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Key Learning Goals
• Summarize in three sentences the main idea 

behind bagging.

• What are the requirements on the individual 
models for bagging to improve prediction 
quality?

• Write the pseudo-code for training a bagged 
ensemble. Try to do it for all three partitioning 
approaches.

• Given a concrete example, be able to quantify the 
data transfer for training and prediction for a 
bagged ensemble.
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Introduction

• Ensemble methods like bagging are among 
the best classification and prediction 
techniques in terms of prediction quality. 
Their main drawback are high training and 
prediction cost. This makes them ideal 
candidates for use in a distributed 
environment.
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Ensemble Methods
• Ensemble methods for classification and prediction rely 

on a pool of models to make better predictions than 
each individual model on its own. Many different types 
of ensemble methods exist, the most well-known 
general approaches being bagging and boosting.

• This module focuses on bagging, which is particularly 
well-suited for distributed computation because each 
model in the ensemble can be trained independently 
on a different data set Di derived from the given 
labeled training data D.

• To make a prediction for a test record, the individual 
predictions of all models in the ensemble are 
aggregated appropriately.

• The next pages illustrate this idea.
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Intuition For Ensembles

• Ensemble methods are based on the following 
intuition: Consider a scenario where you seek 
advice from your friends about taking CS 
6240. Assume each friend individually gives 
you good advice most of the time. By asking 
more friends and following the majority 
recommendation, your probability of getting 
good advice will increase significantly.

• Let us make this concrete now.
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The Power of Friendship
• Assume each friend individually gives helpful advice 60% of 

the time, i.e., each friend’s error rate is 0.4. You ask 11 
friends about taking CS 6240. Each of them responds with 
either Yes or No. You follow the majority advice.

• The error rate of the 11-friend ensemble is the sum of the 
probability of exactly 6, 7, 8, 9, 10, or 11 friends giving 
unhelpful advice. If each friend’s recommendation is 
independent of the others, then this probability can be 
expressed as

෍

𝑖=6

11

11
𝑖

0.4𝑖(1 − 0.4)11−𝑖= 0.25

• Stated differently, the ensemble of 11 independent friends 
gives helpful advice 75% of the time, which is significantly 
better than the 60% of each individual friend. Asking more 
such friends will result in even better advice.
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When Does Model Averaging Work?

• The example illustrates an ensemble approach 
called bagging, short for bootstrap aggregation. 
For it to improve prediction quality, two 
conditions must hold:

– Independence: The individual models (friends in the 
example) make their decisions independently. If one 
friend influences the others, then the combined 
advice will be as good or bad as that individual.

– Better than 50-50: Each model (friend) individually 
has an error rate below 50%, otherwise the error rate 
actually increases with the number of friends.

17



Model Averaging and Bias-Variance 
Tradeoff

• The example of combining advice from multiple friends provides 
anecdotal evidence why ensembles improve prediction quality. This 
property can also be shown more generally.

• The key to understanding why model averaging improves 
predictions lies in the bias-variance tradeoff. Intuitively, a model’s 
total prediction error consists of two components affected by the 
choice of model: bias and variance. For individual models, lowering 
one tends to increase the other. Through model parameters, e.g., 
the height of a decision tree, the tradeoff between bias and 
variance can be adjusted.

• Bagging can overcome this tradeoff as follows:
1. Train individual models that overfit, i.e., have low bias, but 

potentially high variance.
2. Reduce the variance by averaging many of these models.

• Bagging can be applied to any type of classification and prediction 
model. An ensemble may even contain models of different types, 
e.g., trees, SVMs, ANNs, and Bayesian networks.
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Intuition for Model Error
• A prediction model is a function 𝑓: 𝑋 → 𝑌 that returns a prediction 𝑓(𝑥)

for input 𝑥. When the model is trained using training data 𝑑, then we 
write 𝑓(𝑥; 𝑑) to highlight the dependence on 𝑑.

• We train 𝑓 to represent an unknown true distribution that we can think of 
as a set of pairs (𝑥, 𝑦), where 𝑥 is a vector of 1 or more input-attribute 
values and 𝑦 is the output value. (The training data is generally assumed 
to be a random sample from this distribution.) To measure model quality 
for prediction/regression, we use squared error, defined as the squared 
difference 𝑓 𝑥 − 𝑦 2 between predicted and true output for a given 
input 𝑥.

• Example: To predict income from age, 𝑋 is age and 𝑌 is income. (When 
predicting income from age and highestDegree, 𝑋 is a 2-dimensional 
vector (age, highestDegree), and so on.)
– Assume the model predicts 𝑓 age = 30 = 80, while the true distribution has 

incomes 50, 70, 70, and 90 associated with age 30.
– Total squared error for age 30 then is 

(50 − 80)2+(70 − 80)2+(70 − 80)2+(90 − 80)2= 1200.
– A better prediction would be the average income for age 30, i.e., 70: 

(50 − 70)2+(70 − 70)2+(70 − 70)2+(90 − 70)2= 800.
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Intuition for Model Error (cont.)
• The total model error is the sum of squared errors over the 

entire distribution of (𝑋, 𝑌) combinations. For discrete 
input this is σ(𝑥,𝑦)∈(𝑋,𝑌) 𝑦 − 𝑓(𝑥; 𝑑) 2. (It would be the 
corresponding integral for continuous cases.)

