
Data Mining: Clustering and
Prediction

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Key Learning Goals

• What is the difference between supervised
and unsupervised learning?

• Give an example for a supervised learning
algorithm.

• Give an example for an unsupervised learning
algorithm.

2

Key Learning Goals

• Write the pseudo-code for K-means clustering
in MapReduce.

• Will the Spark implementation of K-means be
significantly faster than the MapReduce
implementation? Justify your answer.

• For decision-tree training, explain the parallel
counting algorithm for a given set of possible
split point candidates using an example.

3

Introduction
• Data mining can be concisely characterized as

“statistics plus computers.” Its goals are similar to
those of statistical analysis, but the availability of
massive computing power enabled novel types of
automatic algorithms.

• Han et al. point out that the goal of data mining is
the extraction of interesting (non-trivial, implicit,
previously unknown and potentially useful)
patterns or knowledge from a huge amount of
data. [source: Jiawei Han, Micheline Kamber, and
Jian Pei. Data Mining: Concepts and Techniques,
3rd edition, Morgan Kaufmann, 2011]

4

Example Applications
• Classification, prediction

– Will a customer’s review of a product be affected by the earlier reviews?
– Is the incoming credit-card transaction legitimate or fraudulent?
– What is the probability of observing bird species X, given time of day, weather, climate, human

population features, and habitat features?
– Identify sub-atomic particles from measurements of energy levels in a collider.
– Predict the income from an ad shown by a search engine for a given keyword search query.
– Is this email spam or not?
– How likely is this bank customer to repay the mortgage?

• Clustering
– What are the main customer groups and what characterizes each group?
– What are the main categories of users of an online game?
– Identify groups of viruses with genetic similarity, which are different from other groups of

viruses.

• Graph mining
– How does information spread in a social network?
– Which people are likely to collaborate in the near future?
– Which communities do users belong to?

• Association rules
– What products do people tend to purchase together?

5

Typical Data Mining Steps:
1. Data Preparation

• In practice, the preparation phase can often take much longer and require
more resources than the actual mining phase. There are two major
preparation steps: (1) understanding data and domain, and (2) cleaning
and pre-processing the data.

• For data mining and its results to be meaningful, the data miner must
understand the domain and the given data. This generally requires close
collaboration with a domain expert.
– Understanding the data requires knowing the attributes, their types, and

meaning. This includes peculiarities like the encoding of missing data.
– Summary statistics such as min, max, mean, standard deviation, and quantiles

provide valuable insight about the data distribution.
– Histograms summarize one- and multidimensional distributions, helping

uncover skew and correlations.
– Further insights about relationships between different attributes can be

obtained from data summaries such as scatterplots and correlation
coefficients.

– Knowledge about statistical interactions between attributes (called variables in
statistics) helps the data miner decide which attributes should be explored
jointly, and which can be studied separately.

6

Typical Data Mining Steps:
1. Data Preparation (Cont.)

• Once the data and problem are sufficiently understood,
usually the data needs to be cleaned and pre-processed
before data mining can commence.
– Data cleaning often addresses noise and missing values. A

common data-cleaning challenge is to fix the encoding of
missing values. Sometimes there exists an explicit NULL value, in
other cases it might be encoded as -99, e.g., for an attribute like
age for which it is known that negative values are invalid.

– Data often needs to be integrated from multiple sources. In
addition to joining the data, this may require entity resolution.
For example, an author might appear as Amy Smith, A. Smith, or
Amy B. Smith in different contexts.

– Depending on problem and data mining method, it might be
necessary or beneficial to apply data reduction and
transformation such as normalization, Principal Components
Analysis, Wavelet transform, Fourier transform, or attribute
removal.

7

Typical Data Mining Steps:
2. Mining the Data

• After proper data preparation, data mining techniques
extract the desired information and patterns.
– For classification and prediction problems, first a model is

trained on a subset of the given labeled data. Model
quality is evaluated on a separate test set. Then the model
is used on new inputs to predict the desired output.

• Popular techniques are decision tree, Random Forest, SVM,
artificial neural network (Deep Learning), Bayesian approaches,
regression, and boosting.

– Clustering algorithms such as K-means, hierarchical
clustering, and density-based clustering are used to
identify groups of similar entities that are different from
other groups.

– Frequent-pattern mining is concerned with identifying
frequent itemsets, association rules, and frequent
sequences.

