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Key Learning Goals
• Write the pseudo-code for the block-partitioning 

algorithm for frequency-counting of bird-color 
combinations.

• Given a partitioning for the 1-Bucket theta-join 
algorithm, determine input and output 
replication factors.

• Where is randomization used in the 1-Bucket 
theta-join algorithm?

• Write the pseudo-code for matrix multiplication 
in MapReduce, when the left matrix is partitioned 
horizontally and right matrix is partitioned 
vertically.
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Introduction
• Scalable distributed data processing requires data 

to be partitioned and assigned to tasks that can 
be executed independently. With more tasks, 
each task should receive less data and finish 
faster.

• How do we find a good partitioning, analyze its 
properties, and reason about its performance?

• We will discuss a general strategy that starts with 
the most fine-grained partitioning and then 
arranges these partitions into larger tasks. This 
process is driven by an optimization goal and 
requires well-defined measures of success. It will 
be explained for several examples.
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Let us start with an easy problem: relative 
frequency counting for bird species and 
their colors.



Reminder: “Pairs” and “Stripes”

• The notion of “Pairs” versus “Stripes” surfaced 
in the context of the order inversion design 
pattern.
– Recall the problem of estimating relative 

frequencies for (species, color) data records 
reported by citizen scientists. For each species S 
and color C, we wanted to compute the ratio f(S, 
C)/f(S), i.e., the number of (S, C) pairs divided by 
the total number of observations for species S.

• In the discussion below, we only consider the 
frequency counting problem for f(S, C).

5



Design Space
• To identify a good partition scheme, we first need to 

identify and formalize the space of all possible 
partitionings considered.

• For the species-color frequency counting problem, we 
identified species and color as possible partitioning 
dimensions, hence the most fine-grained partitioning 
was at the level of individual species-color 
combinations.

• Let |S| and |C| denote the number of different species 
and colors, respectively. Partitioning the given problem 
requires assigning each of the |S|·|C| possible pairs to 
some task responsible for counting it.
– Pairs and Stripes are special cases for doing this.
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Frequency Counting using Pairs
• We can model the space of species-color combinations as a 

matrix. Each cell, representing the most fine-grained 
problem partitioning, corresponds to a desired count.

• The Pairs approach assigns a unique key to each cell. These 
keys can then be assigned randomly to tasks. We show the 
corresponding algorithm in MapReduce below:
– Map emits a species-color pair with count 1, aggregating the 

counts in Reduce. Combining should be applied if the probability 
of encountering the same (species, color) combination multiple 
times in a file split is high enough.
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map( species S, color C )
emit( (S, C), 1 )

reduce( (S, C), [n1, n2,…] ) {
frequency = 0

for all n in input list do
frequency += n

emit( (S, C), frequency )
}
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Colors

Frequency Counting using Stripes
• The Stripes approach groups cells in the same row together. 

It assigns the same key to each cell in the same row, but 
different keys to different rows. These keys are assigned 
randomly to Reduce tasks.

• To achieve this partitioning, the algorithm uses only the 
species as the key. Since each Reduce call now works with 
an entire row, a hash map data structure is used to keep 
track of the individual matrix cells in the row.
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map( species S, color C )
emit( S, (C, 1) )

reduce( S , [(C1, n1), (C2, n2),…] ) {

// H maps a color to a count
initialize hashMap H
for all (C, n) in input list do

H[C] += n

for all C in H do
emit( (S, C), H[C] )

}



Comparison of Pairs versus Stripes
• Combining: Both approaches can use Combiners and in-

mapper combining.
• Code complexity: The Reduce code for Pairs is simpler and 

easier to understand.
• Key space: Pairs manages O(|S|·|C|) intermediate keys, 

Stripes only O(|S|). This does not affect the overhead for 
the application master (which depends on the number of 
tasks) but results in more Reduce function calls for Pairs. On 
the other hand, each Reduce call for Stripes will be more 
expensive. Sorting cost during the shuffle phase might be 
slightly lower for Stripes as sorting requirements are 
weaker.
– Consider records (duck, red), (duck, green), and (duck, blue). For 

Pairs, they are re-ordered to (duck, blue), (duck, green), (duck, 
red); assuming colors are sorted alphabetically. For Stripes, the 
order does not matter, because all have the same key “duck.”
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Comparison of Pairs versus Stripes (cont.)

• Memory: The Map functions of both approaches do 
not use any local variables. Pairs’ Reduce function 
requires a single variable, while Stripes’ Reduce must 
maintain a data structure of size O(|C|). While not an 
issue for the example, in general the size of the data 
structure could exceed available memory, requiring 
more complex user code for managing it on disk.

• Load balancing: The more fine-grained keys in Pairs 
allow for greater flexibility in distributing load through 
use of an appropriate Partitioner. In particular, Pairs 
can emulate Stripes’ row-wise approach by using a 
Partitioner that ignores the column value of a record. 
On the other hand, Stripes cannot always emulate 
Pairs, e.g., if Pairs assigns cells in the same row to 
different Reduce tasks.
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Beyond Pairs and Stripes
• Are there ways other than Pairs and Stripes to partition 

the frequency-counting problem? Indeed, it is easy to 
find such strategies if we approach it as a matrix-
covering problem.
– Each matrix cell corresponds to a value of interest—the 

number of occurrences of a species-color combination—
and therefore each matrix cell needs to be computed by 
some function call in a task. We can model this by 
assigning each matrix cell to exactly one of r tasks. Stated 
differently, the matrix needs to be completely covered by r 
regions, each corresponding to a different task.

• The best cover should be selected depending on data 
distribution and computation task.

• This approach generalizes beyond matrices to arrays 
with more than two dimensions.
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Other Cover Examples
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“Block”-pattern partitioning: The partitioning is based on 
groups of related species and colors. E.g., the top half could 
be birds of prey, while the bottom are other species; and the 
right half could be earthy colors, while the left are other 
colors.
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Partitioning of a three-dimensional array: A “Stripe”-
style approach is applied to records with three fields 
(species, color, region). Here each Reduce function 
call processes one or more regions entirely.



Evaluating a Matrix Cover
• The matrix cover directly reveals important properties 

of the partitioning.
• Partitioning granularity determines the number of 

distinct keys and hence Reduce function calls.
• For problems requiring data from multiple matrix cells 

during a computation, it is easy to check if that 
information will be available in a Reduce call.
– Recall the relative-frequency computation problem where 

for each bird species S and color C, the goal was to 
compute f(S, C) / f(S). Stripes worked very well for that 
problem, because both f(S) and each f(S, C) could be 
computed from the stripe for species S. For Pairs it was 
necessary to use the order inversion design pattern to pass 
all data needed for computing f(S) to each Reducer 
computing some f(S, C).

13



Evaluating a Matrix Cover (cont.)

• Knowing the approximate data distribution, 
we can estimate how much data each 
partition receives. This in turn can be used to 
evaluate possible load-balancing challenges.

– In general, the most fine-grained partitioning, i.e., 
Pairs in the example, provides the greatest 
flexibility in assigning work evenly to Reduce tasks. 
For coarser partitioning schemes, e.g., Stripes in 
the example, one can estimate the data size 
assigned to each partition and determine if 
balanced assignment to Reduce tasks is possible.
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From Matrix Cover to Algorithm
• Given a matrix cover, two challenges need to be 

addressed to derive the corresponding 
distributed algorithm:
– Choice of keys: Each partition should have a unique 

key, such that all input records in that region are 
associated with this key.

– Assigning keys to tasks: This is done by the Partitioner. 
For a random assignment, we can rely on the default 
hash Partitioner. If the data is very skewed, i.e., the 
amount of work varies significantly between different 
keys, one should use a more fine-grained partitioning 
or design a custom Partitioner to balance load.

• Let us look at two MapReduce examples next.
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To assign multiple species and colors to a “block” partition, the Map 
function needs to check if species and color of the input record fall into 
the corresponding range. For hierarchical attributes, this can be 
achieved by using a higher-order concept as the key. For instance, bird 
species belong to bird families, hence for records (species, family, 
color), one can use family as the key to create blocks of rows. As a 
fallback, one can use synthetic region keys:
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It is trivial to achieve this partitioning by selecting species as the key.

map( species S, color C ) {
if ((S = species0 OR S = species1) AND (C = color0 OR C = color1))
emit( 0, (S,C) )        // Upper left region

else if ((S = species0 OR S = species1) AND (C = color2 OR C = color3))
emit( 1, (S,C) )        // Upper right region

else if ((S = species2 OR S = species3) AND (C = color0 OR C = color1))
emit( 2, (S,C) )        // Lower left region

else if ((S = species2 OR S = species3) AND (C = color2 OR C = color3))
emit( 3, (S,C) )        // Lower right region

}



Block Partitioning Notes
• Instead of the clumsy if-then-else statements, the 

regions can be encoded more elegantly as a sequence 
of ranges in each dimension. Binary search on those 
ranges will efficiently determine all relevant region 
identifiers.
– Recall the discussion of range partitioning for sorting, and 

the TotalOrderPartitioner in MapReduce in particular.