• How can we take the impact of the training data into 
account? Let 𝐷 be the set of possible training datasets from 
which the actual training dataset 𝑑 is randomly picked. 
Then the error over all possible training sets is

෍

𝑑∈𝐷

෍

(𝑥,𝑦)∈(𝑋,𝑌)

𝑦 − 𝑓(𝑥; 𝑑) 2

– It may seem more intuitive to consider the average error per 
training set, i.e., divide the above formula by |𝐷|. However, 
since all models are evaluated against the same 𝐷, |𝐷| is a 
constant that is independent of model choice. It therefore does 
not impact the minimization over possible models 𝑓.
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Mathematical Derivation of the Bias-
Variance Tradeoff

• The bias-variance tradeoff can be derived using statistical decision theory. 
Consider 3 random variables 𝑋, 𝑌, and 𝐷, where
– 𝑋 takes on any 𝑚-tuple of real numbers to represent a vector of 𝑚 input-attribute values,
– 𝑌 takes on any real number to represent the output-attribute value, and
– 𝐷 takes on any set of 𝑚 + 1 -tuples of real numbers to represent a training dataset.

• The training data is drawn from the true joint distribution of (𝑋, 𝑌) pairs. We want 
to learn this unknown distribution by constructing from the training data a 
function 𝑓(𝑋), the prediction model, that returns good approximations of the true 
𝑌 for a given input 𝑋. To make the dependence of the model on the training data 
explicit, we write 𝑓(𝑋; 𝐷).

• The best model is the one with lowest mean squared error over 𝑋, 𝑌, and 𝐷. How 
can we mathematically express this error as a function of model 𝑓?
– Assume model 𝑓 was trained on data 𝐷 = 𝑑. Its prediction error for input 𝑋 = 𝑥 is defined as 

𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋 = 𝑥, 𝐷 = 𝑑 , i.e., the expected squared difference between model 
prediction 𝑓(x; d) and the true output values 𝑌 associated with input 𝑥.

– When considering all inputs, the expected error is the expectation over 𝑋:
𝐸𝑋 𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋, 𝐷 = 𝑑 .

– When considering all training datasets, the expected error is the expectation over 𝐷:
𝐸𝐷 𝐸𝑋 𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋, 𝐷 .

• The last formula can be rewritten as 𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷 .
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Why Optimize for this Expectation?

• Here is the formula again: 𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋, 𝐷
• 𝐸𝑋: We do not want a model that makes good predictions 

only for some specific inputs, while producing large errors 
for others.

• 𝐸𝐷: Similarly, our induction method should create an 
accurate model not only for certain “lucky” training 
datasets, while creating a poor model for others.

• 𝐸𝑌: Similarly, we need to consider all possible outputs.
• Optimizing for the expectation over all combinations 

ensures that, no matter what training data is presented to 
us, we will strive for a model that works well for the entire 
distribution of input-output combinations.

• We discuss next how to transform the formula to a format 
that clearly shows bias and variance.
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First consider inner term 𝑬𝒀 𝒀 − 𝒇(𝑿;𝑫) 𝟐 | 𝑿, 𝑫 .

Using 𝑌 − 𝑓 𝑋;𝐷 = (Y − E Y X]) + (E[Y X − f X; D ), we derive
𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷

= 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + 2𝐸𝑌 𝑌 − 𝐸 𝑌 𝑋] 𝐸[𝑌 𝑋 − 𝑓 𝑋;𝐷 | 𝑋, 𝐷

+ 𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷

The second term 𝐸𝑌 Y − E Y X] E[Y X − f X; D | 𝑋, 𝐷 is equal to

𝐸𝑌 𝑌𝐸 𝑌 𝑋 − 𝑌𝑓 𝑋;𝐷 − 𝐸2 𝑌 𝑋] + 𝐸[𝑌 𝑋 𝑓(𝑋;𝐷) | 𝑋, 𝐷
= 𝐸𝑌 𝑌𝐸 𝑌 𝑋 | 𝑋, 𝐷 − 𝐸𝑌 𝑌𝑓 𝑋;𝐷 | 𝑋, 𝐷
− 𝐸𝑌 𝐸2 𝑌 𝑋] | 𝑋, 𝐷 +𝐸𝑌 𝐸[𝑌 𝑋 𝑓 𝑋;𝐷 | 𝑋, 𝐷

Note that E[Y | X] does not change with Y. And neither Y nor E[Y | X] depend on D, hence 
𝐸𝑌 𝑌𝐸 𝑌 𝑋 | 𝑋, 𝐷 = 𝐸 𝑌 𝑋 𝐸𝑌 𝑌 | 𝑋 = 𝐸2 𝑌 𝑋]

Similarly, since f(X; D) does not depend on Y:
𝐸𝑌 𝑌𝑓 𝑋;𝐷 | 𝑋, 𝐷 = 𝑓 𝑋;𝐷 𝐸 𝑌 𝑋

and
𝐸𝑌 𝐸2 𝑌 𝑋] | 𝑋, 𝐷 = 𝐸2 𝑌 𝑋]

and
𝐸𝑌 𝐸[𝑌 𝑋 𝑓 𝑋; 𝐷 | 𝑋, 𝐷 = 𝑓 𝑋;𝐷 𝐸 𝑌 𝑋

Hence the second term cancels out to zero.
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Reminder: for the inner term of the squared error of the learned model 𝑓 we derived
𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷

= 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + 2𝐸𝑌 𝑌 − 𝐸 𝑌 𝑋] 𝐸[𝑌 𝑋 − 𝑓 𝑋;𝐷 | 𝑋, 𝐷

+ 𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷

and showed 𝐸𝑌 𝑌 − 𝐸 𝑌 𝑋] 𝐸[𝑌 𝑋 − 𝑓 𝑋;𝐷 | 𝑋, 𝐷 = 0.