8

Typical Data Mining Steps:
3. Post-Processing

• A data mining model on its own usually is not intelligible. Hence additional
tools are used to determine and present what was learned from the data.

• For classification and prediction, there are many possible post-processing
tasks:
– To evaluate the quality of a prediction model, its accuracy or error rate on data

representing future input needs to be determined.
– A classification or prediction model usually is a complex “blackbox” function

that returns some output for a given input. Data analysts want to understand
the big picture of what the model has learnt. This usually involves identifying
(1) the most important variables and their effect on the output, (2) patterns
indicating variable interactions, and (3) compact rules explaining the
predictions.

• For clustering, analysts verify if the grouping makes sense based on their
domain expertise. Usually this also involves finding compact labels or
descriptions to express what the entities in the same cluster have in
common.

• Visualization of results and patterns found is a powerful tool for humans
to gain insights from data mining.

9

Example

• We take a closer look at Prof. Riedewald’s Scolopax system
for analysis of big observational data. Screenshots are from
its application to a large high-dimensional data set
containing reports of bird sightings in North America.
– This project has been completed, but many other researchers

are still working on related challenges.

• Scolopax relied on MapReduce to train models for
predicting the probability of observing a species given input
features such as location, time, habitat properties, climate
features, human population properties and so on.

• Users access it through a standard Web browser. Requests
are search queries for interesting patterns. These queries
were also processed on a MapReduce cluster, but all results
were managed in a distributed key-value store (HBase).

10

Strong-Trend Search
• In the example on the next page, Scolopax was used to

identify attributes that potentially have a strong effect
on the probability of observing a species.
– Each plot summarizes the effect of the attribute shown on

the x-axis.
– This effect was computed separately for different

attributes, different species, and different geographical
regions.

• The summaries are presented to the user ranked by the
strength of the estimated effect on the species-
observation probability. Since the plots are managed in
a key-value store, the user can then interactively
browse the result or filter based on properties such as
the attribute, species, or region of interest.

11

12

Dynamic-Pattern Discovery
• In the next example, Scolopax uses MapReduce to identify

clusters of related summaries. Here clustering was applied
to the annual trajectory of a species in different regions.
– The trajectory is defined by the overall probability of observing

the species in different months or weeks of the year.

• The clusters are based on trajectory similarity and do not
take geographical location into account. Hence if identified
clusters line up with large geographic regions, then they
might indicate a pattern caused by some biological process.
In the example, the 3 clusters show likely migration
behavior:
– Purple: The tree swallow spends the winter in the southern US

(Florida, the Gulf coast, and South Carolina).
– Green: In spring and fall it migrates north, crossing a horizontal

band that ranges from California to the Carolinas.
– Black: The tree swallow spends the summer in the northern US.

13

14

(Anti-)Correlation Search
• In this last example, Scolopax relies on MapReduce join

algorithms developed by Prof. Riedewald’s group to identify
relationships between species.

• The example is a join query that searches for pairs of plots
with the following properties: the plots are on different
species (eastern kingbird and belted kingfisher in the
example), but on the same attribute of interest (month in
the example) and the same geographical region (the red
box on the map highlights one of them for the example).

• The join results are then ranked based on the dissimilarity
of the two plots.
– Note the interesting opposite trends in several of the top-

ranked results. Seeing such a result helps the ornithologist
identify possible hypotheses about migration patterns or habitat
competition.

– However, we must be careful about false discoveries!

15

16

Important Note about Discovery
• Thanks to abundant data and powerful algorithms and hardware, it

is now feasible to explore a huge space of possible patterns.
• This increases the risk of discovering spurious patterns, i.e.,

patterns that arose due to idiosyncrasies or coincidences in the data
sample but are not representative of the true distribution.
– For example, if we measure the ratios between width and height of

buildings in Boston, we may find that some of them mirror the ratio of
distances between some planets or stars. However, it is unlikely that
the architect was indeed influenced by such celestial relationships…

• Scolopax will deliver both real and spurious patterns. It is then up to
the domain experts to either (1) apply statistical approaches to limit
the probability of false discoveries or (2) collect new data samples
specifically designed to verify or refute a hypothesis derived from a
discovered pattern.