• This block partitioning addresses the problem of 
choosing the right dummy colors for the order 
inversion solution, when we want to split on the color 
dimension.
– We create one dummy color for every block, i.e., for each 

input record (S, C), we also assign (S, dummyi) to each 
block i.

17



“Randomized” Block Partitioning
• Finding good ranges to define the blocks requires knowledge about the input data 

distribution. Can we avoid this? Yes! Consider 2-by-2 blocks, but without pre-
defined ranges. Instead, we use a hash function HS to map a species to “up” vs 
“down” and another hash function HC to map a color to “left” vs “right.”

• In general, consider a partitioning with A rows and B columns. For input (s, c), Map 
emits value (s, c) with key (HS(s) mod A, HC(c) mod B). Then frequency f(s, c) is 
computed by the corresponding Reduce call.

• Hash functions assign species and colors “randomly” to row and column blocks but 
guarantee that the same species will always end up in the same row (similarly for 
colors and columns). This is important for correctness: if the same species-color 
combinations end up in different blocks, then they cannot be correctly totaled.

• Note that partitioning here did not introduce data duplication. For problems with 
different semantics, e.g., theta-joins, this will change.

18

Colors

Sp
ec

ie
s

A-by-B block partitioning for A=2, B=2.



Partitioning in Spark
• (Pair) RDDs also support custom Partitioners, 

hence the algorithms carry over from 
MapReduce.

• DataSet and DataFrame currently do not support 
custom Partitioners, leaving this choice to an 
automatic optimizer.
– What can we do here as a programmer trying to 

control partitioning? Using map(), we can assign 
custom keys to the rows of a DataSet, encoding 
regions of a partitioning. Then groupBy() on that key 
column, together with the appropriate “aggregate” 
function can process the region.
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Now we move on to a more challenging 
operation: the theta-join.



Theta-Joins
• The idea of modeling partitioning as a matrix- or array-

covering problem is very general. To illustrate this 
point, we show how it can be applied to theta-joins. 
Here all region keys are synthetic and have nothing to 
do with the values occurring in input tuples.

• Despite the same basic idea of matrix covering, the 
different nature of the join problem will affect the 
analysis of the resulting algorithms.

• This discussion is based on a paper published by Prof. 
Riedewald’s research group [A. Okcan and M. 
Riedewald. Processing Theta-Joins using MapReduce. 
In Proc. ACM SIGMOD Int. Conf. on Management of 
Data, pages 949-960, 2011]
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Problem Definition
• Earlier we discussed distributed equi-joins, a special type of 

theta-join. A general theta-join is defined as follows:
– Given two data sets S={s1, s2,…} and T={t1, t2,...}, find all pairs (si, 

tj) that satisfy some predicate P(si, tj) over the values of the 
attributes of the S-tuple and T-tuple.

• One of the most common types of non-equi theta-joins are 
those  with inequality conditions. For example, two 
weather data sets could be joined to find pairs of 
observation records that are “near” each other in space 
and time. Similarly, an ornithologist might be interested in 
finding bird species with similar or opposite observation-
probability trends in some region.

• Our goal is to partition any given theta-join computation 
such that job completion time on a given number of worker 
machines is minimized. (Alternative goals, e.g., maximizing 
throughput, are not considered here.)
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Theta-Join Example: Habitat Competition

• Assume ornithologists created a large database of summaries showing the 
association between some variable(s), e.g., the year, and the probability of 
observing a species in some region. A pair of such summaries is of 
interest, if (1) the summaries are for different species, (2) they cover the 
same region and variable of interest (year in the example), and (3) the 
trends are very different.
– In the example, both species show an interesting bi-annual trend, with one 

species peaking in even years and the other in odd years.

• Such pairs of related summaries help the ornithologists discover 
hypotheses about potential habitat competition.
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Challenges
• The join techniques discussed so far suffer from severe 

limitations in the context of theta-joins:
– Partition+broadcast can check each S-tuple against all tuples in T 

(which is broadcast to all tasks) to find the matching pairs (si, tj). 
While this enables it to implement any theta-join, it will only be 
efficient if T is small—ideally fitting in memory.

– Hash+shuffle works well when both inputs are big, but it neither 
generalizes beyond equi-joins nor scales well for join attributes 
with a small domain or heavily skewed input distribution.

• To minimize job completion time, we want a partitioning 
that minimizes the amount of work assigned to the 
machine doing the most work. (This machine determines 
the end of the job!)

• The matrix-cover idea will prove useful for reasoning about 
this problem and possible solutions.
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Theta-Join Matrix
• Recall that any theta-join is a subset of the Cartesian 

product S×T, which combines each tuple from S with 
each tuple from T. Hence any theta-join can be 
represented by a matrix M with |S| rows (one for each 
S-tuple) and |T| columns (one for each T-tuple).
– Matrix cell M(i, j) corresponds to the pair (si, tj). Its value is 

“true” if (si, tj) satisfies the join predicate, i.e., is a join 
result; and “false” otherwise.
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M(2,5)

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A = T.A

S
5 7 7 7 8 9

7

5

7

8

9

9

T

abs(S.A - T.A) < 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A >= T.A
M(2,1)



Discussion of the Example
• In the above example, S and T have a column named A and 

values S={5, 7, 7, 8, 9, 9} and T={5, 7, 7, 7, 8, 9}. Note that 
both are multi-sets, i.e., might contain the same tuple 
multiple times.

• The left matrix represents equi-join S.A = T.A. Cell M(2,1) 
corresponds to pair (7, 5), which are the second S-tuple and 
the first T-tuple, respectively. Since 7 is not equal to 5, the 
pair does not belong to the join result and hence the matrix 
cell’s value is “false.” Cells with value “false” are not 
shaded, while those with value “true” are shaded. For 
instance, M(1,1) in the upper left corner corresponds to 
matching pair (5, 5) and hence is shaded.

• The example in the center represents a band-join searching 
for pairs with similar values. 

• The example on the right shows a join with an inequality 
predicate.
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Join Matrix in Practice
• The join matrix as discussed so far encodes the exact 

join result. If it was available from the start, then we 
would not need to execute the join—the result would 
be readily available in the matrix.

• Hence a practical join algorithm cannot use the join 
matrix. Why do we need it then?
– For algorithm analysis: Matrix properties determine 

algorithm properties and performance, no matter if the 
algorithm knows the matrix.

– If the algorithm needs matrix statistics, e.g., the number of 
input and output tuples in a region, we can design 
techniques to estimate them. Here we must ensure that 
estimation cost is negligible compared to “inherent” join 
cost. E.g., it does not make sense to spend 1 hour on 
estimating matrix statistics if a simple partition+broadcast
implementation computes the join in 10 minutes.

27



Matrix Cover
• We now explain how a cover of join matrix M defines a distributed 

theta-join algorithm. The discussion uses MapReduce terminology 
for simplicity; the same ideas extend to Spark.

• Consider output pair (s2=7, t1=5) in cell M(2,1) for join S.A >= T.A 
and assume it is emitted by the Reduce call for some key K. We say 
“key K covers M(2,1)” or “the Reduce call for K covers M(2,1).”

• For a Reduce call to emit (s2, t1), it needs s2 and t1. Hence Map must 
emit these input tuples with key K.

• Putting things together, we observe that every “true”-valued cell in 
M must be covered by some key, which determines the input tuples 
sent to the corresponding Reduce call.

• “False”-valued cells need not be covered but covering them does 
not jeopardize correctness: The Reduce call can verify the join 
condition and remove input-tuple pairs that violate the join 
condition.
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Covering Candidate Cells
• How does the algorithm know which matrix cells to 

cover if it does not know the join matrix? It “plays it 
safe” by ensuring that some easy-to-find superset of 
the “true”-valued cells is covered. We refer to this 
superset as candidate cells.

• What if we declare the entire join matrix as candidate 
cells? This guarantees correctness but may cause 
performance degradation when many “false”-valued 
cells are covered.
– Covering such a cell causes extra duplication for sending 

the corresponding input tuples to Reducers.
– It also causes extra computation in Reduce for checking 

and removing the pair.

• Ideally, only a few “false”-valued join-matrix cells are 
covered.
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Non-Overlapping Cover
• We established that each “true”-valued join-matrix cell must be 

covered by at least 1 key, but what if it is covered by multiple keys? 
That causes undesirable output duplicates.
– Consider s2=7, s3=7, and t2=7. Pairs (s2, t2) = (7, 7) and (s3, t2) = (7, 7) 

look the same, but are not duplicates, because they are produced by 
two distinct S-tuples. On the other hand, emitting (s2, t2) more than 
once is undesirable, because the output would contain additional (7, 
7) tuples that should not be there.

• Undesirable output duplicates could be removed in post-
processing, but there are drawbacks:
– Duplicate elimination is expensive.
– To determine if identical-looking output tuples are “undesirable,” 

additional provenance information must be attached to each output 
tuple, increasing output size.

