row in the large RDD, find all values associated with the same key 
in the hash map and return all corresponding value pairs
largeRDD.flatMap {

case(keyLarge, valueLarge) => smallAsMap.value.get(keyLarge).map {
valueSmall => (keyLarge, (valueLarge, valueSmall))

}
}



Joins with DataFrame and DataSet
• Like in a DBMS, the Spark optimizer automatically attempts to find 

the best join execution plan. This includes reordering of operations 
to apply early projections and selections (discussed soon).

• The user cannot control the Partitioner manually. That is also 
handled by the optimizer.

• The join example below shows that since there is no explicit key in a 
DataSet or DataFrame, the user must specify the join columns—
here SID.

• In addition to the (inner) join as discussed so far, DBMS and Spark 
DataFrame/DataSet also support outer joins. Outer joins preserve 
input tuples that have no match in the other input.
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studentDF.join(reservationDF, studentDF(“SID”) === reservationDF(“SID”))

// Shorter version of the same
studentDF.join(reservationDF, “SID”)



Self-Join with DataFrames

• By default, the self-join creates a result where 
column names are duplicated. To be able to 
refer to the different columns, they must be 
renamed. In Spark, like in SQL, we can define 
an alias for a DataFrame name using “as.”

– Notice the specification of the join condition in 
the where() function, like in SQL’s WHERE clause.
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studentDF.as(“S1”).join(studentDF.as(“S2”)).where($”S1.SID” === $”S2.SID”)



Partition + Broadcast with DataFrames

• The Spark optimizer automatically selects the partition 
+ broadcast algorithm when appropriate.
– We can give a hint to Spark SQL by calling broadcast on the 

smaller DataFrame as shown below.

– The optimizer behavior can be controlled through 
spark.sql.conf.autoBroadcastJoinThreshold.

• Notice the shorter version of the join condition: only 
the join column is specified, implying an equi-join on it.

• The query plan selected by the optimizer can be shown 
by calling queryExecution.executedPlan in Spark SQL.
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reservationDF.join(broadcast(studentDF), “SID”)



Challenge Question

• Why does DataSet offer a separate joinWith
function? Here is the definition from the DataSet
API (Spark 2.3.2, September 2018):

– joinWith: “This is similar to the relation join function 
with one important difference in the result schema. 
Since joinWith preserves objects present on either 
side of the join, the result schema is similarly nested 
into a tuple under the column names _1 and _2. This 
type of join can be useful both for preserving type-
safety with the original object types as well as working 
with relational data where either side of the join has 
column names in common.”
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Reducing Join Cost

• Joins often are building blocks of a more 
complex computation. This may be exploited 
to reduce cost. We focus on projections
(removal of fields from each tuple) and 
selections (filters).

• As an example, consider finding the names of 
all 20-year-old students who reserved books 
in 2012. The SQL query is shown below.
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SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

SID BookID Date

2 B10 01/17/12

3 B11 01/18/12

Students Reservations
SELECT name
FROM Students S, Reservations R
WHERE S.SID = R.SID

AND S.age = 20
AND R.date.year = 2012



Order of Operations

• All three execution plans below are equivalent. 
Which one will have the lowest cost?

– Symbol  is the projection, i.e., removes columns.

– Symbol  is the selection (filter), i.e., removes rows.
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Plan 1: name(age=20date.year=2012(Students⋈𝑆𝐼𝐷Reservations))

Plan 2: nameage=20date.year=2012(SID,name,age(Students) ⋈𝑆𝐼𝐷 SID,date(Reservations))

Plan 3: name((SID,name age=20(Students)) ⋈𝑆𝐼𝐷 (SID  date.year=2012(Reservations)))



Query Plan Discussion
• Plan 1 computes the (expensive) join first, then 

removes disqualified result rows and columns.
• Plan 2 applies early projection, removing irrelevant 

columns early.
– Notice that in addition to SID, which is needed for the join, 

all attributes needed by the final selection and projection 
operator must be preserved as well.

• Plan 3 applies both projection and selection as early as 
possible. Since those operators are much cheaper than 
the join, this usually results in huge cost savings: the 
expensive join is applied to much smaller inputs, in 
terms of the number of both rows and columns.
– Early selection and projection are classic DBMS 

optimization techniques.
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Operation Order in Practice
• In a DBMS, the optimizer will automatically apply early 

projection and selection.
• In Hadoop MapReduce, the programmer has to hard-

code the right strategy.
– In Reduce-side join, early projections and selections would 

be applied in the Mappers.

