
Distributed File System

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.



Key Learning Goals

• What does the distributed file system (DFS) 
have in common with traditional single-
machine file systems? What is different?

• Why is a single DFS master node unlikely to 
become a bottleneck?

• Do Hadoop MapReduce and Spark require the 
ability to update existing files?

2



Introduction
• The file system is an essential component of the 

operating system (e.g., Windows, Linux, MacOS). 
It stores data permanently, organized into files 
and directories (a.k.a. folders). Not surprisingly, 
the file system plays a crucial role for scalable 
data processing.

• We cover the Google File System (GFS), which 
inspired the popular Hadoop File System (HDFS).
– Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. 2003. The Google file system. In Proc. of the 
nineteenth ACM Symposium on Operating Systems 
Principles (SOSP ‘03), 29-43

3



What Does a File System Do?

• Create, rename, delete a file or directory.

• Open or close a file.

• Jump to a specific position (an offset) in a file.

• Read or write a certain number of bytes in the 
file, starting from a given offset or the current 
position.

• Append new data at the end of a file.

• Move a file from one directory to another.

4



What Is Special about a Distributed File 
System (DFS)?

• To avoid I/O bottlenecks, files should reside on many 
servers.

• File size should not be limited by the capacity of a single 
disk drive. To achieve this, a big file should be chunked up
and distributed over multiple disks automatically.

• All operations should be as simple as in a regular file 
system, i.e., applications should not have to explicitly deal 
with file chunks and chunk locations.
– E.g., a client should be able to “read 10 bytes at offset 100 in file 

X,” instead of having to determine how X is partitioned and then 
contact the machine that stores the relevant chunk of X.

• The DFS must prevent concurrency bugs.
– How are file-system accesses synchronized, e.g., when two 

processes are trying to create a file with the same name, or 
write to the same file?

– Who coordinates the machines storing the file chunks?

5



Motivation for Use of a DFS
• The abstraction of a single global file system simplifies programming 

warehouse-scale computers (i.e., clusters of commodity machines). A 
client can access a file that is possibly distributed over many machines as 
if it was a regular file stored locally.

• This frees the programmer from worrying about messy details such as:
– Into how many chunks should a large file be split and on which machines 

should these chunks be stored?
– Keeping track of the chunks and which chunk(s) to modify when the user tries 

to change a sequence of bytes somewhere in the file.
– Management of chunk replicas: Replicas are needed to provision against 

failures. (Recall that in a large cluster of commodity machines failures are 
common.) These replicas must be kept in sync with each other. What should 
be done when a machine fails? Which other machine should receive a new 
copy of a file chunk that was stored on the failed machine? When the failed 
machine comes back online, should the additional copy be removed?

– Coordinating concurrent file access: What if two processes are trying to 
update the same file chunk? What if the processes access different chunks of 
the same file? How do we make sure that file creation is atomic, i.e., no two 
processes can create the same file concurrently?

6



Main GFS Design Choices
• A single master service is used to ensure consistency and achieve 

consensus for concurrent file-system operations.
– In HDFS this is called a namenode.

• To avoid a bottleneck at the master, it only performs lightweight 
tasks. These are tasks related to metadata management and 
location of data chunks.

• Since the master is a single point of failure, it should be able to 
recover quickly.

• Data management and data transfer is performed directly by 
chunkservers. This distributes the heavy tasks.
– In HDFS these are called datanodes.

• HDFS further reduces problem complexity by not supporting any 
file modifications, other than concatenation. Its write-once-read-
many approach guarantees high read throughput.
– To “modify” a file, one must create a new copy with the updated 

content.

7



Other GFS Design Goals
• The distributed file system should be able to handle a 

modest number of large files. Google aimed for a few 
million files, most of them 100 MB or larger in size. In 
particular, the Google File System (GFS) was designed to 
handle multi-gigabyte and larger files efficiently.

• High sustained bandwidth is more important than low 
latency. This assumes that the file system would have to 
deal mostly with large bulk accesses.
– Small reads and writes of a few bytes at random locations in a 

file would be costly in a distributed file system due to the high 
access latency. (Recall the storage-hierarchy discussion!)

• GFS should support a typical file system interface:
– Files are organized in directories.
– The file system supports operations such as create, delete, 

open, close, read, and write with syntax similar to a local file 
system.

8



9

Source: https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html. Accessed 
in August 2018.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html


GFS and HDFS Architecture Details
• All machines are commodity Linux machines.

• Files are divided into fixed-size chunks—64MB or 128 
MB a few years ago, now typically 256 MB or larger. 
These chunks are stored on the chunkservers’ local 
disks as Linux files. Chunks typically are replicated on 
multiple chunkservers, e.g., 3 times, for fault tolerance 
and faster read access.