– Operators processing the join output, e.g., to count the number of 
output tuples, cannot be pushed into the Reduce phase of the join.

• For these reasons, we focus on non-overlapping covers, where no 
matrix cell is covered by more than 1 key.
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Matrix-Cover Cost Model
• For a given join problem, there could be many ways to 

cover (a superset of) all “true”-valued join-matrix cells with 
non-overlapping regions. How do we select the best?

• We need a cost model that quantifies the relationship 
between matrix-cover properties and running time.

• Even for a given data partitioning, it is difficult to accurately 
predict running time of a distributed computation. In 
addition, we must explore the space of all possible 
partitionings to find the matrix cover with the minimal 
running time. We therefore strive for a cost model that 
balances simplicity/robustness and accuracy. For more 
information, look at work by Prof. Riedewald’s research 
group [R. Li, N. Mi, M. Riedewald, Y. Sun, and Y. Yao. 
Abstract Cost Models for Distributed Data-Intensive 
Computations. In Distributed and Parallel Databases, 37(3): 
411-439, Springer, 2019].
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Cost-Model Derivation
• We now derive a simple cost model that enables strong analytical results, 

while also being sufficiently accurate.
• First notice that any MapReduce theta-join implementation must read the 

input from HDFS into Mappers and write the output back from Reducers 
to HDFS. Since these costs do not depend on the partitioning strategy, i.e., 
the matrix cover, they do not help us determine the winner and we 
therefore ignore them.

• Reducers perform the actual join work, while Mappers just duplicate and 
shuffle the input to the Reduce calls. Hence we will focus on the cost of 
the Reduce phase.

• The matrix cover also impacts the number of input copies emitted by 
Mappers and the cost for shuffling them. We argue that those costs are 
sufficiently accounted for by the Reduce-phase analysis:
– Workload in the Map phase tends to be well balanced due to dynamic load 

balancing. Hence Map-phase duration differences for different matrix covers 
depend on the total number of input duplicates. Similarly, total shuffle time 
differences depend on the total number of input duplicates caused by a matrix 
cover.

– All input duplicates are processed by Reducers, hence their impact is reflected 
there.
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Reducer-Centric Cost Model
• Clearly, our Reducer-centric cost analysis abstracts away certain aspects, 

e.g., the impact of a slow network on shuffle time. Hence it is important to 
perform a thorough empirical evaluation on realistic data and hardware to 
prove the effectiveness of the approach.

• The advantage of a simple (yet sufficiently accurate) cost model is that it 
enables strong analytical results, e.g., optimality proofs. To get there, we 
make one more (slightly) simplifying assumption: More input a worker 
processes and more output it generates, the longer it will take. This will 
generally hold for theta-joins in practice, because it takes longer to match 
larger inputs and produce larger outputs.

• Putting things together, it now is clear that to minimize running time in 
this cost model, we need to minimize the amount of input and output 
assigned to each worker. We use max-input and max-output to refer to the 
largest input any worker receives and the largest output any worker 
produces, respectively.

• For simplicity and without loss of generality, we assume each worker 
receives at most 1 Reduce task. This way analyzing a Reduce task directly 
reveals input and output for the corresponding worker.
– Multiple Reduce tasks assigned to the same worker can be grouped into an 

equivalent single one by changing the Partitioner accordingly.

33



34

Let us look at example covers to better 
understand the tradeoffs.
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5

7

8

9

3

3

3

2

2

1

1

1

1

2 3

2
1

Input: S2,S3,S4,S6
T3,T4,T5,T6

Output: 4 tuples

Input: S2,S3,S5
T2,T4,T6

Output: 3 tuples

R3: key 3
Input: S1,S2,S3

T1,T2,T3
Output: 3 tuples

max-reducer-input = 8

R1: key 1

R2: key 2

max-reducer-output = 4

S1,S4
T1,T5
2 tuples

Input: S2,S3
T2,T3,T4

Output: 6 tuples

R3: key 9
Input: S5,S6

T6
Output: 2 tuples

R2: key 7

R1: keys 5,8

Output:

Input:

max-reducer-input = 5
max-reducer-output = 6

R1: key 1
Input: S1,S2,S3

T1,T2
Output: 3 tuples

Input: S2,S3
T3,T4

Output: 4 tuples

R3: key 3
Input: S4,S5,S6

T5,T6
Output: 3 tuples

max-reducer-input = 5
max-reducer-output = 4

R2: key 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T

key

Hash+shuffle Join: Random Assignment: Balanced Algorithm:



Explanation of The Example
• The left cover corresponds to hash+shuffle, using the join attribute as key 

and resulting in 4 regions. To create 3 Reduce tasks, keys 5 and 8 are 
assigned to Reducer R1, key 7 to R2, and key 9 to R3. R2 joins the input 
tuples with value 7—three from S and two from T. Hence R2 receives 5 
input tuples and produces 6 output tuples; the other Reducers perform 
significantly less work. This load imbalance is caused by data skew, in 
particular by the frequent occurrence of join value 7.

• What if we assigned keys randomly to “true”-valued cells to address the 
skew problem as shown in the middle cover? This lowers max-reducer-
output to 4, which is optimal, but increases max-reducer-input due to 
excessive duplication. For example, s2=7 is sent to all Reducers, because it 
is needed for cells marked with keys 1, 2, and 3 in the second row.
– In practice, the algorithm would cover more candidate cells, further increasing 

input duplication. It also needs to prevent a somewhat subtle output 
duplication. E.g., Reducer R3 receives s2=7, s3=7, t2=7, and t3=7, but should not 
output (s2, t2) (M(2,2) is assigned to R2) and (s3, t3) (M(3,3) is assigned to R1).

• The best solution is shown on the right. Even though some “false”-valued 
cells are covered unnecessarily, the cover achieves max-reducer-input as 
low as hash+shuffle, and at the same time max-reducer-output as low as 
the random assignment. We want to find such covers.
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From Matrix Cover to Algorithm
• Before discussing how to find optimal matrix covers, we first 

establish how a cover can be converted to a distributed algorithm. 
To avoid the subtle output-duplication problem of the example 
cover in the center, we require key regions to be rectangles.

• If we cover the entire matrix with non-overlapping rectangles, then 
a simple randomized 2-round algorithm can compute any theta-
join:
– In round 1, each task receives the cover information. For an S-tuple s, 

it selects a random matrix row and sends a copy of s to all cover 
regions intersecting that row. (It analogously selects a random column 
for each T-tuple.)

– The data is shuffled to group it by region. Then tasks in round 2
compute the join in each region separately. This local computation can 
leverage existing libraries of efficient (non-parallel) join 
implementations, e.g., index-based approaches for equi-join and 
inequality joins.

• We will refer to this algorithm as Basic-Theta. Its MapReduce 
implementation is discussed next.
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Class Mapper {
// A Cover of the entire join matrix
Cover

setup() { Cover = load covering information from file cache }

map( tuple x ) {
if (x is from S) {

// Select a random row of the matrix
matrixRow = random( 1, |S| )

// Find all regions intersecting this row and emit x with their keys
for each regionID in Cover.getRegions( matrixRow )
emit( regionID, (x, “S”) )

}
else {     // x is from T

// Select a random column of the matrix
matrixCol = random( 1, |T| )

// Find all regions intersecting this column and emit x with their keys
for each regionID in Cover.getRegions( matrixCol )
emit( regionID, (x, “T”) )

}
}

}

Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

Example cover



39

reduce( regionID, [(x1, flag1), (x2, flag2),…]) {
initialize S_list and T_list

// Separate the input list by the data set the tuples came from
for all (x, flag) in input list do

if (flag = “S”)
S_list.add( x )

else
T_list.add( x )

// Any appropriate (non-parallel) join implementation can be used to join S_list and T_list
joinResult = myFavoriteJoinAlgorithm(S_list, T_list)
for each tuple t in joinResult

emit( t )
}



Algorithm Correctness
• Since each cell is covered by exactly one key, it is easy to show that 

the algorithm correctly implements any theta-join.
• Consider output tuple (si, tj). Inputs si and tj are assigned to a 

random row and column, respectively. This row and column 
intersect in exactly one matrix cell, which is covered by exactly one 
key. That Reduce call receives both tuples and can compute the 
result pair. Since no other Reduce call receives both tuples, this 
result will not be produced anywhere else.
– The example illustrates this argument for tuples s1 and t1. The 

randomly selected row and column intersect in region 2, hence the 
Reduce call for key 2 produces the output.
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Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3



Implementation in Spark
• The matrix cover can be broadcast or passed by the driver 

to all tasks. In practice matrix-cover information is small.

• In a pair RDD implementation, a flatMap call creates the 
input tuple duplicates and adds the region ID as the key; 
processing each input RDD separately.

• Then aggregateByKey produces pair RDDs with schema 
(regionID, listOfRecordsInRegion) for each input separately.