• In Spark, use of DataFrame and DataSet enables 
automatic application of early projection and selection, 
even if the program states a different order.
– The Spark optimizer automatically re-orders the 

operations.
– Spark (pair) RDDs (as of September 2018) do not support 

this automatic re-ordering of operations. Hence the 
programmer has to hard-code the best order.
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Advanced Distributed Equi-Join Algorithms

• For a theoretical analysis with lower bounds and 
(asymptotically) matching upper bounds see [P. Beame, 
P. Koutris, and D. Suciu. Skew in parallel query 
processing. In Proc. ACM SIGMOD, pages 212-223, 
2014].

• Our research group proposed the best skew-resistant 
distributed equi-join algorithm (as of late 2020). It 
comes with a constant-factor approximation guarantee 
relative to an optimal solution for random load 
assignment. [R. Li, M. Riedewald, and X. Deng. 
Submodularity of Distributed Join Computation. In 
Proc. ACM SIGMOD, pages 1237-1252, 2018]

• Both approaches address skew by partitioning “heavy 
hitter” groups, creating additional input duplicates in 
the process. This is discussed in the end of this module.
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We explore next the semi-join, a close 
relative of the join.



Computing a Semi-Join
• The semi-join is similar to a join, but its output tuples 

have the attributes from only one of the two input data 
sets. Formally, a semi-join is defined as follows:
– As for the join, we are given two data sets S=(s1,s2,…) and 

T=(t1,t2,…), such that each tuple has an attribute A.

– The left semi-join between S and T on attribute A is the set 
of all tuples siS for which there exists a tuple tjT, such 
that si.A=tj.A. The right semi-join is defined analogously.

• Like for joins, the above definition can be generalized 
to semi-joins on multiple attributes and by allowing 
arbitrary Boolean functions over the attributes of pair 
(si, tj), not just equality.
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Semi-Join Example
• Recall the equi-join of Students and Reservations on the SID 

attribute, which produces pairs combining reservations 
with detailed student information. Assume the reservation 
details are not needed and one simply wants to analyze 
students who made a reservation, e.g., to find out if books 
are reserved mostly by more senior students.

• The (left) semi-join of Students and Reservations on the SID 
attribute would deliver this result. The left semi-join selects 
tuples from the left table (Students in the example 
expression) that have a matching tuple in the right table 
(Reservations in the example). By definition, the semi-join 
result is identical to the result of the regular equi-join, but 
without the Reservations attributes and without 
duplication of student information.
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SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

SID BookID Date

2 B10 01/17/12

3 B11 01/18/12

2 B11 01/20/12

Students Reservations

SID Name Age GPA BookID Date

2 Bob 27 3.4 B10 01/17/12

2 Bob 27 3.4 B11 01/20/12

3 Carla 20 3.8 B11 01/18/12

“Regular” equi-join:
Students⋈𝑆𝐼𝐷Reservations

SID Name Age GPA

2 Bob 27 3.4

3 Carla 20 3.8

Left semi-join:
Students⋉𝑆𝐼𝐷Reservations



Exact Semi-Join Computation
• One can view the left semi-join between S and T as a more complex type of filter. 

Instead of checking if an S-tuple s satisfies some predicate over its attributes (e.g., 
s.Age = 20), one checks if it has a match in T. This is shown below.
– Filters are an example of per-record computations, which can be implemented without 

shuffling (Map-only job). Since now the “filter” is the entire data set T, each task needs to have 
access to T.

• Alternatively, one can implement the semi-join as a regular equi-join and make 
sure (1) tuples from S are not duplicated in the output and (2) only attributes from 
S are passed to the output record.
– Interestingly, if the semi-join is implemented using partition + broadcast, it is identical to the 

algorithm derived based on the filter idea above.
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Split S0

T

Splits of S-file

T T
Tasks

Split S2Split S1

S-tuples output



Semi-Join in Spark

• Spark DataFrames and DataSets directly 
support semi-joins by simply selecting the join 
type as shown below.
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studentDF.join(reservationDF, studentDF(“SID”) === reservationDF(“SID”), “left-semi”)



Toward Approximate Solutions
• As for the equi-join, broadcasting T to all worker 

machines will be expensive for large T. And if T does 
not fit in memory, expensive local I/O will further affect 
performance.