• The master maintains all file system metadata such as 
namespace, access control information, the mapping 
from files to chunks, and chunk locations.
– It uses locks to avoid concurrency-related conflicts, e.g., 

when creating a new file or directory.

10



A Note on Chunk Size
• The number of chunks is limited by the master’s memory size. (For fast 

accesses, the master manages all metadata in memory.)
– In GFS, there are only 64 bytes of metadata per 64 MB chunk. All but the last 

chunk of a file are completely filled with data, guaranteeing a very high ratio 
of data-to-metadata size.

– GFS uses less than 64 bytes of namespace data per file.

• Advantages of a large chunk size:
– There will be fewer interactions with the master. Recall that GFS is designed to 

support large sequential reads and writes. Reading a block of 128 MB would 
involve 2-3 chunks of size 64 MB, but 128-129 chunks of size 1 MB.

– For the same file size, metadata is smaller. This reduces the amount of 
information managed by the master and allows metadata to be cached in the 
clients’ memory even for terabyte-sized working sets.

• Disadvantage of a large chunk size:
– Fewer chunks result in fewer options for load balancing. Consider 2 clients 

reading 1 MB of data at offsets 0 and 8 million, respectively. With a 2 MB 
chunk size, each client accesses a different chunk, but with 64 MB chunk size, 
both access the same chunk. This can result in hotspots (for reading and 
writing) or concurrency-related delays (for writing).
• Read hotspots can be addressed by a higher replication factor, distributing the load over 

more replicas. Similarly, clients could read from other clients who already got the chunk.

11



A Note on Chunk-Replica Placement
• The goals of choosing machines to host the replicas of a 

chunk are scalability, reliability, and availability. Achieving 
this is difficult, because in a typical GFS setting there are 
hundreds of chunkservers spread across many racks, 
accessed from hundreds of clients running on machines in 
different racks. Communication may cross multiple network 
switches. And bandwidth into or out of a rack may be less 
than the aggregate bandwidth of all the machines within 
the same rack.

• Spreading replicas across different racks is good for fault 
tolerance. Furthermore, read operations benefit from the 
aggregate bandwidth of multiple racks. On the other hand, 
it is bad for writes and file creation, as the data now flows 
through multiple racks.

• The master can move replicas or create/delete them to 
react to system changes and failures.

12



High-Level GFS Functionality
• The master controls all system-wide activities such as chunk 

lease management, garbage collection, and chunk 
migration.

• The master communicates with the chunkservers through 
HeartBeat messages to give instructions and collect their 
state.

• The client who tries to access a file gets metadata, incl. the 
locations of relevant file chunks, from the master, but 
accesses files directly through the chunkservers.

• There is no GFS-level file caching for several reasons:
– Caching offers little benefit for streaming access, i.e., reading a 

file “in one direction,” and large working sets.
– This avoids having to deal with cache-coherence issues in the 

distributed setting.
– On each chunkserver, standard (local) Linux file caching is 

sufficient for good performance.

13



Read Access
• Consider a client that wants to read B bytes from file F, 

starting at offset O. It contacts the master to request the 
location of the corresponding chunk(s).
– It is easy to calculate the chunk index from O, B, and chunk size 

S. The first chunk needed is 
𝑂

𝑆
, and the last one is 

𝑂+𝐵

𝑆
.

• Knowing the locations of the replicas of the requested 
chunk, the client requests the data from a nearby 
chunkserver. This data transfer does not involve the master 
at all.

• Different clients can read from different chunkservers in 
parallel, enabling GFS to support a high aggregate data 
transfer rate.

• Since chunk locations rarely change, the client buffers
location info for some time. This way it can avoid contacting 
the master for future accesses to the same chunk.

14



Read Access Illustration

15

Application 
(GFS client)

GFS master

File namespace:

- Main directory
--- Subdirectory1
------ file1
------ file2
--- Subdirectory2
------file1

Chunk locations:

/Subdirectory1/file1
[list of chunk handles
and their locations]

/Subdirectory1/file2
…

/Subdirectory2/file1
…

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system Control message (small)

Data message (big)



Read Access Illustration

16

Application 
(GFS client)

GFS master

File namespace:

- Main directory
--- Subdirectory1
------ file1
------ file2
--- Subdirectory2
------file1

Chunk locations:

/Subdirectory1/file1
[list of chunk handles
and their locations]

/Subdirectory1/file2
…

/Subdirectory2/file1
…

1. Tell me the locations of chunk indexes … of file …

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system Control message (small)