• Finally, we join the two grouped inputs on regionID and 
map the value component to the join result in the region.
– Note that the regionID key is associated with a pair of lists—the 

input tuples from left and right input, respectively, in the region.

• The DataSet-based implementation is analogous.
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Why Randomization?
• Why do we assign each S-tuple si to a random row, instead of “correct” row i? (The 

same applies to T-tuples and columns.) Randomization is a powerful tool:
• Reason 1: simpler algorithm

– Mappers do not know the “correct” row of an input tuple. In the example, tuple s4 = 8 could 
belong to row 1 if there are no smaller values; or it could be in row 6 if it is the greatest value. 
A pre-processing step would have to add row and column numbers.

– By removing the one-to-one correspondence between input tuples and rows/columns, the 
join matrix does not need |S| by |T| cells and could be much smaller as shown below.

• Reason 2: performance
– Avoiding the pre-processing for determining the “correct” row/column lowers cost.
– Randomization effectively addresses skew. As the examples illustrated, “true”-valued cells 

could be clustered in some region of the join matrix. A key covering such a dense region would 
produce an overly large share of the output. Randomizing rows and columns shuffles the 
“true”-valued cells around in the matrix, balancing load across regions.

– Even though randomization could in theory result in poor load distribution, e.g., if all S-tuples 
are randomly assigned to the same row, the probability of this to happen is very low in 
practice, especially for big data. Using Chernoff bounds, we can show that for big data the 
probability of a Reduce call receiving 5% or more over its target input share is virtually zero.
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1 2

3 4
Both matrices describe the same covering: each of the four 
Reduce calls receives 50% of S and 50% of T. The right 
matrix expresses this with one fourth the number of cells 
compared to the one on the left.



Optimal Cover: Entire Matrix
• We established earlier that any cover of the entire join 

matrix using non-overlapping rectangles guarantees 
correctness for any theta-join implementation.

• However, there are many possible such matrix covers. 
Given r, the desired number of regions, our goal is to 
find the optimal cover.

• We will demonstrate the power of the matrix covering 
approach by discussing how it allows us to derive lower 
bounds. Then we introduce the 1-Bucket-Random 
algorithm. This algorithm often comes close to the 
lower bounds and only needs minimal information 
about the input data. Hence it is often the best 
possible solution for computing a given theta-join.
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Ideal Cover: Squares
• Lemma 1: A region that covers c cells of join matrix M 

will receive at least 2 𝑐 input tuples.

• Proof:
– Consider a region receiving x S-tuples {s1, s2,…, sx} and y T-

tuples {t1, t2,…, ty}. This region can cover at most x·y matrix 
cells, corresponding to all combinations (xi, yj), 1≤i≤x, 
1≤j≤y. To cover c cells, it must hold that x·y≥c.

– From (x-y)2≥0 and x·y≥c, we derive x2+y2≥2xy≥2c.

– Now consider (x+y)2=x2+y2+2xy. From the above follows 
that (x+y)2≥2c+2c=4c, therefore 𝑥 + 𝑦 ≥ 2 𝑐.

• Note that if c is a perfect square, then a square-shaped 
region of 𝑐 by 𝑐 rows and columns matches the 
lower bound established by the lemma.
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Lower Bounds: Cartesian Product
• Consider Cartesian product S×T, i.e., every matrix cell belongs to the 

output. We assign exactly 1 key to each Reduce task. (Assigning multiple 
keys to a Reduce task causes unnecessary input duplication.)

• Max-reducer-output: The matrix consists of |S|·|T| cells. Max-reducer-
output is minimized if each of the r keys covers the same number of cells, 
i.e., |S||T|/r.

• Max-reducer-input: Lemma 1 implies that covering |S||T|/r matrix cells 
requires sending at least 2 𝑆 ∙ 𝑇 /𝑟 input tuples to the Reducer.

• Is it possible to match these lower bounds in practice?
– Yes, depending on the values of |S|, |T|, and r. For example, let |S|=4000, 

T=6000, and r=6. Each key would cover a square of 2000 by 2000 cells, 
corresponding to a 2-by-3 grid partitioning of the matrix. Unfortunately, things 
do not work out this well for other combinations of |S|, |T|, and r, e.g., 
|S|=3000, |T|=8000, and r=6.

• This raises the question how close we can get to the lower bounds for any 
given combination of |S|, |T|, and r.

45Partitioning matching the lower bound for |S|=4000, |T|=6000, and r=6.



Extreme Case: Small-vs-Large
• Consider the case where one input is more than r times 

bigger than the other. Without loss of generality, let 
|S| < |T|/r. Even though the lower bounds for max-
reducer-input and max-reducer-output cannot be 
matched in this case, it is easy to show that the optimal 
partitioning consists of regions of size |S| rows by 
|T|/r columns.
– This partitioning corresponds to the partition+broadcast

algorithm: The entire input S is broadcast to all workers, 
who join it with a partition of the larger input T.
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“Idealistic” square region
S

T

Actual optimal region
S

T



Non-Extreme Case
• Consider the remaining case where |T|/r  |S|  |T|.

– This implies 𝑆 𝑇 /𝑟 ≤ |𝑆| ≤ |𝑇|.

• For ease of exposition, let K= 𝑆 𝑇 /𝑟 for this 
discussion.

• For some combinations of |S|, |T|, and r it is not 
possible to cover the matrix with r regions of K by K 
cells.
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Ideal square region 
of size K by K

S

T
In this example for r=9, only six 
K-by-K squares fit into the 
matrix. The remaining three 
squares together contain as 
many cells as the “leftover” of 
the matrix, but cannot cover 
this leftover due to its shape.



Non-Extreme Case (Cont.)
• Whenever the matrix cannot be covered by r K-by-K 

squares, we conceptually “inflate” the regions so that a 
complete cover is achieved.

• This approach wastes some of the regions (those 
Reduce tasks receive no data), while assigning more 
work to the others. (Larger regions imply more input 
and output for those Reducers.)

• Despite this “waste”, one can still prove good 
properties for the algorithm.
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Only 6 of the 9 K-by-K squares “fit”. The “inflated” 6 regions cover the matrix.

“Wasted” regions.



Non-Extreme Case (Cont.)
• Formally, the cover with inflated regions is created by 

partitioning the join matrix into a regular grid of

A =
|𝑆|

|𝑇|
𝑟 by B =

|𝑇|

|𝑆|
𝑟 identical regions.

• It is easy to show that A·B ≤ r, therefore this cover does 
not use more than the desired number of regions.

• But how much worse are max-reducer-input and max-
reducer-output for this cover? After all, it uses 
potentially fewer than r regions, and each of them is 
inflated to a larger size.
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Assume that r = 9 and that T has 50% more tuples than S, i.e., 

|S|/|T|=2/3. Then 𝐴 = 6 = 2 and B = 13.5 = 3. Hence 

the join matrix is partitioned into 2 by 3 regions, each of size |S|/2 
by |T|/3.



Non-Extreme Case (Cont.)
• Upper bound for max-reducer-output: Recall the 

lower bound |S||T|/r.

– Each partition consists of S /
|𝑆|

|𝑇|
𝑟 by T /

|𝑇|

|𝑆|
𝑟

cells.

– Since A =
|𝑆|

|𝑇|
𝑟 is obtained by rounding down 

|𝑆|

|𝑇|
𝑟, it holds that 

|𝑆|

|𝑇|
𝑟 >

𝐴

𝐴+1

|𝑆|

|𝑇|
𝑟.

– This in turn implies 
S

𝑆

𝑇
𝑟

<
|𝑆|

𝐴

𝐴+1

|𝑆|

|𝑇|
𝑟
=

𝐴+1

𝐴
𝑆 𝑇 /𝑟.
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Non-Extreme Case (Cont.)
• We can show similarly that 

T

𝑇

𝑆
𝑟

<
𝐵+1

𝐵
𝑆 𝑇 /𝑟.

• Hence the number of cells covered by an inflated region is 
less than 

𝐴+1

𝐴
𝑆 𝑇 /𝑟

𝐵+1

𝐵
𝑆 𝑇 /𝑟 =

(𝐴+1)(𝐵+1)

𝐴∙𝐵
𝑆 𝑇 /𝑟.

• For the non-extreme case, 𝐴, 𝐵 ≥ 1 and hence (𝐴 +
1)(𝐵 + 1)/(𝐴𝐵) ≤ 4. Stated differently, the upper bound 
of max-reducer-output for the partitioning with inflated 
regions is less than 4 times the lower bound.
– With increasing 𝑟, 𝐴 and 𝐵 increase, which further improves the 

guarantee. For example, for 𝐴, 𝐵 ≥ 10, (A + 1)(B + 1)/(AB) ≤
1.21, i.e., the upper bound of max-reducer-output is within 21% 
of the lower bound! This is good news, because in practice r 
tends to be large when using more workers.
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Non-Extreme Case (Cont.)