• How about sending a subset, e.g., a random sample, of 
T instead? A smaller subset reduces cost but has the 
drawback that some output tuples might be missing. 
This can be a problem, if the user is looking for rare 
events of high importance.

• Can we find a different solution that also works with a 
smaller version of T, but guarantees that no semi-join 
output tuple will be missed? It turns out that Bloom 
filters are the answer.

64



Bloom Filter Introduction

• The Bloom filter provides useful big-data 
analysis capabilities by representing very large 
sets in limited storage space.

• Using it for implementing semi-joins also 
illustrates a combination of algorithm design 
principles from per-record computation, join, 
and approximate computation.
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Bloom Filter Properties
• A Bloom filter is a probabilistic data structure that 

determines if a tuple s occurs in a data set T. It is 
probabilistic in the following sense:
– If the Bloom filter outputs “true,” i.e., claims sT, then the 

answer might be incorrect. More precisely, one cannot be 
sure if s is in T or not. If the Bloom filter outputs “false,” 
i.e., that sT, then the answer is guaranteed to be correct.

– In summary, the Bloom filter will not produce false 
negatives (S-tuples that are in T, but for which it outputs 
“false”), but it might produce false positives (tuples that 
are not in T,  but for which it outputs “true”).
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Input set S: S-tuple with no match in T

S-tuple with match in TTuples for which 
the Bloom filter 
returned “true” False positive



Bloom Filter Challenge Question 1
• Are there other important uses for Bloom filters?

– It helps eliminate irrelevant tuples, even though it 
might not eliminate all irrelevant tuples.

– For example, assume S is a huge data set of events 
and analyzing an event is expensive. To reduce 
processing cost, the analyst wants to focus on the 
critical events only. Let T be a set of signatures of 
critical events. Event sS only needs to be processed, 
if it matches a signature in T. Using a Bloom filter, any 
event s for which the Bloom filter returns “false” can 
be safely ignored—it cannot be critical. This helps cut 
cost.

– However, it would not completely eliminate
processing of non-critical events, because of the false 
positives.

67



Bloom Filter Challenge Question 1
• Are there other important uses for Bloom filters?

– It helps eliminate irrelevant tuples, even though it 
might not eliminate all irrelevant tuples.

– For example, assume S is a huge data set of events 
and analyzing an event is expensive. To reduce 
processing cost, the analyst wants to focus on the 
critical events only. Let T be a set of signatures of 
critical events. Event sS only needs to be processed, 
if it matches a signature in T. Using a Bloom filter, any 
event s for which the Bloom filter returns “false” can 
be safely ignored—it cannot be critical. This helps cut 
cost.

– However, it would not completely eliminate
processing of non-critical events, because of the false 
positives.

68



Bloom Filter Challenge Question 2
• When using Bloom filters to eliminate irrelevant tuples, 

wouldn’t we cut cost even more if the Bloom filter 
returned no false positives at all?
– True. Ideally, we would like to use the exact set T to 

eliminate all non-critical events. Unfortunately, this is not 
always achievable. If T is very large, it might exceed 
available memory and it would be expensive to copy it to 
all machines.

– The Bloom filter’s winning proposition is the ability to 
customize its size as desired. This introduces a tradeoff: 
smaller Bloom filter size implies lower cost (space, lookup 
time), but increases the probability of false positives.
• The false positive rate of the Bloom filter is approximately 

1 − 𝑒−𝑘𝑛/𝑚
𝑘

, where k, m, and n refer to the number of hash 
functions used, the number of bits in the filter, and the number of 
tuples in T, respectively.
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Bloom Filter Challenge Question 2
• When using Bloom filters to eliminate irrelevant tuples, 

wouldn’t we cut cost even more if the Bloom filter 
returned no false positives at all?
– True. Ideally, we would like to use the exact set T to 

eliminate all non-critical events. Unfortunately, this is not 
always achievable. If T is very large, it might exceed 
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𝑘

, where k, m, and n refer to the number of hash 
functions used, the number of bits in the filter, and the number of 
tuples in T, respectively.
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Let us see the Bloom filter in action.



Bloom Filter Construction
• For ease of presentation, let T be a set of integers.
• The Bloom filter’s base data structure is an array of m bits. 