Data message (big)



Read Access Illustration

17

Application 
(GFS client)

GFS master

File namespace:

- Main directory
--- Subdirectory1
------ file1
------ file2
--- Subdirectory2
------file1

Chunk locations:

/Subdirectory1/file1
[list of chunk handles
and their locations]

/Subdirectory1/file2
…

/Subdirectory2/file1
…

1. Tell me the locations of chunk indexes … of file …

2. List of (chunk handle, chunk location) 
pairs

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system Control message (small)

Data message (big)



Read Access Illustration

18

Application 
(GFS client)

GFS master

File namespace:

- Main directory
--- Subdirectory1
------ file1
------ file2
--- Subdirectory2
------file1

Chunk locations:

/Subdirectory1/file1
[list of chunk handles
and their locations]

/Subdirectory1/file2
…

/Subdirectory2/file1
…

1. Tell me the locations of chunk indexes … of file …

2. List of (chunk handle, chunk location) 
pairs

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

3. Send me the data at 
(chunk handle, byte range)

Control message (small)

Data message (big)



Read Access Illustration

19

Application 
(GFS client)

GFS master

File namespace:

- Main directory
--- Subdirectory1
------ file1
------ file2
--- Subdirectory2
------file1

Chunk locations:

/Subdirectory1/file1
[list of chunk handles
and their locations]

/Subdirectory1/file2
…

/Subdirectory2/file1
…

1. Tell me the locations of chunk indexes … of file …

2. List of (chunk handle, chunk location) 
pairs

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

3. Send me the data at 
(chunk handle, byte range)4. Requested 

chunk data

Control message (small)

Data message (big)



Updating a Chunk
Writing to a file is more challenging than reading, because all chunk replicas 
must be in sync. This means that they must apply the same updates in the 
same order. GFS achieves this by designating one replica of a chunk as the 
primary. It determines update order and notifies the secondaries to follow its 
lead. Large updates are broken into chunk-wise updates. File creation 
proceeds similarly, but does not need an update order, and therefore does 
not need to distinguish primary and secondary copies.
• The client contacts the master to find the locations of the replicas of the 

chunk it is trying to update.
• The master responds with the requested information.
• The client starts pushing the updates to all replicas.
• After receiving all acknowledgements that the update arrived, the client 

sends a write request to the primary who assigns it a serial number.
• The primary forwards the write request, including its serial number, to all 

other replicas.
• After completing the write request, the secondaries acknowledge success 

to the primary.
• The primary replies to the client about the outcome of the update 

operation. If the operation failed, the client would re-try.

20



Update Process Illustration

21

Client Master

1. Where are the chunk replicas?



Update Process Illustration

22

Client Master

1. Where are the chunk replicas?

2. Location information



Update Process Illustration

23

Client

Secondary replica A

Primary replica

Secondary replica B

Master

1. Where are the chunk replicas?

2. Location information

3. Push updates



Update Process Illustration

24

Client

Secondary replica A

Primary replica

Secondary replica B

Master

1. Where are the chunk replicas?

2. Location information

3. Push updates

4. Perform the update



Update Process Illustration

25

Client

Secondary replica A

Primary replica

Secondary replica B

Master

1. Where are the chunk replicas?

2. Location information

3. Push updates

4. Perform the update

5. Perform the update, 
use serial number …



Update Process Illustration

26

Client

Secondary replica A

Primary replica

Secondary replica B

Master

1. Where are the chunk replicas?

2. Location information

3. Push updates

4. Perform the update

5. Perform the update, 
use serial number …

6. Update success: Y/N

6. Update success: Y/N



Update Process Illustration

27

Client

Secondary replica A

Primary replica

Secondary replica B

Master

1. Where are the chunk replicas?

2. Location information

3. Push updates

4. Perform the update

7. Update success: Y/N

5. Perform the update, 
use serial number …

6. Update success: Y/N

6. Update success: Y/N



Pushing Updates and New Files
• In GFS, data flow is decoupled from control flow for 

efficient network use. Instead of the client multi-
casting the chunk update to each replica, the data is 
pipelined linearly along a chain of chunkservers. There 
are several reasons for this design decision:
– Pipelining makes use of the full outbound bandwidth for 

the fastest possible transfer, instead of dividing it in a non-
linear topology.

– It avoids network bottlenecks by forwarding to the “next 
closest” destination machine.

– It minimizes latency: once a chunkserver receives data, it 
starts forwarding to the next one in the pipeline 
immediately. Machines are typically connected by a 
switched network with full-duplex links. This means that 
sending out data does not affect the bandwidth for 
receiving data (and vice versa).