• Upper bound for max-reducer-input: Recall 

the lower bound 2 𝑆 𝑇 /𝑟.

– From the analysis above also follows that each 

region receives less than 
𝐴+1

𝐴
𝑆 𝑇 /𝑟 +

𝐵+1

𝐵
𝑆 𝑇 /𝑟 = (2 +

1

𝐴
+

1

𝐵
) 𝑆 𝑇 /𝑟 input 

tuples. Stated differently, it receives less than 
twice the lower bound. For larger r, and hence 
larger A and B, the upper bound will be very close 
to the lower bound.
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1-Bucket-Random
• The 1-Bucket-Random algorithm, or 1-Bucket for short, is 

based on the analytical results for lower and upper bounds. 
For the results to apply, it sets r to the number of worker 
machines and assigns a single key to each Reduce task.

• 1-Bucket-Random can implement any theta-join and it 
requires only minimal statistics: the size of S and T. This 
corresponds to a histogram capturing the frequency 
distribution of values in a dataset using a single bucket—
hence the name.

• It actually suffices to know the ratio 𝑆 /|𝑇|:
– Assume without loss of generality |𝑆| ≤ |𝑇| and let 𝐶 = 𝑆 /|𝑇|.
– If 𝐶 < 1/𝑟, then set 𝐴 = 1 and 𝐵 = 𝑟.

– Otherwise, i.e., if 𝐶 ≥ 1/𝑟, set A = 𝐶 ∙ 𝑟 and B = 𝐶−1 ∙ 𝑟 .
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1-Bucket-Random: Map
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Partitioning for A=2 and 
B=3. The numbers indicate 
the region keys.

map(…, tuple x) {
if (x is from S) {

// Select a random integer from range [0,…, A-1]
row = random( 0, A-1 )

// Emit the tuple for all regions in the selected “row”.
for key = (row * B) to (row * B + B – 1)

emit( key, (x, “S”) )
}
else {     // x is from T

// Select a random integer from range [0,…, B-1]
col = random( 0, B-1 )

// Emit the tuple for all regions in the selected “column”.
// This requires skipping B region numbers forward from
// start region key equal to col.
for key = col to ((A-1)*B + col) step B

emit( key, (x, “T”) )
}

}

0 1 2

3 4 5

Note that Map does not need 
the matrix cover any more. It can 
compute A and B on-the-fly from 
r and |S|/|T|.



1-Bucket-Random: Reduce

55

reduce( regionID, [(x1, flag1), (x2, flag2),…]) {
initialize S_list and T_list

// Separate the input list by the data set the
// tuples came from
for all (x, flag) in input list do

if (flag = “S”)
S_list.add( x )

else
T_list.add( x )

// Any appropriate (non-parallel) join implementation
// can be used to join S_list and T_list
joinResult = myFavoriteJoinAlgorithm( S_list, T_list)
for each tuple t in joinResult

emit( t )
}

This reduce function is identical 
to Basic-Theta, the generic 
version of the algorithm shown 
earlier.



Implementation in Spark
• This program is identical to the version presented for Basic-

Theta. We only change the function assigning keys to input-
tuple duplicates in flatMap.
– Instead of an actual matrix cover, only the values A and B are 

passed to all tasks.

• For the pair RDD implementation, a flatMap call creates the 
tuple duplicates and adds the region ID as the key; 
processing each input RDD separately.

• Then aggregateByKey produces pair RDDs with schema 
(regionID, listOfRecordsInRegion) for each input separately.

• Finally, we join the two grouped inputs on regionID and 
map the value component to the join result in the region.
– Note that the regionID key is associated with a pair of lists—the 

input tuples from left and right input, respectively, in the region.

• The DataSet program is analogous.

56



1-Bucket Analysis: Cartesian Product
• 1-Bucket relies on the matrix cover used in the analysis of lower 

and upper bounds. The analytical results guarantee that each 
Reduce call receives close to the optimal amount of input and is 
responsible for producing close to the optimal amount of output. 
By assigning exactly one key to each Reduce task and exactly one 
Reduce task to each worker, these guarantees extend to max-input 
and max-output for the worker machines.

• The guarantees are stronger for larger r. Hence for big-data 
applications running on 100 or more machines, 1-Bucket distributes 
work in a near-optimal manner.
– These guarantees are probabilistic, due to the random assignment of 

input tuples to matrix rows and columns. However, for big data, the 
probability of a “bad” assignment is virtually zero.

• While 1-Bucket-Random achieves near-optimal work assignment for 
the Cartesian product, many joins in practice compute a much 
smaller output. How well does the algorithm perform for those 
joins?
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1-Bucket Analysis: Output-Dominated Joins

• Consider joins where the output is much larger than 
the input, e.g., 100 times larger. 

• For these joins, the time for producing the output and 
writing it to the distributed file system dominates the 
total job execution time. Hence one should minimize 
max-reducer-output.

• The above analytical results show that each region of 
the matrix cover contains a near-optimal number of 
cells. Since input tuples are randomly assigned to 
matrix rows and columns, this implies that on 
expectation each of these regions will produce a near-
optimal number of output tuples. Experimental results 
show that this is indeed the case in practice.
– Stated differently, for output-dominated joins, 1-Bucket 

will also achieve a near-optimal assignment of work.
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1-Bucket Analysis: Input-Dominated Joins

• For joins whose output is smaller or not much larger than the input, 
1-Bucket will also perform a near-optimal assignment of output-
related work. However, this is irrelevant because input-related costs 
dominate, i.e., one needs to focus on max-reducer-input.

• This reveals the weakness of 1-Bucket, because it sends each S-
tuple to B tasks, and each T-tuple to A tasks. The resulting input 
duplication further increases the already dominant input-related 
costs for shuffling and local processing in the Reducers.

• Why does the previous upper and lower bound analysis showing 
near-optimality for max-reducer-input not apply here? The upper 
bound still applies, but the lower bound does not.
– Recall that only the “true”-valued cells of the join matrix must be 

covered. By not covering some cells, smaller regions can be used, 
resulting in a smaller lower bound for input duplication.

• Intuitively, for input-dominated joins, one can improve over 1-
Bucket by not covering “empty” regions of the matrix, i.e., regions 
that cannot contain any results.
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Improved Algorithms for Input-Dominated 
Joins

• To avoid covering some region of the join matrix, we 
must prove that no cell in that region corresponds to a 
join result tuple. This requires knowledge about the 
data properties in that region.

• Consider an equi-join of S and T on attribute A, using 
condition S.A = T.A. Assume A takes on values between 
0 (inclusive) and 30 (exclusive). One can partition A’s 
domain into ranges like [0,10), [10, 20), and [20, 30). 
Clearly, an S-tuple in range [10,20) cannot join with a T-
tuple in range [20,30). Based on this analysis, most 
regions of the join matrix do not need to be covered, 
greatly reducing the size of each of the r regions, and 
hence Reducer input.

• We next illustrate this idea with an example.
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Join matrix for equi-
join S.A = T.A.

Range-partitioned matrix. The 
domain of join attribute A is 
partitioned into three ranges: 
[0,10), [10, 20), and [20, 30). Each 
S-tuple falls into exactly one row 
range; each T-tuple falls into 
exactly one column range.

Candidate cells that must be covered. The equality condition 
prevents regions with non-intersecting A-ranges for S and T from 
containing any “true”-valued cells. Hence only the shaded regions 
need to be covered. Not all cells in these regions will produce join 
output, but this cannot be determined from the partitioning into 
three ranges.

Since only 1/3 of the matrix needs to be covered, the lower 
bounds for both max-reducer-input and max-reducer-output will 
be less than for the Cartesian product that had to cover the entire 
matrix.

0

10

20

0 10 20



Identifying Candidate Cells
• Given a join condition, the algorithm must identify an appropriate 

partitioning of the join-attribute domain so that as much of the join 
matrix as possible can be eliminated, leaving only a small fraction of 
candidate cells to be covered.

• For simple equality and inequality conditions on a single join 
attribute, range partitioning based on quantiles tends to work very 
well. (Finding approximate quantiles was discussed in a previous 
module.)
– This ensures that each partition of S and T tuples has a similar amount 

of data. Hence eliminating a combination of such partitions 
significantly reduces input duplication.

• For more complex conditions, e.g., on multiple attributes, finding 
good partitions of S and T can be challenging.

• Once the blocks of candidate cells have been identified, a cover 
using r regions is found. Due to the possibly irregular shape of 
candidate blocks, finding a good cover is much more challenging 
than for the cross-product.
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M-Bucket-I
• M-Bucket-I is a heuristic for finding a cover of candidate cells that were 

identified based on a partitioning of S and T into multiple buckets. Its goal 
is to minimize max-reducer-input.

• M-Bucket-I greedily identifies the best cover for a block of rows starting in 
row 0. It performs a binary search on max-reducer-input limits:
– Given a limit, it finds the row block with the highest ratio of candidate-cells-

covered to number-of-regions-used, respecting the max-reducer-input limit. It 
then continues with the next block of rows not yet covered.

