
Intelligent Partitioning

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Key Learning Goals
• Write the pseudo-code for the block-partitioning

algorithm for frequency-counting of bird-color
combinations.

• Given a partitioning for the 1-Bucket theta-join
algorithm, determine input and output
replication factors.

• Where is randomization used in the 1-Bucket
theta-join algorithm?

• Write the pseudo-code for matrix multiplication
in MapReduce, when the left matrix is partitioned
horizontally and right matrix is partitioned
vertically.

2

Introduction
• Scalable distributed data processing requires data

to be partitioned and assigned to tasks that can
be executed independently. With more tasks,
each task should receive less data and finish
faster.

• How do we find a good partitioning, analyze its
properties, and reason about its performance?

• We will discuss a general strategy that starts with
the most fine-grained partitioning and then
arranges these partitions into larger tasks. This
process is driven by an optimization goal and
requires well-defined measures of success. It will
be explained for several examples.

3

4

Let us start with an easy problem: relative
frequency counting for bird species and
their colors.

Reminder: “Pairs” and “Stripes”

• The notion of “Pairs” versus “Stripes” surfaced
in the context of the order inversion design
pattern.
– Recall the problem of estimating relative

frequencies for (species, color) data records
reported by citizen scientists. For each species S
and color C, we wanted to compute the ratio f(S,
C)/f(S), i.e., the number of (S, C) pairs divided by
the total number of observations for species S.

• In the discussion below, we only consider the
frequency counting problem for f(S, C).

5

Design Space
• To identify a good partition scheme, we first need to

identify and formalize the space of all possible
partitionings considered.

• For the species-color frequency counting problem, we
identified species and color as possible partitioning
dimensions, hence the most fine-grained partitioning
was at the level of individual species-color
combinations.

• Let |S| and |C| denote the number of different species
and colors, respectively. Partitioning the given problem
requires assigning each of the |S|·|C| possible pairs to
some task responsible for counting it.
– Pairs and Stripes are special cases for doing this.

6

Colors

Sp
ec

ie
s

Frequency Counting using Pairs
• We can model the space of species-color combinations as a

matrix. Each cell, representing the most fine-grained
problem partitioning, corresponds to a desired count.

• The Pairs approach assigns a unique key to each cell. These
keys can then be assigned randomly to tasks. We show the
corresponding algorithm in MapReduce below:
– Map emits a species-color pair with count 1, aggregating the

counts in Reduce. Combining should be applied if the probability
of encountering the same (species, color) combination multiple
times in a file split is high enough.

7

map(species S, color C)
emit((S, C), 1)

reduce((S, C), [n1, n2,…]) {
frequency = 0

for all n in input list do
frequency += n

emit((S, C), frequency)
}

Sp
ec

ie
s

Colors

Frequency Counting using Stripes
• The Stripes approach groups cells in the same row together.

It assigns the same key to each cell in the same row, but
different keys to different rows. These keys are assigned
randomly to Reduce tasks.

• To achieve this partitioning, the algorithm uses only the
species as the key. Since each Reduce call now works with
an entire row, a hash map data structure is used to keep
track of the individual matrix cells in the row.

8

map(species S, color C)
emit(S, (C, 1))

reduce(S , [(C1, n1), (C2, n2),…]) {

// H maps a color to a count
initialize hashMap H
for all (C, n) in input list do

H[C] += n

for all C in H do
emit((S, C), H[C])

}

Comparison of Pairs versus Stripes
• Combining: Both approaches can use Combiners and in-

mapper combining.
• Code complexity: The Reduce code for Pairs is simpler and

easier to understand.
• Key space: Pairs manages O(|S|·|C|) intermediate keys,

Stripes only O(|S|). This does not affect the overhead for
the application master (which depends on the number of
tasks) but results in more Reduce function calls for Pairs. On
the other hand, each Reduce call for Stripes will be more
expensive. Sorting cost during the shuffle phase might be
slightly lower for Stripes as sorting requirements are
weaker.
– Consider records (duck, red), (duck, green), and (duck, blue). For

Pairs, they are re-ordered to (duck, blue), (duck, green), (duck,
red); assuming colors are sorted alphabetically. For Stripes, the
order does not matter, because all have the same key “duck.”

9

Comparison of Pairs versus Stripes (cont.)

• Memory: The Map functions of both approaches do
not use any local variables. Pairs’ Reduce function
requires a single variable, while Stripes’ Reduce must
maintain a data structure of size O(|C|). While not an
issue for the example, in general the size of the data
structure could exceed available memory, requiring
more complex user code for managing it on disk.

• Load balancing: The more fine-grained keys in Pairs
allow for greater flexibility in distributing load through
use of an appropriate Partitioner. In particular, Pairs
can emulate Stripes’ row-wise approach by using a
Partitioner that ignores the column value of a record.
On the other hand, Stripes cannot always emulate
Pairs, e.g., if Pairs assigns cells in the same row to
different Reduce tasks.

10

Beyond Pairs and Stripes
• Are there ways other than Pairs and Stripes to partition

the frequency-counting problem? Indeed, it is easy to
find such strategies if we approach it as a matrix-
covering problem.
– Each matrix cell corresponds to a value of interest—the

number of occurrences of a species-color combination—
and therefore each matrix cell needs to be computed by
some function call in a task. We can model this by
assigning each matrix cell to exactly one of r tasks. Stated
differently, the matrix needs to be completely covered by r
regions, each corresponding to a different task.

• The best cover should be selected depending on data
distribution and computation task.

• This approach generalizes beyond matrices to arrays
with more than two dimensions.

11

Other Cover Examples

12

Colors

Sp
ec

ie
s

“Block”-pattern partitioning: The partitioning is based on
groups of related species and colors. E.g., the top half could
be birds of prey, while the bottom are other species; and the
right half could be earthy colors, while the left are other
colors.

Colors

Sp
ec

ie
s

Partitioning of a three-dimensional array: A “Stripe”-
style approach is applied to records with three fields
(species, color, region). Here each Reduce function
call processes one or more regions entirely.

Evaluating a Matrix Cover
• The matrix cover directly reveals important properties

of the partitioning.
• Partitioning granularity determines the number of

distinct keys and hence Reduce function calls.
• For problems requiring data from multiple matrix cells

during a computation, it is easy to check if that
information will be available in a Reduce call.
– Recall the relative-frequency computation problem where

for each bird species S and color C, the goal was to
compute f(S, C) / f(S). Stripes worked very well for that
problem, because both f(S) and each f(S, C) could be
computed from the stripe for species S. For Pairs it was
necessary to use the order inversion design pattern to pass
all data needed for computing f(S) to each Reducer
computing some f(S, C).

13

Evaluating a Matrix Cover (cont.)

• Knowing the approximate data distribution,
we can estimate how much data each
partition receives. This in turn can be used to
evaluate possible load-balancing challenges.

– In general, the most fine-grained partitioning, i.e.,
Pairs in the example, provides the greatest
flexibility in assigning work evenly to Reduce tasks.
For coarser partitioning schemes, e.g., Stripes in
the example, one can estimate the data size
assigned to each partition and determine if
balanced assignment to Reduce tasks is possible.

14

From Matrix Cover to Algorithm
• Given a matrix cover, two challenges need to be

addressed to derive the corresponding
distributed algorithm:
– Choice of keys: Each partition should have a unique

key, such that all input records in that region are
associated with this key.

– Assigning keys to tasks: This is done by the Partitioner.
For a random assignment, we can rely on the default
hash Partitioner. If the data is very skewed, i.e., the
amount of work varies significantly between different
keys, one should use a more fine-grained partitioning
or design a custom Partitioner to balance load.

• Let us look at two MapReduce examples next.

15

16

Colors

Sp
ec

ie
s

To assign multiple species and colors to a “block” partition, the Map
function needs to check if species and color of the input record fall into
the corresponding range. For hierarchical attributes, this can be
achieved by using a higher-order concept as the key. For instance, bird
species belong to bird families, hence for records (species, family,
color), one can use family as the key to create blocks of rows. As a
fallback, one can use synthetic region keys:

Colors
Sp

ec
ie

s

It is trivial to achieve this partitioning by selecting species as the key.

map(species S, color C) {
if ((S = species0 OR S = species1) AND (C = color0 OR C = color1))
emit(0, (S,C)) // Upper left region

else if ((S = species0 OR S = species1) AND (C = color2 OR C = color3))
emit(1, (S,C)) // Upper right region

else if ((S = species2 OR S = species3) AND (C = color0 OR C = color1))
emit(2, (S,C)) // Lower left region

else if ((S = species2 OR S = species3) AND (C = color2 OR C = color3))
emit(3, (S,C)) // Lower right region

}

Block Partitioning Notes
• Instead of the clumsy if-then-else statements, the

regions can be encoded more elegantly as a sequence
of ranges in each dimension. Binary search on those
ranges will efficiently determine all relevant region
identifiers.
– Recall the discussion of range partitioning for sorting, and

the TotalOrderPartitioner in MapReduce in particular.