Now we turn our attention to the third term 𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷 . Since both 
E[Y | X] and f(X; D) do not depend on Y, we obtain

𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷 = E Y X] − f(X; D) 2

Putting it all together, we derive
𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷 = 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + E Y X] − f(X; D) 2

This means that so far we have shown for squared error of the model:
𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷
= 𝐸𝑋𝐸𝐷 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + E Y X] − f(X; D) 2

= 𝐸𝑋𝐸𝐷 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + 𝐸𝑋𝐸𝐷 E Y X] − f(X; D) 2

Since the first term of the error formula does not depend on D, this simplifies to
𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷

= 𝐸𝑋 𝐸𝑌 Y − E Y X] 2 | 𝑋 + 𝐸𝑋𝐸𝐷 E Y X] − f(X; D) 2
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Now consider the inner part 𝐸𝐷 E Y X] − f(X; D) 2 of the second term. Analogous to 
the derivation for 𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷 , we use

f X; D − E Y X] = f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) + 𝐸𝐷 𝑓(𝑋; 𝐷) − E Y X]
to show that
𝐸𝐷 E Y X] − f(X; D) 2 = 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2 + 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2

Plugging this result into the squared error formula, we obtain
𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷
= 𝐸𝑋[

]
𝐸𝑌 Y − E Y X] 2 | 𝑋 + 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2

+ 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2

= 𝐸𝑋 𝐸𝑌 Y − E Y X] 2 | 𝑋

+𝐸𝑋 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2

+𝐸𝑋 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2

The three terms in the expectation formula are called irreducible error, variance, and bias, 
respectively. We discuss each in more detail on the next pages.



Irreducible Error
• Note that 𝐸𝑋 𝐸𝑌 Y − E Y X] 2 | 𝑋 does not depend on model 𝑓 or 

data sample 𝐷. This means that no matter what model we choose, this 
component of the prediction error will remain the same.

• The term therefore measures the inherent noisiness of the data. In 
particular, if some input 𝑋 = 𝑥 is associated with different values of 𝑌, 
then there cannot be a single “correct” 𝑌 for 𝑥: no matter the prediction 
for that 𝑥, any model will make an error.
– Consider a model for predicting income based on GPA; i.e., 𝑋 is GPA and 𝑌 is 

income. Assume the following about the (unknown) true joint distribution of 
GPA and income: For GPA=3.8, income is always 90K, but for GPA=3.4, income 
is 40K or 50K, each with probability 0.5.

– Then E[income | GPA=3.8] = 90K and hence Eincome[(income - E[income | 
GPA=3.8])2 | GPA=3.8] = Eincome[(income – 90K)2 | GPA=3.8]. Since for GPA=3.8 
the probability of income=90K is 1.0, this expectation is 1.0(90K-90K)2 = 0.

– Now consider GPA 3.4. Here E[income | GPA=3.4] = 0.5(40K+50K) = 45K and 
hence Eincome[(income - E[income | GPA=3.4])2 | GPA=3.4] = Eincome[(income –
45K)2 | GPA=3.4]. Since for GPA=3.4 the income is 40K or 50K, each with 
probability 0.5, this expectation is 0.5(40K-45K)2+0.5(50K-45K)2 = (5K)2.
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Model Variance
• Model variance 𝐸𝑋 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2 should not be confused with the notion of 

variance of a random variable. It measures how much the predictions of an individual model differ 
from the average prediction of all models trained on the different possible training sets.
– Note that 𝑓 𝑋 = 𝑥;𝐷 = 𝑑 is the 𝑌-value returned for input 𝑥 by a model 𝑓 that was trained on training 

data 𝑑. Similarly, 𝐸𝐷 𝑓(𝑋 = 𝑥;𝐷) represents the expected prediction for 𝑥, taken over all models trained 
on the possible training sets.

• Variance is zero if and only if f X; D = 𝐸𝐷 𝑓(𝑋; 𝐷) for all inputs 𝑥, i.e., the individual model is 
identical to the model average over the different training sets.
– Consider model f X; D = 1, which always returns 1. For each input, f X; D = 𝐸𝐷 𝑓(𝑋;𝐷) = 1.

• Variance is high if and only if f X; D is very different from the model average, i.e., when changing 
the training data results in large model changes.
– Consider a distribution where a random 50% of inputs have output 2, the others -2. A 1-nearest-neighbor 

model predicts for input 𝑥 the output 𝑦′ where (𝑥′, 𝑦′) is the training record with the minimal distance from 
𝑥′ to 𝑥 (ties broken arbitrarily). By construction, there is a 50-50 chance that 𝑦′ is -2 or 2, therefore 

𝐸𝐷 𝑓(𝑋;𝐷) = 0.5 ∙ (−2) + 0.5 ∙ 2 = 0 and variance simplifies to 𝐸𝑋 𝐸𝐷 f X; D
2

. By construction, 

f X; D
2
= 4 and hence 𝐸𝐷 f X; D

2
= 4.