This bit array stores the encodings of all elements of set T.
• The Bloom filter also contains k independent hash 

functions h1,…, hk. Each hash function h maps a given 
integer i to another integer h(i) between 0 and m-1 (both 
inclusive). Intuitively, for input value i the hash function h 
turns on the bit at position h(i) in the bit array. For best 
results, the hash function output should be uniformly 
distributed in interval [0, m-1].

• The Bloom filter is constructed by initializing the bit array 
with zeroes and then inserting the tuples from T one-by-
one. Tuple tT is inserted by setting the bits in the bit array 
at positions h1(t), h2(t),…, hk(t) all to 1.
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0 0 0 0 0 0 0 0 0 0

h0( t ) = t mod 10 h1( t ) = (t+3) mod 10

T = {2, 5, 6}
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0 0 0 0 0 0 0 0 0 0

h0( t ) = t mod 10 h1( t ) = (t+3) mod 10

T = {2, 5, 6}

Insert 2 into the Bloom filter:

0 0 1 0 0 1 0 0 0 0

h0( 2 ) = 2 mod 10 = 2 h1( 2 ) = (2+3) mod 10 = 5
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0 0 0 0 0 0 0 0 0 0

h0( t ) = t mod 10 h1( t ) = (t+3) mod 10

T = {2, 5, 6}

Insert 2 into the Bloom filter:

0 0 1 0 0 1 0 0 0 0

h0( 2 ) = 2 mod 10 = 2 h1( 2 ) = (2+3) mod 10 = 5

Insert 5 into the Bloom filter:

0 0 1 0 0 1 0 0 1 0

h0( 5 ) = 5 mod 10 = 5 h1( 5 ) = (5+3) mod 10 = 8
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0 0 0 0 0 0 0 0 0 0

h0( t ) = t mod 10 h1( t ) = (t+3) mod 10

T = {2, 5, 6}

Insert 2 into the Bloom filter:

0 0 1 0 0 1 0 0 0 0

h0( 2 ) = 2 mod 10 = 2 h1( 2 ) = (2+3) mod 10 = 5

Insert 5 into the Bloom filter:

0 0 1 0 0 1 0 0 1 0

h0( 5 ) = 5 mod 10 = 5 h1( 5 ) = (5+3) mod 10 = 8

Insert 6 into the Bloom filter:

0 0 1 0 0 1 1 0 1 1

h0( 6 ) = 6 mod 10 = 6 h1( 6 ) = (6+3) mod 10 = 9



Querying the Bloom Filter
• After the Bloom filter is constructed, it is used to check if a 

given S-tuple s is in T. To determine the answer, the Bloom 
filter checks the bit values at positions h1(s), h2(s),…, hk(s) in 
the bit array. If all these bits are set, it will return “true.” 
Otherwise it will return “false.”

• In the example, for 2 and 18, the Bloom filter outputs the 
correct answer. It is clear by construction that the Bloom 
filter will always return “true” for S-tuples occurring in T.

• For 9 the Bloom filter’s response is a false positive. Value 9 
is not in T, but the Bloom filter cannot determine this 
because the corresponding bits are set.

• The example illustrates how bits set by elements of set T 
can result in spurious patterns that suggest the existence of 
other tuples in the set. Use of a larger bit array reduces the 
probability of spurious results.
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Is value 2 in set T?

0 0 1 0 0 1 1 0 1 1

h0( 2 ) = 2 mod 10 = 2 h1( 2 ) = (2+3) mod 10 = 5

Bloom filter output:

true
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Is value 2 in set T?

0 0 1 0 0 1 1 0 1 1

h0( 2 ) = 2 mod 10 = 2 h1( 2 ) = (2+3) mod 10 = 5

Bloom filter output:

true

Is value 18 in set T?

0 0 1 0 0 1 1 0 1 1

h0( 18 ) = 18 mod 10 = 8 h1( 18 ) = (18+3) mod 10 = 1

false
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Is value 2 in set T?

0 0 1 0 0 1 1 0 1 1

h0( 2 ) = 2 mod 10 = 2 h1( 2 ) = (2+3) mod 10 = 5

Bloom filter output:

true

Is value 18 in set T?

0 0 1 0 0 1 1 0 1 1

h0( 18 ) = 18 mod 10 = 8 h1( 18 ) = (18+3) mod 10 = 1

false

Is value 9 in set T?