• This block partitioning addresses the problem of
choosing the right dummy colors for the order
inversion solution, when we want to split on the color
dimension.
– We create one dummy color for every block, i.e., for each

input record (S, C), we also assign (S, dummyi) to each
block i.

17

“Randomized” Block Partitioning
• Finding good ranges to define the blocks requires knowledge about the input data

distribution. Can we avoid this? Yes! Consider 2-by-2 blocks, but without pre-
defined ranges. Instead, we use a hash function HS to map a species to “up” vs
“down” and another hash function HC to map a color to “left” vs “right.”

• In general, consider a partitioning with A rows and B columns. For input (s, c), Map
emits value (s, c) with key (HS(s) mod A, HC(c) mod B). Then frequency f(s, c) is
computed by the corresponding Reduce call.

• Hash functions assign species and colors “randomly” to row and column blocks but
guarantee that the same species will always end up in the same row (similarly for
colors and columns). This is important for correctness: if the same species-color
combinations end up in different blocks, then they cannot be correctly totaled.

• Note that partitioning here did not introduce data duplication. For problems with
different semantics, e.g., theta-joins, this will change.

18

Colors

Sp
ec

ie
s

A-by-B block partitioning for A=2, B=2.

Partitioning in Spark
• (Pair) RDDs also support custom Partitioners,

hence the algorithms carry over from
MapReduce.

• DataSet and DataFrame currently do not support
custom Partitioners, leaving this choice to an
automatic optimizer.
– What can we do here as a programmer trying to

control partitioning? Using map(), we can assign
custom keys to the rows of a DataSet, encoding
regions of a partitioning. Then groupBy() on that key
column, together with the appropriate “aggregate”
function can process the region.

19

20

Now we move on to a more challenging
operation: the theta-join.

Theta-Joins
• The idea of modeling partitioning as a matrix- or array-

covering problem is very general. To illustrate this
point, we show how it can be applied to theta-joins.
Here all region keys are synthetic and have nothing to
do with the values occurring in input tuples.

• Despite the same basic idea of matrix covering, the
different nature of the join problem will affect the
analysis of the resulting algorithms.

• This discussion is based on a paper published by Prof.
Riedewald’s research group [A. Okcan and M.
Riedewald. Processing Theta-Joins using MapReduce.
In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 949-960, 2011]

21

Problem Definition
• Earlier we discussed distributed equi-joins, a special type of

theta-join. A general theta-join is defined as follows:
– Given two data sets S={s1, s2,…} and T={t1, t2,...}, find all pairs (si,

tj) that satisfy some predicate P(si, tj) over the values of the
attributes of the S-tuple and T-tuple.

• One of the most common types of non-equi theta-joins are
those with inequality conditions. For example, two
weather data sets could be joined to find pairs of
observation records that are “near” each other in space
and time. Similarly, an ornithologist might be interested in
finding bird species with similar or opposite observation-
probability trends in some region.

• Our goal is to partition any given theta-join computation
such that job completion time on a given number of worker
machines is minimized. (Alternative goals, e.g., maximizing
throughput, are not considered here.)

22

Theta-Join Example: Habitat Competition

• Assume ornithologists created a large database of summaries showing the
association between some variable(s), e.g., the year, and the probability of
observing a species in some region. A pair of such summaries is of
interest, if (1) the summaries are for different species, (2) they cover the
same region and variable of interest (year in the example), and (3) the
trends are very different.
– In the example, both species show an interesting bi-annual trend, with one

species peaking in even years and the other in odd years.

• Such pairs of related summaries help the ornithologists discover
hypotheses about potential habitat competition.

23

Challenges
• The join techniques discussed so far suffer from severe

limitations in the context of theta-joins:
– Partition+broadcast can check each S-tuple against all tuples in T

(which is broadcast to all tasks) to find the matching pairs (si, tj).
While this enables it to implement any theta-join, it will only be
efficient if T is small—ideally fitting in memory.

– Hash+shuffle works well when both inputs are big, but it neither
generalizes beyond equi-joins nor scales well for join attributes
with a small domain or heavily skewed input distribution.

• To minimize job completion time, we want a partitioning
that minimizes the amount of work assigned to the
machine doing the most work. (This machine determines
the end of the job!)

• The matrix-cover idea will prove useful for reasoning about
this problem and possible solutions.

24

Theta-Join Matrix
• Recall that any theta-join is a subset of the Cartesian

product S×T, which combines each tuple from S with
each tuple from T. Hence any theta-join can be
represented by a matrix M with |S| rows (one for each
S-tuple) and |T| columns (one for each T-tuple).
– Matrix cell M(i, j) corresponds to the pair (si, tj). Its value is

“true” if (si, tj) satisfies the join predicate, i.e., is a join
result; and “false” otherwise.

25
M(2,5)

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A = T.A

S
5 7 7 7 8 9

7

5

7

8

9

9

T

abs(S.A - T.A) < 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A >= T.A
M(2,1)

Discussion of the Example
• In the above example, S and T have a column named A and

values S={5, 7, 7, 8, 9, 9} and T={5, 7, 7, 7, 8, 9}. Note that
both are multi-sets, i.e., might contain the same tuple
multiple times.

• The left matrix represents equi-join S.A = T.A. Cell M(2,1)
corresponds to pair (7, 5), which are the second S-tuple and
the first T-tuple, respectively. Since 7 is not equal to 5, the
pair does not belong to the join result and hence the matrix
cell’s value is “false.” Cells with value “false” are not
shaded, while those with value “true” are shaded. For
instance, M(1,1) in the upper left corner corresponds to
matching pair (5, 5) and hence is shaded.

• The example in the center represents a band-join searching
for pairs with similar values.

• The example on the right shows a join with an inequality
predicate.

26

Join Matrix in Practice
• The join matrix as discussed so far encodes the exact

join result. If it was available from the start, then we
would not need to execute the join—the result would
be readily available in the matrix.

• Hence a practical join algorithm cannot use the join
matrix. Why do we need it then?
– For algorithm analysis: Matrix properties determine

algorithm properties and performance, no matter if the
algorithm knows the matrix.

– If the algorithm needs matrix statistics, e.g., the number of
input and output tuples in a region, we can design
techniques to estimate them. Here we must ensure that
estimation cost is negligible compared to “inherent” join
cost. E.g., it does not make sense to spend 1 hour on
estimating matrix statistics if a simple partition+broadcast
implementation computes the join in 10 minutes.

27

Matrix Cover
• We now explain how a cover of join matrix M defines a distributed

theta-join algorithm. The discussion uses MapReduce terminology
for simplicity; the same ideas extend to Spark.

• Consider output pair (s2=7, t1=5) in cell M(2,1) for join S.A >= T.A
and assume it is emitted by the Reduce call for some key K. We say
“key K covers M(2,1)” or “the Reduce call for K covers M(2,1).”

• For a Reduce call to emit (s2, t1), it needs s2 and t1. Hence Map must
emit these input tuples with key K.

• Putting things together, we observe that every “true”-valued cell in
M must be covered by some key, which determines the input tuples
sent to the corresponding Reduce call.

• “False”-valued cells need not be covered but covering them does
not jeopardize correctness: The Reduce call can verify the join
condition and remove input-tuple pairs that violate the join
condition.

28

Covering Candidate Cells
• How does the algorithm know which matrix cells to

cover if it does not know the join matrix? It “plays it
safe” by ensuring that some easy-to-find superset of
the “true”-valued cells is covered. We refer to this
superset as candidate cells.

• What if we declare the entire join matrix as candidate
cells? This guarantees correctness but may cause
performance degradation when many “false”-valued
cells are covered.
– Covering such a cell causes extra duplication for sending

the corresponding input tuples to Reducers.
– It also causes extra computation in Reduce for checking

and removing the pair.

• Ideally, only a few “false”-valued join-matrix cells are
covered.

29

Non-Overlapping Cover
• We established that each “true”-valued join-matrix cell must be

covered by at least 1 key, but what if it is covered by multiple keys?
That causes undesirable output duplicates.
– Consider s2=7, s3=7, and t2=7. Pairs (s2, t2) = (7, 7) and (s3, t2) = (7, 7)

look the same, but are not duplicates, because they are produced by
two distinct S-tuples. On the other hand, emitting (s2, t2) more than
once is undesirable, because the output would contain additional (7,
7) tuples that should not be there.

• Undesirable output duplicates could be removed in post-
processing, but there are drawbacks:
– Duplicate elimination is expensive.
– To determine if identical-looking output tuples are “undesirable,”

additional provenance information must be attached to each output
tuple, increasing output size.

– Operators processing the join output, e.g., to count the number of
output tuples, cannot be pushed into the Reduce phase of the join.

• For these reasons, we focus on non-overlapping covers, where no
matrix cell is covered by more than 1 key.

30

Matrix-Cover Cost Model
• For a given join problem, there could be many ways to

cover (a superset of) all “true”-valued join-matrix cells with
non-overlapping regions. How do we select the best?