– We can reduce variance by averaging predictions over the 𝑘 > 1 nearest neighbors in the training data. For 
𝑘 = 2, with probability 0.25 both nearest neighbors have output -2, with probability 0.5 one is -2 and the 
other 2, and with probability 0.25 both are 2. This implies 𝐸𝐷 𝑓(𝑋;𝐷) = 0.25 ∙ −2 + 0.5 ∙ 0 + 0.25 ∙ 2 =
0 and 𝐸𝐷 f X; D

2
= 0.25 ∙ (−2)2+0.5 ∙ 0 + 0.25 ∙ 22 = 2, halving the variance compared to the 1-

nearest-neighbor model.

• In summary, model variance is high if model predictions closely track individual 𝑌-values found in a 
training set. By “smoothing” over many “nearby” samples, model variance can be reduced.
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Model Bias
• Model bias 𝐸𝑋 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2 should not be confused with 

the notion of bias for estimators. It measures how well 𝑓 can represent 
the (𝑋, 𝑌) combinations of the true data distribution.
– 𝐸 𝑌 𝑋] does not depend on the model, but only on the data distribution—it 

is the expected value of the output for a given input.
– 𝐸𝐷 𝑓(𝑋; 𝐷) describes the prediction for some input X, averaged over the 

models trained for the different training sets.

• Bias is zero, if and only if 𝐸𝐷 𝑓(𝑋; 𝐷) = 𝐸 𝑌 𝑋] for all 𝑋. For this to hold, 
model 𝑓 should be flexible enough to represent the relationship between 
𝑋 and 𝑌.
– Consider true distribution 𝑌 = 𝑋 and assume we train a model that fits a line 

to the training data. Clearly, this line is 𝑓 𝑋;𝐷 = 𝑋, i.e., it matches the true 
distribution. Since by construction 𝐸𝐷 𝑓(𝑋; 𝐷) = 𝑋 = 𝐸 𝑌 𝑋], bias for this 
model is zero.

• Bias is high when the model is not flexible enough to represent the data 
distribution.
– Consider the same data, but now a constant model 𝑓 𝑋;𝐷 = 𝑐 for some 

constant 𝑐. Since 𝐸 𝑌 𝑋] = 𝑋 we obtain 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2 =
(𝑋 − 𝑐)2, i.e., quadratically increasing bias with increasing difference between 
𝑋 and 𝑐. 
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Overfitting
• The bias-variance tradeoff is closely related to the 

problem of overfitting. A model overfits when it 
represents the training sample too closely, and hence 
does not generalize well to the (unknown) true 
distribution the sample was drawn from.

• In other words, a model that overfits has excessively 
high variance and would improve by lowering that 
variance.

• In practice, overfitting can be detected by comparing 
prediction error on the training data to the error on a 
withheld test dataset that was not used for training.
– If training error is “significantly” lower than test error, then 

the model likely overfits: it performs well on the data it 
was trained on but not other data drawn from the same 
distribution.
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Where is the Tradeoff?
• As discussed above, the simple constant model has 

zero variance, but potentially high bias because most 
real-world functions are not flat. On the other hand, a 
very flexible model like 1-nearest neighbor follows the 
idiosyncrasies of the given training sample too closely, 
achieving very low bias at the cost of high variance.

• This showcases a typical behavior of machine learning 
models: Increasing the “flexibility” of a model allows it 
to capture more complex real relationships (lower 
bias), but also makes it more sensitive to changes in 
the training sample (higher variance). The latter implies 
that the model is more likely to pick up spurious
relationships that hold for the given training sample 
but not the true distribution.
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Is There an Optimal Model?
• Somewhat surprisingly, there is! For prediction, the 

optimal model is f X; D = 𝐸 𝑌 𝑋].
– For variance 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2 , this results in 
𝐸𝐷 𝐸 𝑌 𝑋] − 𝐸𝐷 𝐸 𝑌 𝑋] 2 = 𝐸𝐷[

]
(

)
𝐸 𝑌 𝑋] −

𝐸 𝑌 𝑋] 2 = 0.
– For bias 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2, this results in 

𝐸𝐷 𝐸 𝑌 𝑋] − 𝐸 𝑌 𝑋] 2 = 𝐸 𝑌 𝑋] − 𝐸 𝑌 𝑋] 2 = 0
as well.

• Unfortunately, learning this model accurately would 
take a practically infinite amount of training data.
– Notice that for each input, we need to estimate the 

expected output. To do so reliably, we need multiple 
training records for every possible input value. In practice, 
most inputs are not present in the training data at all; 
others occur just once.
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Bias and Variance for Decision Trees
• Consider a binary decision stump, i.e., a tree with a single binary split 

node. It partitions the training data into two (large) subsets. The average 
of 𝑌 over a large sample is very stable (replacing a few sample points will 
not affect that average). This implies very low variance. On the other 
hand, the stump represents a simple 2-step function that cannot model 
complex interactions between attributes and hence has high bias.

• The other extreme is a deep tree where each training record appears in a 
different leaf. Even a small modification of the training data directly affects 
the predictions in the corresponding leaves, hence this tree has high 
variance. Bias is low because the large tree can model complex decision 
boundaries, perfectly separating the different classes from each other.

• In general, a larger number of split nodes results in higher variance and 
lower bias.
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Bias-Variance Tradeoff in Action
• The following experiment for the K-nearest neighbor (KNN) prediction technique 

shows the bias-variance tradeoff in practice. KNN predicts output Y for a given 
input X=x by returning the average Y value over the K data points closest to x in the 
training data.
– Larger K averages over a larger neighborhood. This decreases variance (as variations in training 

data are averaged out) but increases bias (as local trends are smoothed over).