28



Updates and Data Consistency
• It is challenging to ensure consistent update order across 

replicas when machines can fail or be slow to respond.
• GFS has mechanisms to deal with these problems, but for 

general updates (in contrast to append-only updates) it 
relies on a relaxed consistency model. This means that 
under certain circumstances, e.g., when a client uses 
cached chunk location information, it might read from a 
stale chunk replica.

• Life is easier without updates. There would be no need to 
keep replicas in sync and no risk of reading stale replicas.
– This is why HDFS does not support updates. Hadoop 

MapReduce and Spark do not need update functionality. They 
can simply write to new output files.

– For instance, each Reduce task in a MapReduce job creates a 
temp file in the local file system. It then atomically copies and 
renames it to a file in the global file system.

29



Achieving High Availability
• Master and chunkservers can restore their state 

and start up in seconds.
• Chunk replication ensures data availability in the 

presence of failures.
• Master data such as the operation log and 

checkpoints can be replicated to enable quick 
failover.

• When the master fails permanently, monitoring 
infrastructure outside GFS starts a new master 
with the replicated operation log. Since clients 
use a DNS alias, they are automatically re-routed 
to the new master.

30



Distributed File System Summary
• Distributed file systems support large-scale data processing 

workloads on commodity hardware.
• Component failures are treated as the norm, not the 

exception. GFS deals with failures through multiple 
mechanisms:
– Constant monitoring of all participants.
– Replication of crucial data.
– A relaxed consistency model for updates.
– Fast, automatic recovery.

• GFS is optimized for huge files, append writes, and large 
sequential reads.

• It achieves high aggregate throughput for concurrent 
readers and writers through separation of file system 
control (through master) from data transfer (directly 
between chunkservers and clients).

31



File Management in the Cloud
• In the Cloud, GFS and HDFS are not required for managing files. In fact, it 

might be preferable to separate computation from storage. Why?
– User perspective: To save money, the user can shut down the compute 

resources as soon as the job terminates. Data persists on the storage system.
– Cloud provider perspective: It is easier to manage specialized services.

• On Amazon AWS, data usually resides on the S3 storage service, while EC2 
and EMR are used for computation. MapReduce and Spark jobs can use S3 
as the data layer instead of HDFS. Or they copy data into HDFS on EMR at 
the start of the job, use HDFS for intermediate results, and then transfer 
the final result back to S3. Amazon also offers (as of August 2018) EMRFS, 
an implementation of HDFS designed for reading and writing files from 
EMR directly to S3. It uses URI prefix s3://.

• Note that Hadoop MapReduce and Spark can also read from other file 
systems, including the local one.
– The standalone versions, which are running on a single machine in sequential 

mode, and are useful for debugging, by default access data in the local file 
system.

32



More Information about Amazon
• Source: https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-

file-systems.html (August 2021)

33

File system (prefix) Desription

HDFS (hdfs:// or no 
prefix)

An advantage of HDFS is data awareness between the Hadoop cluster nodes managing the 
clusters and the Hadoop cluster nodes managing the individual steps. HDFS is used by the 
master and core nodes. One advantage is that it's fast; a disadvantage is that it's ephemeral 
storage which is reclaimed when the cluster ends. It's best used for caching the results 
produced by intermediate job-flow steps. 

EMRFS (s3://)

EMRFS is an implementation of the Hadoop file system used for reading and writing regular files 
from Amazon EMR directly to Amazon S3. EMRFS provides the convenience of storing persistent 
data in Amazon S3 for use with Hadoop while also providing features like Amazon S3 server-side 
encryption, read-after-write consistency, and list consistency.

local file system When a Hadoop cluster is created, each node is created from an EC2 instance that comes with a 
preconfigured block of preattached disk storage called an instance store. Data on instance store 
volumes persists only during the life of its EC2 instance. Instance store volumes are ideal for 
storing temporary data that is continually changing, such as buffers, caches, scratch data, and 
other temporary content.

Amazon S3 block 
file system 
(s3bfs://)

The Amazon S3 block file system is a legacy file storage system. We strongly discourage the use 
of this system.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-file-systems.html


References

• Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. 2003. The Google file system. In 
Proc. of the nineteenth ACM Symposium on 
Operating Systems Principles (SOSP ‘03), 29-43

– https://scholar.google.com/scholar?cluster=98210
925508218371&hl=en&as_sdt=0,22

• Amazon EMR documentation: Management 
guide

– https://docs.aws.amazon.com/emr/latest/Manag
ementGuide/emr-what-is-emr.html

34

https://scholar.google.com/scholar?cluster=98210925508218371&hl=en&as_sdt=0,22
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html