• We need a cost model that quantifies the relationship
between matrix-cover properties and running time.

• Even for a given data partitioning, it is difficult to accurately
predict running time of a distributed computation. In
addition, we must explore the space of all possible
partitionings to find the matrix cover with the minimal
running time. We therefore strive for a cost model that
balances simplicity/robustness and accuracy. For more
information, look at work by Prof. Riedewald’s research
group [R. Li, N. Mi, M. Riedewald, Y. Sun, and Y. Yao.
Abstract Cost Models for Distributed Data-Intensive
Computations. In Distributed and Parallel Databases, 37(3):
411-439, Springer, 2019].

31

Cost-Model Derivation
• We now derive a simple cost model that enables strong analytical results,

while also being sufficiently accurate.
• First notice that any MapReduce theta-join implementation must read the

input from HDFS into Mappers and write the output back from Reducers
to HDFS. Since these costs do not depend on the partitioning strategy, i.e.,
the matrix cover, they do not help us determine the winner and we
therefore ignore them.

• Reducers perform the actual join work, while Mappers just duplicate and
shuffle the input to the Reduce calls. Hence we will focus on the cost of
the Reduce phase.

• The matrix cover also impacts the number of input copies emitted by
Mappers and the cost for shuffling them. We argue that those costs are
sufficiently accounted for by the Reduce-phase analysis:
– Workload in the Map phase tends to be well balanced due to dynamic load

balancing. Hence Map-phase duration differences for different matrix covers
depend on the total number of input duplicates. Similarly, total shuffle time
differences depend on the total number of input duplicates caused by a matrix
cover.

– All input duplicates are processed by Reducers, hence their impact is reflected
there.

32

Reducer-Centric Cost Model
• Clearly, our Reducer-centric cost analysis abstracts away certain aspects,

e.g., the impact of a slow network on shuffle time. Hence it is important to
perform a thorough empirical evaluation on realistic data and hardware to
prove the effectiveness of the approach.

• The advantage of a simple (yet sufficiently accurate) cost model is that it
enables strong analytical results, e.g., optimality proofs. To get there, we
make one more (slightly) simplifying assumption: More input a worker
processes and more output it generates, the longer it will take. This will
generally hold for theta-joins in practice, because it takes longer to match
larger inputs and produce larger outputs.

• Putting things together, it now is clear that to minimize running time in
this cost model, we need to minimize the amount of input and output
assigned to each worker. We use max-input and max-output to refer to the
largest input any worker receives and the largest output any worker
produces, respectively.

• For simplicity and without loss of generality, we assume each worker
receives at most 1 Reduce task. This way analyzing a Reduce task directly
reveals input and output for the corresponding worker.
– Multiple Reduce tasks assigned to the same worker can be grouped into an

equivalent single one by changing the Partitioner accordingly.

33

34

Let us look at example covers to better
understand the tradeoffs.

35

5

7

8

9

3

3

3

2

2

1

1

1

1

2 3

2
1

Input: S2,S3,S4,S6
T3,T4,T5,T6

Output: 4 tuples

Input: S2,S3,S5
T2,T4,T6

Output: 3 tuples

R3: key 3
Input: S1,S2,S3

T1,T2,T3
Output: 3 tuples

max-reducer-input = 8

R1: key 1

R2: key 2

max-reducer-output = 4

S1,S4
T1,T5
2 tuples

Input: S2,S3
T2,T3,T4

Output: 6 tuples

R3: key 9
Input: S5,S6

T6
Output: 2 tuples

R2: key 7

R1: keys 5,8

Output:

Input:

max-reducer-input = 5
max-reducer-output = 6

R1: key 1
Input: S1,S2,S3

T1,T2
Output: 3 tuples

Input: S2,S3
T3,T4

Output: 4 tuples

R3: key 3
Input: S4,S5,S6

T5,T6
Output: 3 tuples

max-reducer-input = 5
max-reducer-output = 4

R2: key 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T

key

Hash+shuffle Join: Random Assignment: Balanced Algorithm:

Explanation of The Example
• The left cover corresponds to hash+shuffle, using the join attribute as key

and resulting in 4 regions. To create 3 Reduce tasks, keys 5 and 8 are
assigned to Reducer R1, key 7 to R2, and key 9 to R3. R2 joins the input
tuples with value 7—three from S and two from T. Hence R2 receives 5
input tuples and produces 6 output tuples; the other Reducers perform
significantly less work. This load imbalance is caused by data skew, in
particular by the frequent occurrence of join value 7.

• What if we assigned keys randomly to “true”-valued cells to address the
skew problem as shown in the middle cover? This lowers max-reducer-
output to 4, which is optimal, but increases max-reducer-input due to
excessive duplication. For example, s2=7 is sent to all Reducers, because it
is needed for cells marked with keys 1, 2, and 3 in the second row.
– In practice, the algorithm would cover more candidate cells, further increasing

input duplication. It also needs to prevent a somewhat subtle output
duplication. E.g., Reducer R3 receives s2=7, s3=7, t2=7, and t3=7, but should not
output (s2, t2) (M(2,2) is assigned to R2) and (s3, t3) (M(3,3) is assigned to R1).

• The best solution is shown on the right. Even though some “false”-valued
cells are covered unnecessarily, the cover achieves max-reducer-input as
low as hash+shuffle, and at the same time max-reducer-output as low as
the random assignment. We want to find such covers.

36

From Matrix Cover to Algorithm
• Before discussing how to find optimal matrix covers, we first

establish how a cover can be converted to a distributed algorithm.
To avoid the subtle output-duplication problem of the example
cover in the center, we require key regions to be rectangles.

• If we cover the entire matrix with non-overlapping rectangles, then
a simple randomized 2-round algorithm can compute any theta-
join:
– In round 1, each task receives the cover information. For an S-tuple s,

it selects a random matrix row and sends a copy of s to all cover
regions intersecting that row. (It analogously selects a random column
for each T-tuple.)

– The data is shuffled to group it by region. Then tasks in round 2
compute the join in each region separately. This local computation can
leverage existing libraries of efficient (non-parallel) join
implementations, e.g., index-based approaches for equi-join and
inequality joins.

• We will refer to this algorithm as Basic-Theta. Its MapReduce
implementation is discussed next.

37

38

Class Mapper {
// A Cover of the entire join matrix
Cover

setup() { Cover = load covering information from file cache }

map(tuple x) {
if (x is from S) {

// Select a random row of the matrix
matrixRow = random(1, |S|)

// Find all regions intersecting this row and emit x with their keys
for each regionID in Cover.getRegions(matrixRow)
emit(regionID, (x, “S”))

}
else { // x is from T

// Select a random column of the matrix
matrixCol = random(1, |T|)

// Find all regions intersecting this column and emit x with their keys
for each regionID in Cover.getRegions(matrixCol)
emit(regionID, (x, “T”))

}
}

}

Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

Example cover

39

reduce(regionID, [(x1, flag1), (x2, flag2),…]) {
initialize S_list and T_list

// Separate the input list by the data set the tuples came from
for all (x, flag) in input list do

if (flag = “S”)
S_list.add(x)

else
T_list.add(x)

// Any appropriate (non-parallel) join implementation can be used to join S_list and T_list
joinResult = myFavoriteJoinAlgorithm(S_list, T_list)
for each tuple t in joinResult

emit(t)
}

Algorithm Correctness
• Since each cell is covered by exactly one key, it is easy to show that

the algorithm correctly implements any theta-join.
• Consider output tuple (si, tj). Inputs si and tj are assigned to a

random row and column, respectively. This row and column
intersect in exactly one matrix cell, which is covered by exactly one
key. That Reduce call receives both tuples and can compute the
result pair. Since no other Reduce call receives both tuples, this
result will not be produced anywhere else.
– The example illustrates this argument for tuples s1 and t1. The

randomly selected row and column intersect in region 2, hence the
Reduce call for key 2 produces the output.

40

Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

Implementation in Spark
• The matrix cover can be broadcast or passed by the driver

to all tasks. In practice matrix-cover information is small.

• In a pair RDD implementation, a flatMap call creates the
input tuple duplicates and adds the region ID as the key;
processing each input RDD separately.

• Then aggregateByKey produces pair RDDs with schema
(regionID, listOfRecordsInRegion) for each input separately.

• Finally, we join the two grouped inputs on regionID and
map the value component to the join result in the region.
– Note that the regionID key is associated with a pair of lists—the

input tuples from left and right input, respectively, in the region.

• The DataSet-based implementation is analogous.

41

Why Randomization?
• Why do we assign each S-tuple si to a random row, instead of “correct” row i? (The

same applies to T-tuples and columns.) Randomization is a powerful tool:
• Reason 1: simpler algorithm

– Mappers do not know the “correct” row of an input tuple. In the example, tuple s4 = 8 could
belong to row 1 if there are no smaller values; or it could be in row 6 if it is the greatest value.
A pre-processing step would have to add row and column numbers.