0 0 1 0 0 1 1 0 1 1

h0( 9 ) = 9 mod 10 = 9 h1( 9 ) = (9+3) mod 10 = 2

true



Approximate Semi-Join with Bloom Filter in 
MapReduce

• This algorithm is 
virtually identical to the 
Replicated equi-join. 
Instead of creating a 
hash index, the Mapper 
creates the Bloom filter. 
And instead of emitting 
output pairs, only the S-
tuple is emitted.
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Class Mapper {
BloomFilter B

setup() {
// Load dataset T from file cache into B
B = new BloomFilter
for each tuple t in File Cache

B.insert( t )
}

map(…, S-tuple s ) {
if ( B.lookup(s) )

emit( NULL, s )
}

cleanup() { clean up B }
}



Summary
• When information is combined across different data sets, 

distributed-algorithm design becomes more challenging.
• The hash + shuffle join often works well in practice but 

requires two rounds of computation to group data by join-
attribute value.

• When one of the inputs fits in memory, the partition + 
broadcast algorithm can compute the join in a single round, 
avoiding shuffling. On the other hand, the smaller input 
must be broadcast to all worker machines.

• Big-data analysis tends to be resource intensive, but 
resource consumption can be reduced when the user 
settles for approximate answers. The Bloom filter provides 
approximate information about set membership. Its size is 
tunable, at the cost of a higher false positive rate. On the 
other hand, it never returns false negatives.

82



References

• P. Beame, P. Koutris, and D. Suciu. Skew in 
parallel query processing. In Proc. ACM 
SIGMOD, pages 212-223, 2014

– https://scholar.google.com/scholar?cluster=15843
59665861120290&hl=en&as_sdt=0,22

• R. Li, M. Riedewald, and X. Deng. 
Submodularity of Distributed Join 
Computation. In Proc. ACM SIGMOD, pages 
1237-1252, 2018

– https://dl.acm.org/citation.cfm?id=3183728

88

https://scholar.google.com/scholar?cluster=1584359665861120290&hl=en&as_sdt=0,22
https://dl.acm.org/citation.cfm?id=3183728


89

For those interested in more advanced 
material, we now present an overview of 
our paper on dealing with skew in equi-
joins [R. Li, M. Riedewald, and X. Deng. 
Submodularity of Distributed Join 
Computation. In Proc. ACM SIGMOD, 
pages 1237-1252, 2018].



Skew Matters
• Overloaded workers delay job completion. When does this 

become a problem?
– Large join groups: This can happen for commonly observed real-

world distributions such as Zipf, Power Law, and the 80-20 rule.
• Zipf and Power Law distributions are common in social networks (a 

few people have many followers, many have a few).
• 80-20 captures the idea that often 20% of entities capture 80% of 

some value of interest, e.g., income distribution.

– Scaling out: Skew increases with increasing number of 
machines, because the size of the largest groups becomes larger 
relative to average load per machine.

• Solution: partition the heavy hitters, i.e., join groups that 
are “large” and hence create a high load. This trades input 
duplication for better load balance as we discuss next.
– Which groups should be partitioned and how?
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Previous Work

Partition-Broadcast Beame, Koutris, Suciu 2014
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S1

S2

S3

S4

T

worker w1

worker w2

worker w3

worker w4

S: #workers partitions

T: #workers copies

Heuristic without 
optimality guarantees

Partitioning determined by 
optimization goal:

Minimize max input assigned to any 
worker

Solution: optimal within polylog factor of 
#workers

Note: Constants do not matter for their 
analysis, but they do for query optimization.

S1

S2

S3

S4

T

S1

S2

T1 T2
w1

w2

w3

w4

w1 w2

w3 w4



Our Solution
• Computation model: random assignment of (sub) groups to 

workers. When does this model apply?
– When we choose a hash function randomly from a family 

(universal hashing).
– When a given system uses a “blackbox” hash Partitioner, i.e., we 

do not know the function.

• We define load as a weighted sum of input and output
• If two partitionings have the same load expectation, we 

prefer the one with lower variance. It has the same total 
cost, but a higher probability of better load balance.
– If we can find the minimum-variance partitioning for a given 

load expectation threshold, then we can generate a sequence of 
Pareto-optimal expectation-variance combinations.