• Consider quadratic function f(X) = 𝑋2. Given a training set that approximately 
reflects this function, the goal is to train a KNN model that learns the function as 
accurately as possible.

• Each training set consists of 50 pairs (x,y) generated as follows: Choose values for x 
uniformly at random from range −2 ≤ 𝑥 ≤ 2. For each x, generate the 
corresponding y as 𝑦 = 𝑥2 + 𝜀, where 𝜀 is the noise, selected uniformly at random 
from range [-0.5, 0.5].

• Bias and variance are explored experimentally for KNN with K=1, K=20, and K=100.
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Predictions made by five different KNN models, each trained on a different data sample, for K=1. Notice 
that the models reflect the noise in the training data and hence differ significantly from each other. This 
reflects their high variance caused by considering only the single nearest neighbor.
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Average prediction over 200 different KNN models , each trained on a different data sample, for K=1 (red 
line) compared to the correct function Y=X2 (green line). This plot shows the bias of the 1NN model. As 
expected, since 1NN makes predictions based on very small local neighborhoods, it can closely model any 
training data, resulting in very low bias.
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Predictions made by five different KNN models , each trained on a different data sample, for K=20. It is 
clearly visible that the individual models are less “noisy” than for 1NN, because 20NN averages over larger 
neighborhoods. (The horizontal lines at the left and right are caused by boundary effects as points near the 
extremes have most of their neighbors on one side, instead of evenly distributed on their left and right.)
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Average prediction over 200 different KNN models , each trained on a different data sample, for K=20 (red 
line) compared to the correct function Y=X2 (green line). This plot shows the bias of the 20NN model. Not 
surprisingly, by averaging over larger neighborhoods than 1NN, 20NN cannot capture local behavior, in 
particular at the center and the extremes of the range.
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Predictions made by five different KNN models , each trained on a different data sample, for K=50. Since 
there are only 50 training records, each prediction is the average over all those 50 points, resulting in a 
constant function. The different functions are more similar to each other than for 20NN and 1NN, showing 
the lower variance due to the averaging over larger neighborhoods.
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Average prediction over 200 different KNN models , each trained on a different data sample, for K=50 (red 
line) compared to the correct function Y=X2 (green line). This plot shows the high bias of the 50NN model, 
which has little in common with the actual quadratic function. Not surprisingly, by averaging over the entire 
domain, 50NN cannot capture local behavior for different X values at all.
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Let us return to bagging and take a closer 
look at how it works in practice.



Bagging Reminder

• Bagging stands for bootstrap aggregation.

• Given a training data set D, a bagged 
ensemble is trained as follows:

– Create e independent bootstrap samples of D.

– Train e individual models, each separately on a 
different sample.

• The bagged model computes the output for a 
given input X=x as follows:

– Compute Mi(x) for each of the e models M1,…, Mj.

– Return the average of these individual predictions.
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What is a Bootstrap Sample?
• Consider a training dataset with n records.
• Each bootstrap sample Di also contains n records. 

These records are sampled from D uniformly at 
random, using sampling with replacement.

• This implies that some records from D might be 
sampled more than once, while others are not 
sampled at all.
– Each training record has probability 1 – (1 – 1/n)n of 

being selected at least once in a sample of size n. For 
large n, this expression converges to 1 – 1/e = 0.63.
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Bagging Challenges
• The individual models in a bagged ensemble should be independent of 

each other. Only then can variance be effectively reduced through model 
averaging.

• Independence can be achieved through training on independent data 
samples, but in practice we usually settle for less because (1) only a 
limited amount of labeled data is available and (2) for each model, the 
training set needs to be representative of the overall data distribution.
– Small training data jeopardizes prediction quality, which is dangerous for 

ensemble models. Recall that each model must be more than 50% accurate 
for the ensemble to improve over an individual model.

• Bootstrap sampling represents a practical solution to obtain many training 
sets that are reasonably independent and large. In contrast, simply 
partitioning D into j subsets would create more independence, but the n/j 
records per partition may not sufficiently represent the data distribution.

• Independence can be increased by diversifying models. For example, 
Random Forest improves tree diversity compared to plain bagged trees by 
limiting the choice of split attributes to a random subset of the available 
attributes, each subset independently chosen for each node. Or one can 
include different model types in the same ensemble, e.g., trees, SVMs, 
and regression models.
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Typical Bagging Results
• For bagging to improve significantly over individual models, 

the ensemble might need dozens or even hundreds of 
individual models. Since bagging reduces variance without 
affecting bias, each individual model should overfit, having 
low bias even at the cost of high variance.
– For decision trees, choose trees with more split nodes than for 

the best individual model. For KNN, choose a smaller K.

• Due to overfitting of individual models, small bagging 
ensembles tend to have mediocre prediction quality. As 
more models are added, variance is “averaged away” and 
prediction quality typically improves until it hits a ceiling. If 
it does not, then either individual models overfit too much 
to a degree where they are less than 50% accurate; or they 
are not sufficiently independent of each other.