– By removing the one-to-one correspondence between input tuples and rows/columns, the
join matrix does not need |S| by |T| cells and could be much smaller as shown below.

• Reason 2: performance
– Avoiding the pre-processing for determining the “correct” row/column lowers cost.
– Randomization effectively addresses skew. As the examples illustrated, “true”-valued cells

could be clustered in some region of the join matrix. A key covering such a dense region would
produce an overly large share of the output. Randomizing rows and columns shuffles the
“true”-valued cells around in the matrix, balancing load across regions.

– Even though randomization could in theory result in poor load distribution, e.g., if all S-tuples
are randomly assigned to the same row, the probability of this to happen is very low in
practice, especially for big data. Using Chernoff bounds, we can show that for big data the
probability of a Reduce call receiving 5% or more over its target input share is virtually zero.

42

1 2

3 4
Both matrices describe the same covering: each of the four
Reduce calls receives 50% of S and 50% of T. The right
matrix expresses this with one fourth the number of cells
compared to the one on the left.

Optimal Cover: Entire Matrix
• We established earlier that any cover of the entire join

matrix using non-overlapping rectangles guarantees
correctness for any theta-join implementation.

• However, there are many possible such matrix covers.
Given r, the desired number of regions, our goal is to
find the optimal cover.

• We will demonstrate the power of the matrix covering
approach by discussing how it allows us to derive lower
bounds. Then we introduce the 1-Bucket-Random
algorithm. This algorithm often comes close to the
lower bounds and only needs minimal information
about the input data. Hence it is often the best
possible solution for computing a given theta-join.

43

Ideal Cover: Squares
• Lemma 1: A region that covers c cells of join matrix M

will receive at least 2 𝑐 input tuples.

• Proof:
– Consider a region receiving x S-tuples {s1, s2,…, sx} and y T-

tuples {t1, t2,…, ty}. This region can cover at most x·y matrix
cells, corresponding to all combinations (xi, yj), 1≤i≤x,
1≤j≤y. To cover c cells, it must hold that x·y≥c.

– From (x-y)2≥0 and x·y≥c, we derive x2+y2≥2xy≥2c.

– Now consider (x+y)2=x2+y2+2xy. From the above follows
that (x+y)2≥2c+2c=4c, therefore 𝑥 + 𝑦 ≥ 2 𝑐.

• Note that if c is a perfect square, then a square-shaped
region of 𝑐 by 𝑐 rows and columns matches the
lower bound established by the lemma.

44

Lower Bounds: Cartesian Product
• Consider Cartesian product S×T, i.e., every matrix cell belongs to the

output. We assign exactly 1 key to each Reduce task. (Assigning multiple
keys to a Reduce task causes unnecessary input duplication.)

• Max-reducer-output: The matrix consists of |S|·|T| cells. Max-reducer-
output is minimized if each of the r keys covers the same number of cells,
i.e., |S||T|/r.

• Max-reducer-input: Lemma 1 implies that covering |S||T|/r matrix cells
requires sending at least 2 𝑆 ∙ 𝑇 /𝑟 input tuples to the Reducer.

• Is it possible to match these lower bounds in practice?
– Yes, depending on the values of |S|, |T|, and r. For example, let |S|=4000,

T=6000, and r=6. Each key would cover a square of 2000 by 2000 cells,
corresponding to a 2-by-3 grid partitioning of the matrix. Unfortunately, things
do not work out this well for other combinations of |S|, |T|, and r, e.g.,
|S|=3000, |T|=8000, and r=6.

• This raises the question how close we can get to the lower bounds for any
given combination of |S|, |T|, and r.

45Partitioning matching the lower bound for |S|=4000, |T|=6000, and r=6.

Extreme Case: Small-vs-Large
• Consider the case where one input is more than r times

bigger than the other. Without loss of generality, let
|S| < |T|/r. Even though the lower bounds for max-
reducer-input and max-reducer-output cannot be
matched in this case, it is easy to show that the optimal
partitioning consists of regions of size |S| rows by
|T|/r columns.
– This partitioning corresponds to the partition+broadcast

algorithm: The entire input S is broadcast to all workers,
who join it with a partition of the larger input T.

46

“Idealistic” square region
S

T

Actual optimal region
S

T

Non-Extreme Case
• Consider the remaining case where |T|/r |S| |T|.

– This implies 𝑆 𝑇 /𝑟 ≤ |𝑆| ≤ |𝑇|.

• For ease of exposition, let K= 𝑆 𝑇 /𝑟 for this
discussion.

• For some combinations of |S|, |T|, and r it is not
possible to cover the matrix with r regions of K by K
cells.

47

Ideal square region
of size K by K

S

T
In this example for r=9, only six
K-by-K squares fit into the
matrix. The remaining three
squares together contain as
many cells as the “leftover” of
the matrix, but cannot cover
this leftover due to its shape.

Non-Extreme Case (Cont.)
• Whenever the matrix cannot be covered by r K-by-K

squares, we conceptually “inflate” the regions so that a
complete cover is achieved.

• This approach wastes some of the regions (those
Reduce tasks receive no data), while assigning more
work to the others. (Larger regions imply more input
and output for those Reducers.)

• Despite this “waste”, one can still prove good
properties for the algorithm.

48

Only 6 of the 9 K-by-K squares “fit”. The “inflated” 6 regions cover the matrix.

“Wasted” regions.

Non-Extreme Case (Cont.)
• Formally, the cover with inflated regions is created by

partitioning the join matrix into a regular grid of

A =
|𝑆|

|𝑇|
𝑟 by B =

|𝑇|

|𝑆|
𝑟 identical regions.

• It is easy to show that A·B ≤ r, therefore this cover does
not use more than the desired number of regions.

• But how much worse are max-reducer-input and max-
reducer-output for this cover? After all, it uses
potentially fewer than r regions, and each of them is
inflated to a larger size.

49

Assume that r = 9 and that T has 50% more tuples than S, i.e.,

|S|/|T|=2/3. Then 𝐴 = 6 = 2 and B = 13.5 = 3. Hence

the join matrix is partitioned into 2 by 3 regions, each of size |S|/2
by |T|/3.

Non-Extreme Case (Cont.)
• Upper bound for max-reducer-output: Recall the

lower bound |S||T|/r.

– Each partition consists of S /
|𝑆|

|𝑇|
𝑟 by T /

|𝑇|

|𝑆|
𝑟

cells.

– Since A =
|𝑆|

|𝑇|
𝑟 is obtained by rounding down

|𝑆|

|𝑇|
𝑟, it holds that

|𝑆|

|𝑇|
𝑟 >

𝐴

𝐴+1

|𝑆|

|𝑇|
𝑟.

– This in turn implies
S

𝑆

𝑇
𝑟

<
|𝑆|

𝐴

𝐴+1

|𝑆|

|𝑇|
𝑟
=

𝐴+1

𝐴
𝑆 𝑇 /𝑟.

50

Non-Extreme Case (Cont.)
• We can show similarly that

T

𝑇

𝑆
𝑟

<
𝐵+1

𝐵
𝑆 𝑇 /𝑟.

• Hence the number of cells covered by an inflated region is
less than

𝐴+1

𝐴
𝑆 𝑇 /𝑟

𝐵+1

𝐵
𝑆 𝑇 /𝑟 =

(𝐴+1)(𝐵+1)

𝐴∙𝐵
𝑆 𝑇 /𝑟.

• For the non-extreme case, 𝐴, 𝐵 ≥ 1 and hence (𝐴 +
1)(𝐵 + 1)/(𝐴𝐵) ≤ 4. Stated differently, the upper bound
of max-reducer-output for the partitioning with inflated
regions is less than 4 times the lower bound.
– With increasing 𝑟, 𝐴 and 𝐵 increase, which further improves the

guarantee. For example, for 𝐴, 𝐵 ≥ 10, (A + 1)(B + 1)/(AB) ≤
1.21, i.e., the upper bound of max-reducer-output is within 21%
of the lower bound! This is good news, because in practice r
tends to be large when using more workers.

51

Non-Extreme Case (Cont.)

• Upper bound for max-reducer-input: Recall

the lower bound 2 𝑆 𝑇 /𝑟.

– From the analysis above also follows that each

region receives less than
𝐴+1

𝐴
𝑆 𝑇 /𝑟 +

𝐵+1

𝐵
𝑆 𝑇 /𝑟 = (2 +

1

𝐴
+

1

𝐵
) 𝑆 𝑇 /𝑟 input

tuples. Stated differently, it receives less than
twice the lower bound. For larger r, and hence
larger A and B, the upper bound will be very close
to the lower bound.

52

1-Bucket-Random
• The 1-Bucket-Random algorithm, or 1-Bucket for short, is

based on the analytical results for lower and upper bounds.
For the results to apply, it sets r to the number of worker
machines and assigns a single key to each Reduce task.

• 1-Bucket-Random can implement any theta-join and it
requires only minimal statistics: the size of S and T. This
corresponds to a histogram capturing the frequency
distribution of values in a dataset using a single bucket—
hence the name.