– From those combinations, we then pick the one that minimizes 
estimated running time.
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Toward an Optimization Problem
• We solve the problem of minimizing load 

variance, subject to an upper limit on load 
expectation.
– Intuitively, this maximizes load balancing for a given 

upper bound on total load.

• To solve this problem, we express load 
expectation E and variance V in terms of 
partitioning parameters.
– Let ph and qh denote the number of partitions of input 

S and T, respectively, for heavy hitter join attribute 
value h. Setting ph and qh to 1 implies that the join 
group is not further partitioned.
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Rectangular Group Partitioning
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Sh

Th

ph partitions

qh partitions

load = 𝛾𝐼 + 𝛼𝑂

L: random variable capturing load on a worker machine
w: number of worker machines
H: set of heavy hitters

𝑉 𝐿 =
𝑤 − 1

𝑤2


ℎ∈𝐻

𝑝ℎ𝑞ℎ 𝛾
𝑆ℎ
𝑝ℎ

+ 𝛾
𝑇ℎ
𝑞ℎ

+ 𝛼
𝑆ℎ 𝑇ℎ
𝑝ℎ𝑞ℎ

2

𝐸 𝐿 =
1

𝑤


ℎ∈𝐻

𝛾𝑞ℎ 𝑆ℎ + 𝛾𝑝ℎ 𝑇ℎ + 𝛼 𝑆ℎ 𝑇ℎ

This applies to “general” join problems:
select … from S, T where S.A = T.B
select … from S as S1, S as S2 where S1.A = S2.B



Triangular Group Partitioning
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ph partitions

ph partitions

load = 𝛾𝐼 + 𝛼𝑂

𝑉 𝐿 =
𝑤 − 1

𝑤2


ℎ∈𝐻

2 −
1

𝑝ℎ
𝛾 𝑆ℎ +

𝛼

𝑝ℎ
𝑆ℎ

2

2

𝐸 𝐿 =
1

𝑤


ℎ∈𝐻

𝛾𝑝ℎ 𝑆ℎ + 𝛼 𝑆ℎ
2

For natural self-join:
select … from S as S1, S as S2 where S1.A = S2.A

L: random variable capturing load on a worker machine
w: number of worker machines
H: set of heavy hitters



Problem Analysis

• We carefully analyze the properties of the 
load variance and expectation formulas to find 
efficient solutions.

• Monotonicity and submodularity of the 
objective function (negative load variance) 
enable us to apply powerful greedy heuristics 
that provide strong near-optimality 
guarantees for the solutions they find.
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Load-Variance Properties

• Monotonically decreasing in 𝑝ℎ and 𝑞ℎ, if

– 𝛼 ≥ 𝛾
𝑝ℎ+1

𝑆ℎ
and 𝛼 ≥ 𝛾

𝑞ℎ+1

𝑇ℎ
(rectangular 

partitioning)

– always (foreign-key join)

– 𝛼 ≥ 𝛾
𝑝ℎ

𝑆ℎ
(triangular partitioning)

• Submodular as well (for negative variance)

– Slightly stronger requirement for general 

rectangular case: 𝛼 ≥ 2𝛾
𝑝ℎ+1

𝑆ℎ
and 𝛼 ≥ 2𝛾

𝑞ℎ+1

𝑇ℎ
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Variance Optimization
• Maximizing negative load variance subject to an upper 

limit on expectation is a submodular maximization 
problem with Knapsack constraints.

• A simple greedy solution guarantees a factor 
1−𝑒−1

2
≈

0.32 approximation.
– The greedy algorithm increases the number of partitions 

with the greatest ratio of variance reduction to input 
duplication increase.

– The cost of an iteration of this algorithm is linear in the 
number of groups considered.

• Another greedy solution guarantees a stronger 
1 − 𝑒−1 approximation, but its computation cost is 

higher by a factor that is cubic in the number of groups 
considered.
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Example Execution
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Example Execution
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Example Execution
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Example Execution
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Running-Time Minimization
• When do we stop partitioning?

– More partitions improve load balance but increase total load. 
When is the benefit of better load balance not worth the 
increase in total cost anymore?

• We need a cost model—actually a makespan-prediction 
model! (Makespan captures end-to-end running time of a 
schedule of tasks.) This model needs to do two things:
– Estimate shuffle time based on data size.
– Estimate maximum “local” processing time on a worker.