• The next pages show real experimental results that 
illustrate the typical behavior of bagged ensembles.
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Typical bagging behavior on a real-world problem with bird-observation data. The graph shows 
how ensemble accuracy (higher is better) improves as more tree models are added. At about 
50 trees the ensemble hits a ceiling.
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Typical bagging behavior on a real-world problem with bird-observation data. The graph shows 
how the root mean squared error (lower is better) of the ensemble improves as more tree 
models are added. Even at 100 trees, ensemble error is still improving, suggesting that more 
trees should be added.
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Typical bagging behavior on a real-world problem with bird-observation data. The graph shows 
how the area under the ROC curve (higher is better) of the ensemble improves as more tree 
models are added. Even at 100 trees, ensemble ROC area is still improving, suggesting that 
more trees should be added.



Bagging in MapReduce

• It is easy to parallelize bagging. For model 
training, each bootstrap sample and 
corresponding individual model can be 
created independently. Similarly, for 
predictions each model can be evaluated 
independently, followed by a simple 
computation of the average across models.

• Existing libraries for local (in-memory) model 
training can be leveraged by having each 
individual model trained completely inside a 
task.
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Parallel Training
• Assume a machine-learning library is available for in-memory training on a single 

machine. Each of the j models in the ensemble can be trained in a different task. 
This task only needs a bootstrap sample and model parameters to control the 
training process.
– Model parameters can be passed to all Reducers using the file cache. Each line in the file 

states the model identifier and corresponding parameters.

• Mappers create j copies of each data record and send them to j different Reduce 
calls. Each Reduce call creates its own bootstrap sample and then trains the model.
– If training data exceeds memory size, Map can randomly sample to reduce data size, setting p

< 1.0. (This also improves model independence.)
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map( training record r )
for i = 1 to j do

emit(i, r) with probability p

class Reducer {

setup () { array params = load from file cache}

reduce(i, [r1, r2,…])
R = load [r1, r2,…] into memory
B = MLlibrary.createBootstrapSample( R )
M = MLlibrary.trainModel( B, params[i] )
emit( i, M ) // Or write to HDFS/S3 file

}
}

Model-parameter file:
ID, list of parameters
1, parameters for model 1
2, parameters for model 2
3, parameters for model 3
…



Alternative Parallel Training
• The previous MapReduce program transfers pj input copies from Mappers 

to Reducers. The Map-only program below avoids this transfer.
– The entire training set is copied to all worker machines using the file cache.
– Mappers locally create bootstrap samples and train a model for each sample.

• This program transfers as many input copies from DFS as there are 
machines executing Map tasks. But how does each Mapper know how 
many models to create and which parameters to use for them?
– We again use the model parameter file, but this time make it the input of the 

Map-only job, letting each Map call train the corresponding model.
– Since the input file is small and each line creates a large amount of work for 

sampling and model training, the default setting of 1 Map task per file split 
would be too coarse-grained, possibly resulting in a single Map task for the 
job. The NLineInputFormat class can be used to create smaller input splits.
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map( model number i, model_parameters ) {
read the training data from file cache, creating a sample S that fits in memory, using sampling rate p

B = MLlibrary.bootstrap(S)
M = MLlibrary.trainModel( B, model_parameters )
emit(i, M) // Or write to HDFS/S3 file

}



Making Predictions in Parallel

• Each individual model in the ensemble needs to 
compute its predictions for each test record. 
Abstractly, this corresponds to the Cartesian 
product between the set of models and the set of 
test records.

– This is followed by a simple aggregation, computing 
the average prediction (or majority vote) for each test 
record.

• What is the best way to partition this 
computation over multiple tasks? We will discuss 
three options and compare their properties.
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Prediction: Vertical Stripes
• To implement vertical partitioning in MapReduce, the test-record 

file is copied to all Mapper machines using the file cache. The file 
containing the models is the input of the job.

• Map reads a model and computes its prediction for every test 
record. Reduce computes the average prediction per test record.

• Data transfer (without combining and excluding final output):
– HDFS to Map: #mapperMachines * |test data file| + 1 * |model file|
– Map to Reduce: #models * |test data file|

• Combining is effective if a Mapper receives multiple models.
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Class Mapper {
T = read all test records from file cache

map( model M ) {
for each t in T do

emit( t, M(t) )
}

}

reduce( t, [M1(t), M2(t),…] ) {
for each M(t) in input list

update running sum and count

emit( t, sum/count)
}



Prediction: Horizontal Stripes
• To implement horizontal partitioning in MapReduce, the model file 

is copied to all Mapper machines using the file cache. The file 
containing the test records is the input of the job.

• Since each Map task has the entire bagged model, it can compute 
the average prediction locally, eliminating the need for a Reduce 
phase. Map reads a test record and computes its prediction for 
every model, keeping track of running sum and count to emit the 
average in the end.

• Data transfer (excluding final output):
– HDFS to Map: 1 * |test data file| + #mapperMachines * |model file|
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Class Mapper {
Models = read all models from file cache

map( test record t ) {
for each M in Models do

compute M(t) and update running sum and count

emit( t, sum/count )
}

}

Models

R
ec

o
rd

s



Prediction: Blocks
• To implement partitioning into A-by-B blocks in MapReduce, both test 

data and model file must be appropriately partitioned and duplicated. The 
algorithm is identical to 1-Bucket-Random, which we discuss in another 
module. Note that a post-processing job is needed to aggregate 
predictions across the different blocks (not shown below).