• It actually suffices to know the ratio 𝑆 /|𝑇|:
– Assume without loss of generality |𝑆| ≤ |𝑇| and let 𝐶 = 𝑆 /|𝑇|.
– If 𝐶 < 1/𝑟, then set 𝐴 = 1 and 𝐵 = 𝑟.

– Otherwise, i.e., if 𝐶 ≥ 1/𝑟, set A = 𝐶 ∙ 𝑟 and B = 𝐶−1 ∙ 𝑟 .

53

1-Bucket-Random: Map

54

Partitioning for A=2 and
B=3. The numbers indicate
the region keys.

map(…, tuple x) {
if (x is from S) {

// Select a random integer from range [0,…, A-1]
row = random(0, A-1)

// Emit the tuple for all regions in the selected “row”.
for key = (row * B) to (row * B + B – 1)

emit(key, (x, “S”))
}
else { // x is from T

// Select a random integer from range [0,…, B-1]
col = random(0, B-1)

// Emit the tuple for all regions in the selected “column”.
// This requires skipping B region numbers forward from
// start region key equal to col.
for key = col to ((A-1)*B + col) step B

emit(key, (x, “T”))
}

}

0 1 2

3 4 5

Note that Map does not need
the matrix cover any more. It can
compute A and B on-the-fly from
r and |S|/|T|.

1-Bucket-Random: Reduce

55

reduce(regionID, [(x1, flag1), (x2, flag2),…]) {
initialize S_list and T_list

// Separate the input list by the data set the
// tuples came from
for all (x, flag) in input list do

if (flag = “S”)
S_list.add(x)

else
T_list.add(x)

// Any appropriate (non-parallel) join implementation
// can be used to join S_list and T_list
joinResult = myFavoriteJoinAlgorithm(S_list, T_list)
for each tuple t in joinResult

emit(t)
}

This reduce function is identical
to Basic-Theta, the generic
version of the algorithm shown
earlier.

Implementation in Spark
• This program is identical to the version presented for Basic-

Theta. We only change the function assigning keys to input-
tuple duplicates in flatMap.
– Instead of an actual matrix cover, only the values A and B are

passed to all tasks.

• For the pair RDD implementation, a flatMap call creates the
tuple duplicates and adds the region ID as the key;
processing each input RDD separately.

• Then aggregateByKey produces pair RDDs with schema
(regionID, listOfRecordsInRegion) for each input separately.

• Finally, we join the two grouped inputs on regionID and
map the value component to the join result in the region.
– Note that the regionID key is associated with a pair of lists—the

input tuples from left and right input, respectively, in the region.

• The DataSet program is analogous.

56

1-Bucket Analysis: Cartesian Product
• 1-Bucket relies on the matrix cover used in the analysis of lower

and upper bounds. The analytical results guarantee that each
Reduce call receives close to the optimal amount of input and is
responsible for producing close to the optimal amount of output.
By assigning exactly one key to each Reduce task and exactly one
Reduce task to each worker, these guarantees extend to max-input
and max-output for the worker machines.

• The guarantees are stronger for larger r. Hence for big-data
applications running on 100 or more machines, 1-Bucket distributes
work in a near-optimal manner.
– These guarantees are probabilistic, due to the random assignment of

input tuples to matrix rows and columns. However, for big data, the
probability of a “bad” assignment is virtually zero.

• While 1-Bucket-Random achieves near-optimal work assignment for
the Cartesian product, many joins in practice compute a much
smaller output. How well does the algorithm perform for those
joins?

57

1-Bucket Analysis: Output-Dominated Joins

• Consider joins where the output is much larger than
the input, e.g., 100 times larger.

• For these joins, the time for producing the output and
writing it to the distributed file system dominates the
total job execution time. Hence one should minimize
max-reducer-output.

• The above analytical results show that each region of
the matrix cover contains a near-optimal number of
cells. Since input tuples are randomly assigned to
matrix rows and columns, this implies that on
expectation each of these regions will produce a near-
optimal number of output tuples. Experimental results
show that this is indeed the case in practice.
– Stated differently, for output-dominated joins, 1-Bucket

will also achieve a near-optimal assignment of work.

58

1-Bucket Analysis: Input-Dominated Joins

• For joins whose output is smaller or not much larger than the input,
1-Bucket will also perform a near-optimal assignment of output-
related work. However, this is irrelevant because input-related costs
dominate, i.e., one needs to focus on max-reducer-input.

• This reveals the weakness of 1-Bucket, because it sends each S-
tuple to B tasks, and each T-tuple to A tasks. The resulting input
duplication further increases the already dominant input-related
costs for shuffling and local processing in the Reducers.

• Why does the previous upper and lower bound analysis showing
near-optimality for max-reducer-input not apply here? The upper
bound still applies, but the lower bound does not.
– Recall that only the “true”-valued cells of the join matrix must be

covered. By not covering some cells, smaller regions can be used,
resulting in a smaller lower bound for input duplication.

• Intuitively, for input-dominated joins, one can improve over 1-
Bucket by not covering “empty” regions of the matrix, i.e., regions
that cannot contain any results.

59

Improved Algorithms for Input-Dominated
Joins

• To avoid covering some region of the join matrix, we
must prove that no cell in that region corresponds to a
join result tuple. This requires knowledge about the
data properties in that region.

• Consider an equi-join of S and T on attribute A, using
condition S.A = T.A. Assume A takes on values between
0 (inclusive) and 30 (exclusive). One can partition A’s
domain into ranges like [0,10), [10, 20), and [20, 30).
Clearly, an S-tuple in range [10,20) cannot join with a T-
tuple in range [20,30). Based on this analysis, most
regions of the join matrix do not need to be covered,
greatly reducing the size of each of the r regions, and
hence Reducer input.

• We next illustrate this idea with an example.

60

61

Join matrix for equi-
join S.A = T.A.

Range-partitioned matrix. The
domain of join attribute A is
partitioned into three ranges:
[0,10), [10, 20), and [20, 30). Each
S-tuple falls into exactly one row
range; each T-tuple falls into
exactly one column range.

Candidate cells that must be covered. The equality condition
prevents regions with non-intersecting A-ranges for S and T from
containing any “true”-valued cells. Hence only the shaded regions
need to be covered. Not all cells in these regions will produce join
output, but this cannot be determined from the partitioning into
three ranges.

Since only 1/3 of the matrix needs to be covered, the lower
bounds for both max-reducer-input and max-reducer-output will
be less than for the Cartesian product that had to cover the entire
matrix.

0

10

20

0 10 20

Identifying Candidate Cells
• Given a join condition, the algorithm must identify an appropriate

partitioning of the join-attribute domain so that as much of the join
matrix as possible can be eliminated, leaving only a small fraction of
candidate cells to be covered.

• For simple equality and inequality conditions on a single join
attribute, range partitioning based on quantiles tends to work very
well. (Finding approximate quantiles was discussed in a previous
module.)
– This ensures that each partition of S and T tuples has a similar amount

of data. Hence eliminating a combination of such partitions
significantly reduces input duplication.

• For more complex conditions, e.g., on multiple attributes, finding
good partitions of S and T can be challenging.

• Once the blocks of candidate cells have been identified, a cover
using r regions is found. Due to the possibly irregular shape of
candidate blocks, finding a good cover is much more challenging
than for the cross-product.

62

M-Bucket-I
• M-Bucket-I is a heuristic for finding a cover of candidate cells that were

identified based on a partitioning of S and T into multiple buckets. Its goal
is to minimize max-reducer-input.

• M-Bucket-I greedily identifies the best cover for a block of rows starting in
row 0. It performs a binary search on max-reducer-input limits:
– Given a limit, it finds the row block with the highest ratio of candidate-cells-

covered to number-of-regions-used, respecting the max-reducer-input limit. It
then continues with the next block of rows not yet covered.

– If all candidate cells in the matrix can be covered with r regions, M-Bucket-I
tries a smaller limit on max-reducer-input. Otherwise it tries a larger limit.

• Once a cover of all candidate cells is found, an algorithm similar to Basic-
Theta can be used to implement the join. The main difference is that
instead of picking any random row for an S-tuple s, it must pick a random
row from within the S-partition that s falls into. Similarly, randomization
for T-tuples is limited to the partition the T-tuple belongs to.

• Let us look at an example to better understand this idea.

63

64

M-Bucket-I first attempts to cover a block of rows starting with row 0. Each sequence of three
steps shows how it explores covering 1, 2, and then 3 rows. Whenever the max-reducer-input
limit is reached, a region is “closed” and a new one starts. The ratios of candidate cells covered
to regions used are 1, 3/2, and 4/2 for the blocks of 1, 2, and 3 rows, respectively. Hence the 3-
row cover wins and M-Bucket-I continues exploring covers starting in row 3.

Join matrix showing all candidate cells shaded. Assume the max-reducer-input
limit is set to 3. This means that each region can only have a total of up to three
different rows and columns with candidate cells assigned to it.

Winning
cover for
starting
row 0.