• Note: we can replace random load assignment with 
deterministic assignment in the algorithm.
– The Least-Loaded Decreasing (LLD) heuristic guarantees a 4/3 

approximation of optimal.
– It stops partitioning earlier than for random assignment, 

resulting in better performance in practice.
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Experiments
• Cluster14: 8 machines (quad-core 2.4Ghz, 8GB 

RAM),  2 cores per worker used
• EMR50: 51 m1.medium machines (1 vCPU, 

3.75GB RAM, moderate network performance)
• Various synthetic and real data sets

– Up to 2 billion input tuples
– 2 to 1657 columns
– Output size between 107 and 1.6*1013 tuples

• Queries: JOIN (full result), JOIN-AGG (1 output 
per group), and JOIN-Fib (Fibonacci(1000) 
computed per output tuple to simulate expensive 
per-output processing)
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Partition Example (JOIN, cloud-200k, 
Cluster14)
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JOIN on Cluster14 (Running Time in Sec)

107

Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+

Zipf-100k-1.0-1g* 1570 1837 1764 1660 1789 1789

Zipf-500k-1.0-1g* 1661 1961 1968 1728 1817 1817

Zipf-90k-1.0-1g 1789 3198 2059 1900 1873 1869

Zipf-200k-1.0-50m 755 5005 1137 769 1181 913

Zipf-285k-1.0-10m 1352 7965 2160 1324 1507 1448

Zipf-100k-1.0 208 1270 299 201 240 217

Zipf-500k-0.25 1765 4599 1937 1756 3199 1808

Zipf-500k-0.5 2125 7676 3663 2048 3668 2535

Zipf-500k-1.0 4033 27455 5389 4114 5338 4310

Cloud-200k 1144 4448 1612 1204 1594 1215

TPC-H-cust-nation 433 1294 448 448 597 467

Ratio to best competitor: 0.95…1.04
Ratio to best competitor without cost model: 0.58…0.90



Self-JOIN on Cluster14
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Data sets ExpVar CIK CIK+

Sj-zipf-200k-1.0-50m 843 1434 1395

Sj-zipf-500k-0.25 1923 2827 2827

Sj-cloud-200k 1220 2263 2263

Ratio to best competitor: 0.54…0.68
Ratio to best competitor without cost model: 0.54…0.68



JOIN-AGG on Cluster14
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Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+

Zipf-5m-0 333 378 378 325 378 365

Zipf-5m-[0.5,0] 321 418 474 304 391 379

Zipf-5m-[1,0] 351 495 894 474 461 359

Zipf-5m-0.5 353 591 693 498 494 454

Zipf-5m-1.0 562 1502 989 924 694 643

Cloud-5m 314 1291 473 446 329 325

ebird-all 1367 3000 3222 3000 1927 1871

ebird-basic 598 1051 1842 1051 939 907

Ratio to best competitor: 0.66…1.06
Ratio to best competitor without cost model: 0.64…0.88



JOIN-AGG on EMR50
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Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+

BKS-bad-case 2072 3212 5419 2072 3514 2072

Cloud-5m 440 3652 1088 1088 546 546

ebird-basic 380 3410 1022 684 464 425

Ratio to best competitor: 0.81…1.00
Ratio to best competitor without cost model: 0.65…0.82



JOIN-Fib on Cluster14
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Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+

Zipf-90k-1.0-1g 1858 3529 3560 1950 2019 1933

Zipf-500k-1.0 3983 14509 7246 4057 7196 4136

Cloud-200k 1965 7014 2871 1981 3401 2158

Ratio to best competitor: 0.96…0.99
Ratio to best competitor without cost model: 0.55…0.92



Speedup on Amazon Cloud
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Conclusions and Future Work
• We started our analysis with a random-load-assignment 

model. This resulted in an algorithm for near-optimal 
greedy partitioning of heavy-hitter join groups to address 
input skew.

• The algorithm also works well for deterministic load 
assignment.
– It optimizes for the given problem, not worst-case complexity.
– Our partitioning algorithm creates easy-to-distribute 

homogeneous pieces. This plays a role in explaining why the 
partitions also give good results for deterministic load 
assignment.

• Our algorithm only needs count statistics for large groups. 
In contrast to most previous work, no pre-defined heavy-
hitter threshold is needed.

• Next step: generalize to skew-driven partitioning for multi-
way joins, i.e., joins between more than two inputs.

113