• Data transfer (without in-Reducer combining and excluding final output):
– HDFS to Map: 1 * |test data file| + 1 * |model file|
– Map to Reduce: B * |test data file| + A * |model file|
– Reduce to HDFS: B  * 2 * #testRecords

• Each test record is assigned to a “row” of B blocks, producing a (sum, count) pair per 
block. In-Reducer combining could lower this when multiple blocks are processed in the 
same Reducer.

– Post-processing: read from HDFS B * 2 * #testRecords records with prediction 
sum and count for each test record
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MapReduce Program for Block Partitioning
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map(…, object x) {
if (x is a test record) {

// Select a random integer from range [0,…, A-1]
row = random( 0, A-1 )

// Emit the record for all regions in the selected “row”.
for key = (row * B) to (row * B + B – 1)

emit( key, (x, “S”) )
}
else {     // x is a model

// Select a random integer from range [0,…, B-1]
col = random( 0, B-1 )

// Emit the model for all regions in the selected
// “column”. This requires skipping B region numbers
// forward from start region key equal to col.
for key = col to ((A-1)*B + col) step B

emit( key, (x, “T”) )
}

}

reduce( regionID, [(x1, flag1), (x2, 
flag2),…]) {

initialize S_list and T_list

// Separate the input list by the data set
// the tuples came from
for all (x, flag) in input list do

if (flag = “S”)
S_list.add( x )

else
T_list.add( x )

for each test record t in S_list {
for each model M in T_list

compute M(t) and update running
sum and count

emit( t, sum/count )
}

}



Ensembles in Spark

• The Spark MLlib machine-learning library as of 
August 2021 offered two types of ensembles: 
Random Forest (variation of bagging) and 
Gradient-Boosted Trees (GBT). More will likely 
be added over time.

• Challenge question: Find out how distributed 
training and prediction is implemented for 
these two tree-based methods.
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Random Forest in MLlib With DataSet
(from Spark 2.3.2 Documentation)
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import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{RandomForestClassificationModel, RandomForestClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}

// Load and parse the data file, converting it to a DataFrame.
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

// Index labels, adding metadata to the label column. Fit on whole dataset to include all labels in index.
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(data)
// Automatically identify categorical features and index them. Set maxCategories so features with > 4 distinct values are treated as continuous.
val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(4).fit(data)

// Split the data into training and test sets (30% held out for testing).
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))

// Train a RandomForest model.
val rf = new RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setNumTrees(10)

// Convert indexed labels back to original labels.
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)

// Chain indexers and forest in a Pipeline.
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, rf, labelConverter))

// Train model. This also runs the indexers.
val model = pipeline.fit(trainingData)



Random Forest in MLlib With DataSet
(from Spark 2.3.2 Documentation, cont.)
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// Make predictions.
val predictions = model.transform(testData)

// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5)

// Select (prediction, true label) and compute test error.
val evaluator = new MulticlassClassificationEvaluator()

.setLabelCol("indexedLabel")

.setPredictionCol("prediction")

.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println(s"Test Error = ${(1.0 - accuracy)}")

val rfModel = model.stages(2).asInstanceOf[RandomForestClassificationModel]
println(s"Learned classification forest model:\n ${rfModel.toDebugString}")
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Another popular ensemble method is 
boosting. How does it differ from bagging 
and how can it be parallelized?



Boosting Overview
• There are different boosting variants. We discuss the classic AdaBoost 

(Adaptive Boosting) approach.
• Like bagging, it creates an ensemble of 𝑀 models, but each individual 

model has a weight according to its prediction accuracy: higher accuracy 
means higher weight. The ensemble prediction is the weighted sum of the 
individual model predictions.
– Intuitively, instead of treating all models equally, AdaBoost “listens” more to 

the more accurate models.

• The other difference to bagging is that AdaBoost trains models iteratively, 
one after the other. And while it uses sampling with replacement to create 
the training data for an individual model, training records have weights 
that control how likely they are to be sampled.
– Initially all training records have the same weight. After each iteration, 

AdaBoost increases the weights of records that were misclassified by the 
individual model trained in the last iteration, decreasing the weight of those 
that were correctly classified.

– This way more and more copies of a misclassified training record will appear in 
the training sample, forcing the model to “pay more attention to it to get it 
right.”
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Mathematical View
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Here we consider a classification model that 
can distinguish between any number of 
classes, not just two. Given some input 𝑥, 
each individual model 𝑀𝑖 votes its weight 𝛼𝑖
for some class. The ensemble tallies the 
total per class and returns the class that 
received the highest score. (This is weighted 
majority voting.)

Note that 𝛿 is an indicator function 
returning 1 if 𝑀𝑖 returns prediction 𝑦, and 
zero otherwise.

Bootstrap sample

Weighted sample

Weighted sample

Weighted sample

⋮

𝑀1

𝑀2

𝑀3

𝑀𝑗

Ensemble prediction for input 𝑥:

𝑀 𝑥 = argmax
𝑦

෍

𝑖=1

𝑗

𝛼𝑖 ∙ 𝛿 𝑀𝑖 𝑥 = 𝑦



Weighted Sampling Intuition

• Records that were incorrectly classified will 
have their weights increased. Records that 
were classified correctly will have their 
weights decreased.