M-Bucket-O
• The M-Bucket-O algorithm is similar to M-Bucket-I but

tries to minimize max-reducer-output. It performs a
binary search over limits on max-reducer-output.

• The main additional challenge for this algorithm is that
it must estimate the number of “true”-valued cells in a
region of candidate cells. (Recall that not all candidate
cells correspond to join result tuples.) This is a
challenging problem known as selectivity estimation
for joins in relational databases. Selectivity estimates
can be poor, even for comparably fine-grained
histograms of the join attribute’s frequency
distribution.

65

Extension: Memory-Awareness
• The cost model we have relied on so far was simplistic in that it

accounted for computation costs only in terms of the amount of
input and output per task. Big-data problems often benefit from a
more fine-grained analysis that distinguishes between cases where
data fits in memory and where it does not.
– When data does not fit in memory, it is managed in slower (i.e., higher

latency and lower bandwidth) external storage such as flash drives or
hard disks. For some algorithms this has a negligible effect on
performance. E.g., if an algorithm scans through a data from start to
end, then buffering can hide access latency very well. On the other
hand, an algorithm that repeatedly jumps to “random” locations in a
large file will pay a high performance penalty due to latency.

• All theta-join algorithms introduced in this module can be made
memory-aware, because the matrix cover reveals how many input
tuples from S and T a task will receive.

• Memory-awareness through I/O-optimized local computation:
– If a Reduce call’s input does not fit in memory, then the local join in

the Reduce function must be optimized for external storage access.
Designing and implementing this is non-trivial.

66

Extension: Memory-Awareness (Cont.)
• Memory-awareness through controlling of region size:

– To avoid accessing slow storage, we can create smaller regions by
choosing a larger number of region keys, r.

– The best value for r is found through binary search: If the matrix cover
for some value of r creates tasks that exceed memory size, then a
larger r is explored; and vice versa.

– Increasing the number of regions will decrease per-task input and
output size, but it increases total cost because more duplicates of
input tuples are created for the additional regions. (See the example
below.)

– Recall that M-Bucket-I explores different limits on max-reducer-input
anyway. Hence for M-Bucket-I it suffices to immediately set that limit
to the size of Reducer memory.

67

This cover results in a doubling
of input size in the Mappers.
Each row intersects with two
regions, requiring two copies
of the corresponding S-tuple;
similarly for T-tuples. Each
Reduce call deals with half of S
and T.

This cover results in a quadrupling
of input size in the Mappers. Each
row intersects with four regions,
requiring four copies of the
corresponding S-tuple; similarly
for T-tuples. Each Reduce call only
deals with a quarter of S and T.

Experiments: Basic Setup
• All experiments were executed on a cluster consisting of 10

machines with the following specs: quad-core Xeon 2.4GHz
CPU, 8 MB cache, 8 GB RAM, and two 250 GB 7.2K RPM
hard disks.

• The cluster was running Hadoop 0.20.2 with 1 machine
dedicated as the head node, and the other 9 as worker
nodes. The default Hadoop configuration was used, setting
1 Map and Reduce slot per core and HDFS block size of
64MB. Data is stored on all 10 machines.

• For all experiments, r was set to 36. This corresponds to the
number of Reduce slots in the cluster, allowing a job to
finish in one wave by assigning exactly one key to each
Reduce task.
– For the memory-aware version, r was set to the smallest

multiple of 36 for which the input could fit in memory. Then
each of the 36 Reduce tasks received the same number of keys.

68

Datasets
• Both real and synthetic data were explored. Real dataset

Cloud consists of 382 million records, each with 28
attributes, for 28.8 GB total size. These records contain data
from cloud reports by ships and land stations.

• Real data sets Cloud-5-1 and Cloud-5-2 are independently
drawn uniform random samples from Cloud, each
containing 5 million records.

• Synth-α defines a family of synthetic data sets. For some
value of α, Synth-α is a pair of data sets, each containing 5
million records. The records are integers between 1 and
1000. The first data set is generated using the uniform
distribution. The second is drawn from a Zipf distribution
with parameter α.
– For α = 0 the distribution is perfectly uniform. The larger α, the

more skewed the distribution. Distributions with α > 2 are
considered extremely skewed.

69

Skew Resistance: Equi-Join
• This experiment compares 1-Bucket to hash+shuffle (Reduce-side join) for

an equi-join. The problem is output-size dominated as the 10 million input
tuples produce about 25 billion output tuples.
– Output imbalance measures the ratio between max-reducer-output and

average reducer output.

• The results show clearly that as data skew increases, Reduce-side join
suffers from unbalanced load distribution. This imbalance is highly
correlated with the running time of the job. Contrast this to 1-Bucket,
which always balances load very well and retains the fast execution time
even for skewed data.

70

1-Bucket-Random Reduce-side join

Data Set Output size
(billion)

Output imbalance Runtime
(secs)

Output Imbalance Runtime
(secs)

Synth-0 25.00 1.0030 657 1.001 701

Synth-0.4 24.99 1.0023 650 1.254 722

Synth-0.6 24.98 1.0033 676 1.778 923

Synth-0.8 24.95 1.0068 678 3.010 1482

Synth-1 24.91 1.0089 667 5.312 2489

Selective Band-Join
SELECT S.date, S.longitude, S.latitude,
T.latitude

FROM Cloud AS S, Cloud AS T

WHERE S.date = T.date
AND S.longitude = T.longitude AND
ABS(S.latitude - T.latitude) <= 10

• This query finds cloud reports made on the same day in
neighboring geographical locations.

• The join is input-size dominated, because the 764 million
input records (the Cloud data set is used twice for this self-
join) only produce 390 million output records.

• The experiments explore the performance of M-Bucket-I,
which optimizes for the input-size dominated join case, for
different granularities of join matrix partitioning.

71

72

This graph shows the corresponding running time of the
MapReduce job executing the join. (All numbers are 10-run
averages; standard deviation was below 15%.) It is clearly visible
how closely running time is correlated with max-reducer-input.
This confirms that for input-size dominated joins, it is very
important to avoid covering join-matrix regions that cannot
produce results.

The first graph reports input imbalance, measured as max-reducer-input divided by average reducer input.
The x-axis shows the granularity of the matrix partitioning used for eliminating regions without join results.
(1-B-T uses a single partition, like 1-Bucket.) In all cases, input load is well-balanced. The second graph
highlights the importance of using fine-grained matrix partitioning for eliminating regions without join
results: 1-B-T covers the entre matrix and hence suffers from excessive input duplication.

M-Bucket-I Details
• M-Bucket-I, with a single bucket per input, results in an

algorithm that covers the entire matrix, like 1-Bucket. In
contrast to 1-Bucket, it uses the more sophisticated
heuristic discussed earlier for finding a cover.

• For all experiments, the memory-aware version of M-
Bucket-I was used. This made every Reduce call execute in
memory, at the possible cost of an overall greater input
duplication.

• Total input duplication rate is measured as total Mapper
output size divided by total Mapper input size. Input
duplication rates were 31.22, 8.92, 1.93, 1.043, 1.00048,
and 1.00025 for the experiments with 1, 10, 100, 1000,
10K, 100K, and 1M buckets, respectively.
– More buckets result in a more fine-grained discovery of

candidate cells, reducing the number of cells to be covered.

73

Not-So-Selective Band-Join
SELECT S.latitude, T.latitude

FROM Cloud-5-1 AS S, Cloud-5-2 AS T

WHERE ABS(S.latitude-T.latitude) <= 2

• This query finds cloud reports made at similar
latitudes.

• The join is output-size dominated, because the 10
million input records (the Cloud data samples were
used to avoid excessive running times) produce 22
billion output records.

• The experiments explore the performance of M-
Bucket-O, which optimizes for the output-size
dominated join case, for different granularities of
matrix partitioning.

74

75

The first graph reports output imbalance, measured as max-reducer-output divided by average reducer output. The x-axis
shows the granularity of the matrix partitioning used for eliminating regions without join results. (1-B-T uses a single
partition, like 1-Bucket.) While output is well-balanced for 1-B-T due to randomization, imbalance is high for the coarser
partitionings. This is caused by the difficulty of estimating output size for a matrix partition. Even for the most fine-grained
partitioning possible (there are only 5951 distinct latitude values in the data), imbalance is still higher than for the simple
randomized approach. Since M-Bucket-O does not duplicate output records, the second graph showing max-reducer-output
is identical in shape to the first.

This graph shows the corresponding running time of the MapReduce job
executing the join. (All numbers are 10-run averages; standard deviation
was below 4%.) It is clearly visible how closely running time is correlated
with max-reducer-output. Notice that a smaller bucket number still
causes more input duplication. However, since the join is output-size
dominated, this does not significantly affect the running time. In
particular, 1-B-T, which covers the entire join matrix, performs about as
well as the most fine-grained partitioning that needs to cover only a
small fraction of the join matrix.