– If all candidate cells in the matrix can be covered with r regions, M-Bucket-I 
tries a smaller limit on max-reducer-input. Otherwise it tries a larger limit.

• Once a cover of all candidate cells is found, an algorithm similar to Basic-
Theta can be used to implement the join. The main difference is that 
instead of picking any random row for an S-tuple s, it must pick a random 
row from within the S-partition that s falls into. Similarly, randomization 
for T-tuples is limited to the partition the T-tuple belongs to.

• Let us look at an example to better understand this idea.
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M-Bucket-I first attempts to cover a block of rows starting with row 0. Each sequence of three 
steps shows how it explores covering 1, 2, and then 3 rows. Whenever the max-reducer-input 
limit is reached, a region is “closed” and a new one starts. The ratios of candidate cells covered 
to regions used are 1, 3/2, and 4/2 for the blocks of 1, 2, and 3 rows, respectively. Hence the 3-
row cover wins and M-Bucket-I continues exploring covers starting in row 3.

Join matrix showing all candidate cells shaded. Assume the max-reducer-input 
limit is set to 3. This means that each region can only have a total of up to three 
different rows and columns with candidate cells assigned to it.

Winning 
cover for 
starting 
row 0.



M-Bucket-O
• The M-Bucket-O algorithm is similar to M-Bucket-I but 

tries to minimize max-reducer-output. It performs a 
binary search over limits on max-reducer-output.

• The main additional challenge for this algorithm is that 
it must estimate the number of “true”-valued cells in a 
region of candidate cells. (Recall that not all candidate 
cells correspond to join result tuples.) This is a 
challenging problem known as selectivity estimation 
for joins in relational databases. Selectivity estimates 
can be poor, even for comparably fine-grained 
histograms of the join attribute’s frequency 
distribution.
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Extension: Memory-Awareness
• The cost model we have relied on so far was simplistic in that it 

accounted for computation costs only in terms of the amount of 
input and output per task. Big-data problems often benefit from a 
more fine-grained analysis that distinguishes between cases where 
data fits in memory and where it does not.
– When data does not fit in memory, it is managed in slower (i.e., higher 

latency and lower bandwidth) external storage such as flash drives or 
hard disks. For some algorithms this has a negligible effect on 
performance. E.g., if an algorithm scans through a data from start to 
end, then buffering can hide access latency very well. On the other 
hand, an algorithm that repeatedly jumps to “random” locations in a 
large file will pay a high performance penalty due to latency.

• All theta-join algorithms introduced in this module can be made 
memory-aware, because the matrix cover reveals how many input 
tuples from S and T a task will receive.

• Memory-awareness through I/O-optimized local computation:
– If a Reduce call’s input does not fit in memory, then the local join in 

the Reduce function must be optimized for external storage access. 
Designing and implementing this is non-trivial.
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Extension: Memory-Awareness (Cont.)
• Memory-awareness through controlling of region size:

– To avoid accessing slow storage, we can create smaller regions by 
choosing a larger number of region keys, r.

– The best value for r is found through binary search: If the matrix cover 
for some value of r creates tasks that exceed memory size, then a 
larger r is explored; and vice versa.

– Increasing the number of regions will decrease per-task input and 
output size, but it increases total cost because more duplicates of 
input tuples are created for the additional regions. (See the example 
below.)

– Recall that M-Bucket-I explores different limits on max-reducer-input 
anyway. Hence for M-Bucket-I it suffices to immediately set that limit 
to the size of Reducer memory.
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This cover results in a doubling 
of input size in the Mappers. 
Each row intersects with two 
regions, requiring two copies 
of the corresponding S-tuple; 
similarly for T-tuples. Each 
Reduce call deals with half of S 
and T.

This cover results in a quadrupling 
of input size in the Mappers. Each 
row intersects with four regions, 
requiring four copies of the 
corresponding S-tuple; similarly 
for T-tuples. Each Reduce call only 
deals with a quarter of S and T.



Experiments: Basic Setup
• All experiments were executed on a cluster consisting of 10 

machines with the following specs: quad-core Xeon 2.4GHz 
CPU, 8 MB cache, 8 GB RAM, and two 250 GB 7.2K RPM 
hard disks.

• The cluster was running Hadoop 0.20.2 with 1 machine 
dedicated as the head node, and the other 9 as worker 
nodes. The default Hadoop configuration was used, setting 
1 Map and Reduce slot per core and HDFS block size of 
64MB. Data is stored on all 10 machines.

• For all experiments, r was set to 36. This corresponds to the 
number of Reduce slots in the cluster, allowing a job to 
finish in one wave by assigning exactly one key to each 
Reduce task.
– For the memory-aware version, r was set to the smallest 

multiple of 36 for which the input could fit in memory. Then 
each of the 36 Reduce tasks received the same number of keys.

68



Datasets
• Both real and synthetic data were explored. Real dataset 

Cloud consists of 382 million records, each with 28 
attributes, for 28.8 GB total size. These records contain data 
from cloud reports by ships and land stations.

• Real data sets Cloud-5-1 and Cloud-5-2 are independently 
drawn uniform random samples from Cloud, each 
containing 5 million records.

• Synth-α defines a family of synthetic data sets. For some 
value of α, Synth-α is a pair of data sets, each containing 5 
million records. The records are integers between 1 and 
1000. The first data set is generated using the uniform 
distribution. The second is drawn from a Zipf distribution 
with parameter α.
– For α = 0 the distribution is perfectly uniform. The larger α, the 

more skewed the distribution. Distributions with α > 2 are 
considered extremely skewed.
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Skew Resistance: Equi-Join
• This experiment compares 1-Bucket to hash+shuffle (Reduce-side join) for 

an equi-join. The problem is output-size dominated as the 10 million input 
tuples produce about 25 billion output tuples.
– Output imbalance measures the ratio between max-reducer-output and 

average reducer output.

• The results show clearly that as data skew increases, Reduce-side join 
suffers from unbalanced load distribution. This imbalance is highly 
correlated with the running time of the job. Contrast this to 1-Bucket, 
which always balances load very well and retains the fast execution time 
even for skewed data.
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1-Bucket-Random Reduce-side join

Data Set Output size
(billion)

Output imbalance Runtime
(secs)

Output Imbalance Runtime
(secs)

Synth-0 25.00 1.0030 657 1.001 701

Synth-0.4 24.99 1.0023 650 1.254 722

Synth-0.6 24.98 1.0033 676 1.778 923

Synth-0.8 24.95 1.0068 678 3.010 1482

Synth-1 24.91 1.0089 667 5.312 2489



Selective Band-Join
SELECT S.date, S.longitude, S.latitude, 
T.latitude

FROM Cloud AS S, Cloud AS T

WHERE S.date = T.date
AND S.longitude = T.longitude AND
ABS(S.latitude - T.latitude) <= 10

• This query finds cloud reports made on the same day in 
neighboring geographical locations.

• The join is input-size dominated, because the 764 million 
input records (the Cloud data set is used twice for this self-
join) only produce 390 million output records.

• The experiments explore the performance of M-Bucket-I, 
which optimizes for the input-size dominated join case, for 
different granularities of join matrix partitioning.
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This graph shows the corresponding running time of the 
MapReduce job executing the join. (All numbers are 10-run 
averages; standard deviation was below 15%.) It is clearly visible 
how closely running time is correlated with max-reducer-input. 
This confirms that for input-size dominated joins, it is very 
important to avoid covering join-matrix regions that cannot 
produce results.

The first graph reports input imbalance, measured as max-reducer-input divided by average reducer input. 
The x-axis shows the granularity of the matrix partitioning used for eliminating regions without join results. 
(1-B-T uses a single partition, like 1-Bucket.) In all cases, input load is well-balanced. The second graph 
highlights the importance of using fine-grained matrix partitioning for eliminating regions without join 
results: 1-B-T covers the entre matrix and hence suffers from excessive input duplication.



M-Bucket-I Details
• M-Bucket-I, with a single bucket per input, results in an 

algorithm that covers the entire matrix, like 1-Bucket. In 
contrast to 1-Bucket, it uses the more sophisticated 
heuristic discussed earlier for finding a cover.

• For all experiments, the memory-aware version of M-
Bucket-I was used. This made every Reduce call execute in 
memory, at the possible cost of an overall greater input 
duplication.

• Total input duplication rate is measured as total Mapper 
output size divided by total Mapper input size. Input 
duplication rates were 31.22, 8.92, 1.93, 1.043, 1.00048, 
and 1.00025 for the experiments with 1, 10, 100, 1000, 
10K, 100K, and 1M buckets, respectively.
– More buckets result in a more fine-grained discovery of 

candidate cells, reducing the number of cells to be covered.
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Not-So-Selective Band-Join
SELECT S.latitude, T.latitude

FROM Cloud-5-1 AS S, Cloud-5-2 AS T

WHERE ABS(S.latitude-T.latitude) <= 2

• This query finds cloud reports made at similar 
latitudes.