• Assume record 3 is hard to classify. Its weight 
keeps increasing; therefore it is more likely to 
be chosen again in subsequent rounds.
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Given data 1 2 3 4 5 6 7 8 9

Sample in iteration 1 5 9 1 7 3 5 2 5 1

Sample in iteration 2 8 3 2 1 3 9 3 2 8

Sample in iteration 3 3 4 3 7 3 3 1 4 3



AdaBoost Details
• We are given 𝑛 training records 

(𝑥𝑙 , 𝑦𝑙)1≤𝑙≤𝑛, which AdaBoost 
samples from to train individual 
models 𝑀1, … ,𝑀𝑗. Record 𝑙 has 
weight 𝑤𝑙, such that σ𝑙𝑤𝑙 = 1.

• The error rate of model 𝑀𝑖 is

𝜀𝑖 =෍

𝑙=1

𝑛

𝑤𝑙 ∙ 𝛿 𝑀𝑖 𝑥𝑙 ≠ 𝑦𝑙

• 𝛿 is an indicator function that 
returns 1 if model 𝑀𝑖 misclassifies 
record (𝑥𝑙 , 𝑦𝑙); 0 otherwise.

• The weight of model 𝑀𝑖 (i.e., its 
importance in the ensemble) is 

𝛼𝑖 = ln
1 − 𝜀𝑖
𝜀𝑖
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𝛼𝑖 as a function of 𝜀𝑖. Note how a 
perfect model (𝜀𝑖 = 0) results in 
infinite weight, while error rate above 
0.5 results in negative weight. Both 
should never happen. The former is 
caused by overfitting and requires use 
of a model type with lower variance. 
The latter triggers a reset of all 
training-record weights and a re-
training of this individual model.



AdaBoost Details (cont.)

• After training individual model 𝑀𝑖, the 
weights of all training records are updated as 

𝑤𝑙
(𝑖+1)

=
𝑤𝑙
(𝑖)

𝑍𝑖
∙ ቐ

𝜀𝑖
1 − 𝜀𝑖

if 𝑀𝑖 𝑥𝑙 = 𝑦𝑙

1 if 𝑀𝑖 𝑥𝑙 ≠ 𝑦𝑙

• 𝑍𝑖 is a normalization factor to ensure that all 
new weights for iteration 𝑖 + 1 add up to 1.

• If an iteration’s error rate exceeds 0.5, then all 
weights are reverted to 1/n and that iteration 
is repeated.
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Illustrating AdaBoost
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Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Data points 

for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1

New weights

Example based on slides for textbook [Introduction to Data Mining by Tan, Steinbach, and 
Kumar. Pearson, 1st edition]. Note that the numbers appear incorrect, but they convey the 
flavor of the technique.



Illustrating AdaBoost
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Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Note: These numbers also appear incorrect.



Bagging vs. Boosting
• Analogy

– Bagging: diagnosis = multiple doctors’ simple-majority vote
– Boosting: weighted vote, based on each doctor’s previous 

diagnosis accuracy

• Sampling procedure
– Bagging: records have the same weight; easy to train in parallel
– Boosting: weights a training record higher if a model predicts it 

wrong; inherently sequential process

• Overfitting
– Bagging is robust against overfitting
– Boosting is susceptible to overfitting: make sure individual 

models do not overfit

• Accuracy is usually significantly better than a single 
classifier. And the best boosted model is often better than 
the best bagged model.
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Boosting in Spark

• Boosting differs from bagging in a crucial way: 
models are trained one-at-a-time.
– This is caused by the property that the prediction 

errors made by the i-th model affect the training 
of the (i+1)-st model.

• Hence the only opportunity for parallelism lies 
in the training of an individual model.

• Since Spark already offers parallel training of 
individual tree models, Gradient-Boosted 
Trees in MLlib rely on the parallel training of 
individual trees for boosting.
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Boosting in MLlib With DataSet (from Spark 
2.3.2 Documentation)
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import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{GBTClassificationModel, GBTClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}

// Load and parse the data file, converting it to a DataFrame.
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

// Index labels, adding metadata to the label column. Fit on whole dataset to include all labels in index.
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(data)
// Automatically identify categorical features and index them. Set maxCategories so features with > 4 distinct values are treated as continuous.
val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(4).fit(data)

// Split the data into training and test sets (30% held out for testing).
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))

// Train a GBT model.
val gbt = new GBTClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(10).setFeatureSubsetStrategy("auto")

// Convert indexed labels back to original labels.
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)

// Chain indexers and GBT in a Pipeline.
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, gbt, labelConverter))

// Train model. This also runs the indexers.
val model = pipeline.fit(trainingData)
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// Make predictions.
val predictions = model.transform(testData)

// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5)

// Select (prediction, true label) and compute test error.
val evaluator = new MulticlassClassificationEvaluator()

.setLabelCol("indexedLabel")

.setPredictionCol("prediction")

.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println(s"Test Error = ${1.0 - accuracy}")

val gbtModel = model.stages(2).asInstanceOf[GBTClassificationModel]
println(s"Learned classification GBT model:\n ${gbtModel.toDebugString}")



Summary
• Ensemble methods achieve high prediction accuracy 

and are good candidates for distributed computation 
due to their high cost. This applies particularly to 
bagging, because its models can be trained and 
queried independently.

• Boosting trains the ensemble one-model-at-a time, 
hence parallelism only comes from parallel training of 
individual models.

• Ensemble prediction follows a cross-product 
computation pattern with per-model aggregation. 
Depending on the implementation choice, this could 
be done without shuffling, a single shuffle phase, or 
might even require two shuffles (for block partitioning, 
due to the additional aggregation job).
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