M-Bucket-O Details
• M-Bucket-O, with a single bucket per input, results in

an algorithm that covers the entire matrix, like 1-
Bucket. In contrast to 1-Bucket, it uses a version of the
more sophisticated heuristic discussed earlier for M-
Bucket-I.

• For all experiments, the memory-aware version of M-
Bucket-O was used. This made every Reduce call
execute in memory, at the possible cost of an overall
greater input duplication.

• Total input duplication rate is measured as total
Mapper output size divided by total Mapper input size.
Input duplication rates were 7.50, 4.14, 1.46, 1.053,
and 1.035 for the experiments with 1, 10, 100, 1000,
and 5951 buckets, respectively.

76

Cost of Collecting Statistics
• The 1-Bucket algorithm and the M-Bucket algorithms

for M=1 cover the entire join matrix. Hence they do not
need to collect detailed statistics about the join
attribute distribution in S and T.

• On the other hand, to choose good matrix partitions
for eliminating regions without join results, the M-
Bucket algorithms for M>1 use quantiles. Hence they
need to perform a pre-processing step for finding
approximate quantiles.

• The M-Bucket algorithms also incur additional cost for
finding a good cover of the regions with candidate
cells.

• Comparing these costs provides more insights into the
properties of the M-Bucket algorithms, as shown next.

77

78

Step Number of histogram buckets

1 10 100 1000 10,000 100,000 1,000,000

Quantiles 0 115 120 117 122 124 122

Histogram 0 140 145 147 157 167 604

Heuristic 74 9 0.8 1.5 17 118 111

Join 49,384 10,905 1157 595 548 540 536

Total 49,458 11169 1423 861 844 949 1373

Step Number of histogram buckets

1 10 100 1000 5951

Quantiles 0 4.5 4.5 4.8 4.9

Histogram 0 26.2 25.8 25.6 25.6

Heuristic 0.04 0.04 0.05 0.24 0.81

Join 1279 2483 1597 1369 1188

Total 1279 2514 1627 1399 1219

M-Bucket-I on Cloud data set (input-size dominated join):

M-Bucket-O on Cloud-5 data sets (output-size dominated join):

Result Discussion
• The tables above show the detailed cost breakdown for the

same join queries on the Cloud data discussed before.
• For the input-size dominated join, it is clearly visible that

the computation time invested into finding quantiles and
the corresponding histogram-style partitioning of the join
matrix pays a great dividend in savings in the join
computation phase. The savings originate from identifying
large regions of the join matrix that do not need to be
covered, dramatically reducing input duplication.

• The measurements also show that at some point the
benefit of a more fine-grained analysis of the join matrix
are outweighed by the higher pre-processing cost.

• For the output-size dominated join, the case with a single
bucket is practically tied for first place with the case where
the most fine-grained bucketization possible of the matrix
was applied.

79

Extensions
• The presented algorithms were the first thorough

study of distributed theta-joins. This work
motivated many follow-up papers by various
research groups, including
– Multi-way theta-joins between more than two

relations [Xiaofei Zhang, Lei Chen, and Min Wang.
Efficient multi-way theta-join processing using
MapReduce. Proc. VLDB Endowment, pages 1184-
1195, 2012]

– More advanced partitioning algorithms that optimize
for the weighted sum of input and output [A.
Vitorovic, M. Elseidy and C. Koch. Load balancing and
skew resilience for parallel joins. IEEE ICDE, pp. 313-
324, 2016]

80

81

Next, we explore matrix multiplication, a
core operation in linear algebra that is
expensive and relatively easy to
parallelize. It is an important building
block in many applications, including
machine learning algorithms.

Matrix Multiplication and Regression

• Linear algebra is an important mathematical tool
for data analysis. Equations in linear algebra are
naturally expressed as manipulations of matrices
and vectors.

• Recall the graph analysis discussion from an
earlier module. Problems such as finding paths in
a graph and computing PageRank can be
expressed as matrix multiplication problems. This
module introduces parallel matrix multiplication
in the context of linear regression, a classic
method for statistical analysis.

82

Linear Regression
• Linear regression is a popular prediction technique. As introduced

earlier, prediction is a supervised learning method: Given a training
data set with attributes X1,…,Xd, and Y, a model f:(X1,…,Xd)→Y is
trained. This function can then be used to predict the unknown
output y for a given input record (x1,…,xd). For prediction problems,
Y is a continuous attribute.

• Linear regression is considered a parametric learning technique,
because its goal is to learn the best parameter values for an expert-
selected function “template.”
– A linear regression function is defined as 𝑓 𝑋1, … , 𝑋𝑛 = 𝜃0 + 𝜃1𝑋1 +
⋯+ 𝜃𝑛𝑋𝑛, written more compactly as Y = 𝜽𝑇𝑿. Output y is a scalar;
input X and parameter are n-dimensional vectors.

• Linear regression is more flexible than it may seem. We can
introduce new input variables that are non-trivial functions of the
original input attributes, e.g., 𝑋𝑛+1 = 𝑋1

2 + 𝑋2
2 or 𝑋𝑛+2 = 𝑋3𝑋5.

The training data would be augmented with the corresponding new
columns, whose values are trivial to compute from the values in the
original columns.

83

Optimal Solution
• The goal of linear regression is to find the vector 𝜽∗

that minimizes squared error σ𝑖=1
𝑚 𝜽𝑇𝒙𝑖 − 𝑦𝑖

2 over
all training records 𝒙𝑖 , 𝑦𝑖 .

• It has been shown that the optimal solution can be
computed as 𝜽∗ = 𝑿𝑇𝑿 −1𝑿𝑇𝒚.
– Here 𝑿 is an n-by-d matrix, where the input values of

training record 𝒙𝑖 make up the i-th row.
– Similarly, 𝐲 is an n-by-1 vector, corresponding to the Y-

column of the training data.
– An example is shown below.

84

X1 X2 X3 Y

1 0 5 8

4 2 3 9

Training data

1 0 5

4 2 3

1 4

0 2

5 3

8

9

Matrix X Transposed matrix XT Vector y

Matrix Multiplication
• The formula for the computation of the optimal

parameter vector 𝜽∗ requires three matrix products
(one of them the multiplication with vector 𝐲), and a
matrix inversion.

• We will discuss distributed matrix multiplication, but
first review the basics:
– A u-by-v matrix has u rows and v columns. Multiplying an

a-by-b with a b-by-c matrix will create an a-by-c matrix.
– The entry in row i and column j of the result matrix is equal

to the dot product of the i-th row vector of the first matrix
with the j-th column vector of the second matrix.

• The example below illustrates the matrix product.

85

1 0 5

4 2 3

0 1

2 3

4 5

=
1*0+0*2+5*4 = 20 1*1+0*3+5*5 = 26

4*0+2*2+3*4 = 16 4*1+2*3+3*5 = 25

Parallel Matrix Multiplication: Row-by-
Column

• The regular structure of matrices makes it easy to identify opportunities
for parallelization. Recall that each cell of the result matrix is the dot
product of a row in the first with a column in the second input matrix.
Since different rows in the first and columns in the second matrix are
processed independently, this suggests a row-wise partitioning for the
former and a column-wise partitioning of the latter:

𝑨𝑩 =

𝑨𝟏
𝑨𝟐
⋮
𝑨𝒓

𝑩𝟏 𝑩𝟐 ⋯ 𝑩𝒄 =

𝑨𝟏 × 𝑩𝟏 𝑨𝟏 × 𝑩𝟐 ⋯ 𝑨𝟏 × 𝑩𝒄

𝑨𝟐 × 𝑩𝟏 𝑨𝟐 × 𝑩𝟐 ⋯ 𝑨𝟐 × 𝑩𝒄

⋮ ⋮ ⋱ ⋮
𝑨𝒓 × 𝑩𝟏 𝑨𝒓 × 𝑩𝟐 ⋯ 𝑨𝒓 × 𝑩𝒄

• Here each 𝑨𝑖 and 𝑩𝑗 is a matrix, containing some of 𝑨’s rows and 𝑩’s
columns, respectively. Each product 𝑨𝑖𝑩𝑗 can be computed independently.

• Notice the relationship to the relational cross-product, because every 𝑨𝑖
must be multiplied with every 𝑩𝑗. Hence, we can use 1-Bucket-Random to
compute the final result.
– For best results, let each 𝑨𝑖 and 𝑩𝑗 correspond to a single row or column,

respectively. This way 1-Bucket works with the finest problem granularity,
allowing it to better balance load.

86

Example for Row-by-Column Partitioning

87

Consider AB example
1 0 5

4 2 3

0 1

2 3

4 5

=
20 26

16 25

Leave B as is, but partition A into A1 = and A2 = .1 0 5 4 2 3

Terms A1B and A2B produce result matrix rows and :16 2520 26

1 0 5

0 1

2 3

4 5

=

20 26

16 25

1 0 5

4 2 3

20 26

4 2 3

0 1

2 3

4 5

= 16 25

Parallel Matrix Multiplication: Column-by-
Row

• Somewhat less obvious than the row-by-column
approach, matrix multiplication can also be parallelized
by partitioning the first matrix by column, and the
second by row!