• The join is output-size dominated, because the 10 
million input records (the Cloud data samples were 
used to avoid excessive running times) produce 22 
billion output records.

• The experiments explore the performance of M-
Bucket-O, which optimizes for the output-size 
dominated join case, for different granularities of 
matrix partitioning.
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The first graph reports output imbalance, measured as max-reducer-output divided by average reducer output. The x-axis 
shows the granularity of the matrix partitioning used for eliminating regions without join results. (1-B-T uses a single 
partition, like 1-Bucket.) While output is well-balanced for 1-B-T due to randomization, imbalance is high for the coarser 
partitionings. This is caused by the difficulty of estimating output size for a matrix partition. Even for the most fine-grained 
partitioning possible (there are only 5951 distinct latitude values in the data), imbalance is still higher than for the simple 
randomized approach. Since M-Bucket-O does not duplicate output records, the second graph showing max-reducer-output 
is identical in shape to the first.

This graph shows the corresponding running time of the MapReduce job 
executing the join. (All numbers are 10-run averages; standard deviation 
was below 4%.) It is clearly visible how closely running time is correlated 
with max-reducer-output. Notice that a smaller bucket number still 
causes more input duplication. However, since the join is output-size 
dominated, this does not significantly affect the running time. In 
particular, 1-B-T, which covers the entire join matrix, performs about as 
well as the most fine-grained partitioning that needs to cover only a 
small fraction of the join matrix.



M-Bucket-O Details
• M-Bucket-O, with a single bucket per input, results in 

an algorithm that covers the entire matrix, like 1-
Bucket. In contrast to 1-Bucket, it uses a version of the 
more sophisticated heuristic discussed earlier for M-
Bucket-I.

• For all experiments, the memory-aware version of M-
Bucket-O was used. This made every Reduce call 
execute in memory, at the possible cost of an overall 
greater input duplication.

• Total input duplication rate is measured as total 
Mapper output size divided by total Mapper input size. 
Input duplication rates were 7.50, 4.14, 1.46, 1.053, 
and 1.035 for the experiments with 1, 10, 100, 1000, 
and 5951 buckets, respectively.
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Cost of Collecting Statistics
• The 1-Bucket algorithm and the M-Bucket algorithms 

for M=1 cover the entire join matrix. Hence they do not 
need to collect detailed statistics about the join 
attribute distribution in S and T.

• On the other hand, to choose good matrix partitions 
for eliminating regions without join results, the M-
Bucket algorithms for M>1 use quantiles. Hence they 
need to perform a pre-processing step for finding 
approximate quantiles.

• The M-Bucket algorithms also incur additional cost for 
finding a good cover of the regions with candidate 
cells.

• Comparing these costs provides more insights into the 
properties of the M-Bucket algorithms, as shown next.
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Step Number of histogram buckets

1 10 100 1000 10,000 100,000 1,000,000

Quantiles 0 115 120 117 122 124 122

Histogram 0 140 145 147 157 167 604

Heuristic 74 9 0.8 1.5 17 118 111

Join 49,384 10,905 1157 595 548 540 536

Total 49,458 11169 1423 861 844 949 1373

Step Number of histogram buckets

1 10 100 1000 5951

Quantiles 0 4.5 4.5 4.8 4.9

Histogram 0 26.2 25.8 25.6 25.6

Heuristic 0.04 0.04 0.05 0.24 0.81

Join 1279 2483 1597 1369 1188

Total 1279 2514 1627 1399 1219

M-Bucket-I on Cloud data set (input-size dominated join):

M-Bucket-O on Cloud-5 data sets (output-size dominated join):



Result Discussion
• The tables above show the detailed cost breakdown for the 

same join queries on the Cloud data discussed before.
• For the input-size dominated join, it is clearly visible that 

the computation time invested into finding quantiles and 
the corresponding histogram-style partitioning of the join 
matrix pays a great dividend in savings in the join 
computation phase. The savings originate from identifying 
large regions of the join matrix that do not need to be 
covered, dramatically reducing input duplication.

• The measurements also show that at some point the 
benefit of a more fine-grained analysis of the join matrix 
are outweighed by the higher pre-processing cost.

• For the output-size dominated join, the case with a single 
bucket is practically tied for first place with the case where 
the most fine-grained bucketization possible of the matrix 
was applied.
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Extensions
• The presented algorithms were the first thorough 

study of distributed theta-joins. This work 
motivated many follow-up papers by various 
research groups, including
– Multi-way theta-joins between more than two 

relations [Xiaofei Zhang, Lei Chen, and Min Wang. 
Efficient multi-way theta-join processing using 
MapReduce. Proc. VLDB Endowment, pages 1184-
1195, 2012]

– More advanced partitioning algorithms that optimize 
for the weighted sum of input and output [A. 
Vitorovic, M. Elseidy and C. Koch. Load balancing and 
skew resilience for parallel joins.  IEEE ICDE, pp. 313-
324, 2016]
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Next, we explore matrix multiplication, a 
core operation in linear algebra that is 
expensive and relatively easy to 
parallelize. It is an important building 
block in many applications, including 
machine learning algorithms.



Matrix Multiplication and Regression

• Linear algebra is an important mathematical tool 
for data analysis. Equations in linear algebra are 
naturally expressed as manipulations of matrices 
and vectors.

• Recall the graph analysis discussion from an 
earlier module. Problems such as finding paths in 
a graph and computing PageRank can be 
expressed as matrix multiplication problems. This 
module introduces parallel matrix multiplication 
in the context of linear regression, a classic 
method for statistical analysis.
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Linear Regression
• Linear regression is a popular prediction technique. As introduced 

earlier, prediction is a supervised learning method: Given a training 
data set with attributes X1,…,Xd, and Y, a model f:(X1,…,Xd)→Y is 
trained. This function can then be used to predict the unknown 
output y for a given input record (x1,…,xd). For prediction problems, 
Y is a continuous attribute.

• Linear regression is considered a parametric learning technique, 
because its goal is to learn the best parameter values for an expert-
selected function “template.”
– A linear regression function is defined as 𝑓 𝑋1, … , 𝑋𝑛 = 𝜃0 + 𝜃1𝑋1 +
⋯+ 𝜃𝑛𝑋𝑛, written more compactly as Y = 𝜽𝑇𝑿. Output y is a scalar; 
input X and parameter  are n-dimensional vectors.

• Linear regression is more flexible than it may seem. We can 
introduce new input variables that are non-trivial functions of the 
original input attributes, e.g., 𝑋𝑛+1 = 𝑋1

2 + 𝑋2
2 or 𝑋𝑛+2 = 𝑋3𝑋5. 

The training data would be augmented with the corresponding new 
columns, whose values are trivial to compute from the values in the 
original columns.
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Optimal Solution
• The goal of linear regression is to find the vector 𝜽∗

that minimizes squared error σ𝑖=1
𝑚 𝜽𝑇𝒙𝑖 − 𝑦𝑖

2 over 
all training records 𝒙𝑖 , 𝑦𝑖 .

• It has been shown that the optimal solution can be 
computed as 𝜽∗ = 𝑿𝑇𝑿 −1𝑿𝑇𝒚.
– Here 𝑿 is an n-by-d matrix, where the input values of 

training record 𝒙𝑖 make up the i-th row.
– Similarly, 𝐲 is an n-by-1 vector, corresponding to the Y-

column of the training data.
– An example is shown below.
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X1 X2 X3 Y

1 0 5 8

4 2 3 9

Training data

1 0 5

4 2 3

1 4

0 2

5 3

8

9

Matrix X Transposed matrix XT Vector y



Matrix Multiplication
• The formula for the computation of the optimal 

parameter vector 𝜽∗ requires three matrix products
(one of them the multiplication with vector 𝐲), and a 
matrix inversion.

• We will discuss distributed matrix multiplication, but 
first review the basics:
– A u-by-v matrix has u rows and v columns. Multiplying an 

a-by-b with a b-by-c matrix will create an a-by-c matrix.
– The entry in row i and column j of the result matrix is equal 

to the dot product of the i-th row vector of the first matrix 
with the j-th column vector of the second matrix.