• To see why this is possible, note that the value in row i
and column j of the result matrix is equal to
A[i,0]B[0,j]+A[i,1]B[1,j]+…+A[i,ra]B[cb,j], where ra and cb
are the number of A’s rows and B’s columns,
respectively. (These numbers have to be identical for
the matrix product to be defined.) Hence the product
of column vector A[*,k] and row vector B[k,*] produces
the individual terms of type A[*,k]B[k,*] needed for the
summation.

• This idea is best understood through an example.

88

Example for Column-by-Row Partitioning

89

Consider AB example
1 0 5

4 2 3

0 1

2 3

4 5

=

There are three products of A’s column vectors with the corresponding row vectors of B:

1

4
0 1 =

1*0 1*1

4*0 4*1

1*0+0*2+5*4 = 20 1*1+0*3+5*5 = 26

4*0+2*2+3*4 = 16 4*1+2*3+3*5 = 25

0

2
2 3 =

0*2 0*3

2*2 2*3

5

3
4 5 =

5*4 5*5

3*4 3*5

Matrix sum

1*0+0*2+5*4 = 20 1*1+0*3+5*5 = 26

4*0+2*2+3*4 = 16 4*1+2*3+3*5 = 25

MapReduce Algorithm for Column-by-
Row

• The algorithm first performs a distributed equi-join of any
A[i,x] with any B[y,j], using condition x=y. The
corresponding product is emitted with key (i,j).

• Another MapReduce job then processes the join output by
grouping by key and adding all values in each group.

• The program below only shows the join phase. The second
job is identical to Word Count per result-matrix-cell index.

90

map(matrixID, row, col, val) {
// Partition A into columns
if (matrixID = A)
emit(col, (matrixID, row, val))

else // Partition B into rows
emit(row, (matrixID, col, val))

}

// Reduce receives entries A[i,k] and B[k,j] for different i and j. It emits
// all products A[i,k]*B[k,j] with key (i,j), because this is the
// contribution for result cell [i,j].
reduce(common_A_col_B_row, [(matrixID, index, val),…]) {
for each (matrixID, index, val) do
if (matrixID = A) then A_list.add(index, val)
else B_list.add(index, val)

for each Aik in A_list
for each Bkj in B_list
emit((Aik.index, Bkj.index), Aik.val * Bkj.val)

}

Comparison of Row-by-Column versus
Column-by-Row

• The main cost of both algorithms is related to the data transfer. It
strongly depends on the data properties, in particular the
sparseness of the input matrices and distribution of non-zero values
over their cells.
– Note that both algorithms work correctly for sparse matrix

representation when only cells with non-zero value are stored.

• The row-by-column approach uses 1-Bucket, which duplicates the
different matrix blocks in Map. Assuming p Reduce calls with 𝑝
partitions of A and B each, both A and B would be sent 𝑝 times in
total from Mappers to Reducers.

• The column-by-row approach does not duplicate data in the Map
phase. However, its Reducers write out an intermediate result of
individual contributions to cells in the output matrix. The size of this
intermediate result depends on the number of A[i,k] and B[k,j]
values in the input list of each Reduce call for key (i,j). This result is
also read, then transferred from Mappers to Reducers in the post-
processing job.

91

Multiplying a Matrix with its Transpose
• When multiplying a matrix with its transpose, the column-by-row

approach can be optimized further. Notice that by definition the k-th
column in matrix A is identical to the k-th row of its transpose.

• If matrix A is stored column-wise, all A[*,k]AT[k,*] can already be
computed in the Mappers, letting the Reducers perform the final
aggregation step. This eliminates the additional post-processing phase.
– For linear regression, this applies to 𝑿𝑇𝑿. (Since X is stored row-wise, XT is

stored column-wise.) Term 𝑿𝑇𝒚 can be computed similarly, by emitting all
XT[*,k]y[k] = X[k,*]y[k], which are all stored in row k of the input matrix, in the
same Map call.

• The program for computing the product of a matrix (that is stored column-
wise) and its transpose is shown below.

92

// There is only one input matrix. Map reads
// an entire column of it
map(col, [(row, val), (row, val),…]) {
for each (r1, v1) in valueList
for each (r2, v2) in valueList
emit((r1, r2), v1 * v2)

}

// Reduce receives all A[i,k]*B[k,j] for result cell [i,j] and sums them up
reduce((i,j), [val, val,…]) {
sum = 0
for each val in input list do
sum += val

emit((i, j), sum)
}

Matrix Product in Spark
• Spark offers linear algebra operations such as matrix

product in the MLlib linalg package.
– Both dense and sparse matrix representation are

supported.

• Take a look at the source code to find out more about
the underlying implementation. Most likely it uses
block partitioning.

• In practice, it is not easy to tune block size, even for
dense matrix operations. We explored this in a
research paper.
– Rundong Li, Ningfang Mi, Mirek Riedewald, Yizhou Sun,

and Yi Yao. Abstract Cost Models for Distributed Data-
Intensive Computations. In Distributed and Parallel
Databases, Springer. 2018 (accepted for publication)

93

Matrix Multiplication in Machine Learning

• Many other machine learning techniques can be implemented
using matrix products, including:
– Locally Weighted Linear Regression
– Naïve Bayes
– Gaussian Discriminative Analysis
– K-means clustering
– Logistic Regression
– Neural Network (for backpropagation)
– Principal Component Analysis
– Independent Component Analysis
– Expectation Maximization (EM) with Mixture of Gaussian as

underlying model
– Support Vector Machine (SVM) with linear kernel

• For further discussion consult [Chu, Kim, Lin, Yu, Bradski, Ng, and
Olukotun. Map-Reduce for Machine Learning on Multicore. In Proc.
of Advances in Neural Information Processing Systems (NIPS), 2006]

94

Summary
• When dealing with big data in a distributed system, arguably the

most important decision is how to partition the data. Partitioning
should achieve two goals:
– Each task receives a small subset of the data.
– Each task can be performed independently of the others, possibly

requiring a small amount of data to be exchanged.

• Modeling data partitioning as a matrix or array covering problem
simplifies algorithm design and enables analysis of algorithm
properties.

• Randomization plays a key role in transforming a matrix or array
cover into a parallel algorithm. It can also simplify the process of
proving properties, in particular lower and upper bounds of costs or
performance metrics.

• The properties of a matrix or array cover depend heavily on the
given problem. For example, sometimes region boundaries indicate
data replication (theta-join), sometimes they do not (frequency
computation).

95

Summary (Cont.)
• The relational equi-join and cross-product pattern

also appeared in ensemble predictions and
matrix product, highlighting the general
importance of joins.

• The matrix-multiplication approaches presented
in this module support both dense and sparse
matrix representations (which store only non-
zero cells). The choice depends on sparseness
and distribution of non-zero values over matrix
cells. The common problem of multiplying a
matrix with its own transpose admits a more
efficient distributed algorithm for column-by-row
partitioning.

96

References
• A. Okcan and M. Riedewald. Processing Theta-Joins using

MapReduce. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 949-960, 2011
– https://scholar.google.com/scholar?cluster=1311002147929098

4892&hl=en&as_sdt=0,22

• Rundong Li, Ningfang Mi, Mirek Riedewald, Yizhou Sun, and
Yi Yao. Abstract Cost Models for Distributed Data-Intensive
Computations. In Distributed and Parallel Databases, 37(3):
411-439, Springer, 2019
– http://www.ccs.neu.edu/home/mirek/papers/2019-DAPD-

AbstractCostModels-preprint.pdf

• Chu, Kim, Lin, Yu, Bradski, Ng, and Olukotun. Map-Reduce
for Machine Learning on Multicore. In Proc. of Advances in
Neural Information Processing Systems (NIPS), 2006
– https://scholar.google.com/scholar?cluster=7784975056176979

771&hl=en&as_sdt=0,22

97

https://scholar.google.com/scholar?cluster=13110021479290984892&hl=en&as_sdt=0,22
http://www.ccs.neu.edu/home/mirek/papers/2019-DAPD-AbstractCostModels-preprint.pdf
https://scholar.google.com/scholar?cluster=7784975056176979771&hl=en&as_sdt=0,22

References

• Xiaofei Zhang, Lei Chen, and Min Wang.
Efficient multi-way theta-join processing using
MapReduce. Proc. VLDB Endowment, pages
1184-1195, 2012
– https://scholar.google.com/scholar?cluster=80950

41193631575005&hl=en&as_sdt=0,22

• A. Vitorovic, M. Elseidy and C. Koch. Load
balancing and skew resilience for parallel
joins. IEEE ICDE, pp. 313-324, 2016
– https://scholar.google.com/scholar?cluster=10102

06575348448478&hl=en&as_sdt=0,22

98

https://scholar.google.com/scholar?cluster=8095041193631575005&hl=en&as_sdt=0,22
https://scholar.google.com/scholar?cluster=1010206575348448478&hl=en&as_sdt=0,22