• The example below illustrates the matrix product.
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1 0 5

4 2 3

0 1

2 3

4 5

=
1*0+0*2+5*4 = 20 1*1+0*3+5*5 = 26

4*0+2*2+3*4 = 16 4*1+2*3+3*5 = 25



Parallel Matrix Multiplication: Row-by-
Column

• The regular structure of matrices makes it easy to identify opportunities 
for parallelization. Recall that each cell of the result matrix is the dot 
product of a row in the first with a column in the second input matrix. 
Since different rows in the first and columns in the second matrix are 
processed independently, this suggests a row-wise partitioning for the 
former and a column-wise partitioning of the latter:

𝑨𝑩 =

𝑨𝟏
𝑨𝟐
⋮
𝑨𝒓

𝑩𝟏 𝑩𝟐 ⋯ 𝑩𝒄 =

𝑨𝟏 × 𝑩𝟏 𝑨𝟏 × 𝑩𝟐 ⋯ 𝑨𝟏 × 𝑩𝒄

𝑨𝟐 × 𝑩𝟏 𝑨𝟐 × 𝑩𝟐 ⋯ 𝑨𝟐 × 𝑩𝒄

⋮ ⋮ ⋱ ⋮
𝑨𝒓 × 𝑩𝟏 𝑨𝒓 × 𝑩𝟐 ⋯ 𝑨𝒓 × 𝑩𝒄

• Here each 𝑨𝑖 and 𝑩𝑗 is a matrix, containing some of 𝑨’s rows and 𝑩’s 
columns, respectively. Each product 𝑨𝑖𝑩𝑗 can be computed independently.

• Notice the relationship to the relational cross-product, because every 𝑨𝑖
must be multiplied with every 𝑩𝑗. Hence, we can use 1-Bucket-Random to 
compute the final result.
– For best results, let each 𝑨𝑖 and 𝑩𝑗 correspond to a single row or column, 

respectively. This way 1-Bucket works with the finest problem granularity, 
allowing it to better balance load.
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Example for Row-by-Column Partitioning
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Consider AB example
1 0 5

4 2 3

0 1

2 3

4 5

=
20 26

16 25

Leave B as is, but partition A into A1 =                            and A2 =                       .1 0 5 4 2 3

Terms A1B and A2B produce result matrix rows                     and                     :16 2520 26

1 0 5

0 1

2 3

4 5

=

20 26

16 25

1 0 5

4 2 3

20 26

4 2 3

0 1

2 3

4 5

= 16 25



Parallel Matrix Multiplication: Column-by-
Row

• Somewhat less obvious than the row-by-column 
approach, matrix multiplication can also be parallelized 
by partitioning the first matrix by column, and the 
second by row!

• To see why this is possible, note that the value in row i
and column j of the result matrix is equal to 
A[i,0]B[0,j]+A[i,1]B[1,j]+…+A[i,ra]B[cb,j], where ra and cb
are the number of A’s rows and B’s columns, 
respectively. (These numbers have to be identical for 
the matrix product to be defined.) Hence the product 
of column vector A[*,k] and row vector B[k,*] produces 
the individual terms of type A[*,k]B[k,*] needed for the 
summation.

• This idea is best understood through an example.

88



Example for Column-by-Row Partitioning

89

Consider AB example
1 0 5

4 2 3

0 1

2 3

4 5

=

There are three products of A’s column vectors with the corresponding row vectors of B:

1

4
0 1 =

1*0 1*1

4*0 4*1

1*0+0*2+5*4 = 20 1*1+0*3+5*5 = 26

4*0+2*2+3*4 = 16 4*1+2*3+3*5 = 25

0

2
2 3 =

0*2 0*3

2*2 2*3

5

3
4 5 =

5*4 5*5

3*4 3*5

Matrix sum

1*0+0*2+5*4 = 20 1*1+0*3+5*5 = 26

4*0+2*2+3*4 = 16 4*1+2*3+3*5 = 25



MapReduce Algorithm for Column-by-
Row

• The algorithm first performs a distributed equi-join of any 
A[i,x] with any B[y,j], using condition x=y. The 
corresponding product is emitted with key (i,j).

• Another MapReduce job then processes the join output by 
grouping by key and adding all values in each group.

• The program below only shows the join phase. The second 
job is identical to Word Count per result-matrix-cell index.

90

map( matrixID, row, col, val ) {
// Partition A into columns
if (matrixID = A)
emit( col, (matrixID, row, val) )

else  // Partition B into rows
emit( row, (matrixID, col, val) )

}

// Reduce receives entries A[i,k] and B[k,j] for different i and j. It emits
// all products A[i,k]*B[k,j] with key (i,j), because this is the
// contribution for result cell [i,j].
reduce( common_A_col_B_row, [(matrixID, index, val),…] ) {
for each (matrixID, index, val) do
if (matrixID = A) then A_list.add( index, val )
else B_list.add( index, val )

for each Aik in A_list
for each Bkj in B_list
emit( (Aik.index, Bkj.index), Aik.val * Bkj.val )

}



Comparison of Row-by-Column versus 
Column-by-Row

• The main cost of both algorithms is related to the data transfer. It 
strongly depends on the data properties, in particular the 
sparseness of the input matrices and distribution of non-zero values 
over their cells.
– Note that both algorithms work correctly for sparse matrix 

representation when only cells with non-zero value are stored.

• The row-by-column approach uses 1-Bucket, which duplicates the 
different matrix blocks in Map. Assuming p Reduce calls with 𝑝
partitions of A and B each, both A and B would be sent 𝑝 times in 
total from Mappers to Reducers.

• The column-by-row approach does not duplicate data in the Map 
phase. However, its Reducers write out an intermediate result of 
individual contributions to cells in the output matrix. The size of this 
intermediate result depends on the number of A[i,k] and B[k,j] 
values in the input list of each Reduce call for key (i,j). This result is 
also read, then transferred from Mappers to Reducers in the post-
processing job.
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Multiplying a Matrix with its Transpose
• When multiplying a matrix with its transpose, the column-by-row 

approach can be optimized further. Notice that by definition the k-th
column in matrix A is identical to the k-th row of its transpose.

• If matrix A is stored column-wise, all A[*,k]AT[k,*] can already be 
computed in the Mappers, letting the Reducers perform the final 
aggregation step. This eliminates the additional post-processing phase.
– For linear regression, this applies to 𝑿𝑇𝑿. (Since X is stored row-wise, XT is 

stored column-wise.) Term 𝑿𝑇𝒚 can be computed similarly, by emitting all 
XT[*,k]y[k] = X[k,*]y[k], which are all stored in row k of the input matrix, in the 
same Map call. 

• The program for computing the product of a matrix (that is stored column-
wise) and its transpose is shown below.
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// There is only one input matrix. Map reads
// an entire column of it
map( col, [(row, val), (row, val),…] ) {
for each (r1, v1) in valueList
for each (r2, v2) in valueList
emit( (r1, r2), v1 * v2 )

}

// Reduce receives all A[i,k]*B[k,j] for result cell [i,j] and sums them up
reduce( (i,j), [val, val,…] ) {
sum = 0
for each val in input list do
sum += val

emit( (i, j), sum )
}



Matrix Product in Spark
• Spark offers linear algebra operations such as matrix 

product in the MLlib linalg package.
– Both dense and sparse matrix representation are 

supported.

• Take a look at the source code to find out more about 
the underlying implementation. Most likely it uses 
block partitioning.

• In practice, it is not easy to tune block size, even for 
dense matrix operations. We explored this in a 
research paper.
– Rundong Li, Ningfang Mi, Mirek Riedewald, Yizhou Sun, 

and Yi Yao. Abstract Cost Models for Distributed Data-
Intensive Computations. In Distributed and Parallel 
Databases, Springer. 2018 (accepted for publication)
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Matrix Multiplication in Machine Learning

• Many other machine learning techniques can be implemented 
using matrix products, including:
– Locally Weighted Linear Regression
– Naïve Bayes
– Gaussian Discriminative Analysis
– K-means clustering
– Logistic Regression
– Neural Network (for backpropagation)
– Principal Component Analysis
– Independent Component Analysis
– Expectation Maximization (EM) with Mixture of Gaussian as 

underlying model
– Support Vector Machine (SVM) with linear kernel

• For further discussion consult [Chu, Kim, Lin, Yu, Bradski, Ng, and 
Olukotun. Map-Reduce for Machine Learning on Multicore. In Proc. 
of Advances in Neural Information Processing Systems (NIPS), 2006]
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Summary
• When dealing with big data in a distributed system, arguably the 

most important decision is how to partition the data. Partitioning 
should achieve two goals:
– Each task receives a small subset of the data.
– Each task can be performed independently of the others, possibly 

requiring a small amount of data to be exchanged.

• Modeling data partitioning as a matrix or array covering problem 
simplifies algorithm design and enables analysis of algorithm 
properties.

• Randomization plays a key role in transforming a matrix or array 
cover into a parallel algorithm. It can also simplify the process of 
proving properties, in particular lower and upper bounds of costs or 
performance metrics.

• The properties of a matrix or array cover depend heavily on the 
given problem. For example, sometimes region boundaries indicate 
data replication (theta-join), sometimes they do not (frequency 
computation).
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Summary (Cont.)
• The relational equi-join and cross-product pattern 

also appeared in ensemble predictions and 
matrix product, highlighting the general 
importance of joins.

• The matrix-multiplication approaches presented 
in this module support both dense and sparse 
matrix representations (which store only non-
zero cells). The choice depends on sparseness 
and distribution of non-zero values over matrix 
cells. The common problem of multiplying a 
matrix with its own transpose admits a more 
efficient distributed algorithm for column-by-row 
partitioning.
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