17

Parallel Data Mining
• Many mature and feature-rich data mining libraries and products

are available. This includes the R system and the Weka open-source
Java library. Unfortunately, most data mining solutions are not
designed for execution in large distributed systems. This often
leaves only the following 3 options:

1. Use an existing, but often limited, library of distributed data
mining solutions, e.g., Apache Mahout or Spark ML.

2. Design your own distributed version of a data mining algorithm
and implemented it in MapReduce or Spark. This tends to be non-
trivial, as many data mining algorithms are sophisticated and rely
heavily on in-memory computation for performance.

3. Leverage existing mature libraries that were written for in-
memory execution on a single machine by using them in a larger
ensemble that can be trained and managed in a distributed
system. Weka, which is open-source and written in Java, presents
itself as an obvious choice for use in Hadoop.

18

19

Let us look at two popular types of data
mining and machine learning:
unsupervised learning and supervised
learning.

We start with clustering, which is an
unsupervised learning approach.

Clustering
• Clustering is one of the most popular dat mining approaches in

practice, because it automatically detects “natural” groups or
communities in big data. These clusters could be the end-result. Or
they could be used to improve other data mining steps by
customizing those steps depending on the cluster membership of
an object of interest.

• In general, a cluster is a collection of data objects. The goal of
clustering typically is to identify clusters such that objects are
similar to one another within the same cluster, but dissimilar to the
objects in other clusters.

• Clustering does not require any training data with known cluster
membership. Hence it is considered an unsupervised learning
method.

20

Three clusters based on the Euclidean
distances between objects.

Examples of Clustering Applications

• Marketing: Discover distinct consumer groups
based on the products people purchase. Then
use this knowledge for targeted marketing.

• Land use: Identify areas of similar land use in
an earth observation database.

• City-planning: Identify groups of houses
according to house type, value, and location.

• Bird studies: Find species with similar
migration behavior.

21

Ambiguity of Clusters

• The notion of what constitutes a cluster is
subjective and depends on the preferences of
the user.

22

2 clusters? 3 clusters? 4 clusters?

Distance and Similarity
• Clustering is inherently determined by the choice of

distance or similarity measure.
– Consider a dataset of bird-sighting reports. If the distance

is measured based on latitude and longitude, then
observations made in similar locations will be clustered
together. The same data set could instead be clustered
based on the weather on the observation day. Now a
cluster might contain reports from far-away locations that
had similar weather.

• The choice of distance or similarity measure depends
on user preferences.
– Document similarity is usually measured based on the

terms they contain.
– The Minkowski distance is a popular family of distance

measures.

23

Minkowski Distance
• Consider a data set 𝑥 1 , 𝑥 2 ,… , 𝑥(𝑛) of 𝑛 𝑑-

dimensional data points, i.e., each 𝑥(𝑖) is a 𝑑-
dimensional vector 𝑥1 𝑖 , 𝑥2 𝑖 , … , 𝑥𝑑 𝑖 .

• For 𝑞 > 0, the Minkowski distance between any two
data points 𝑥(𝑖) and 𝑥(𝑗) is defined as

σ𝑘=1
𝑑 𝑥𝑘 𝑖 − 𝑥𝑘 𝑗 𝑞 1/𝑞

• For 𝑞 = 1, it is called the Manhattan distance.
• For 𝑞 = 2, it is called the Euclidean distance.

24

Intuition for the Manhattan distance: It is the
distance of walking from 𝑥(𝑖) to 𝑥(𝑗) when walking
on a rectangular grid of roads—like in Manhattan,
New York.

𝑥(𝑖)

𝑥(𝑗)

Challenges of Distance Computation

• Since the distance or similarity measure
strongly affects the clustering, it should be
chosen carefully. Several challenges often
must be addressed:

– Curse of dimensionality

– Diverse attribute domains

– Categorical and ordinal attributes

• We discuss each challenge next.

25

Curse of Dimensionality
• The Minkowski distance between two objects is an

aggregate of the differences in the individual
dimensions. The more dimensions, the smaller the
relative impact of an individual dimension. If there are
many noisy attributes, they can bury the distance
signal in the combined noise. Other distance measures
suffer from similar issues.
– To address this problem, remove any attribute that is

known to be very noisy or not interesting.

• Depending on the attributes considered for the
distance computation, the clustering might change
significantly.
– If it is not known which attributes are of most interest, try

different subsets and determine experimentally for which
of them good clusters are found.

26

Diverse Attribute Domains
• An attribute with a large domain often dominates the overall

distance.
– Consider Amy, Bill, and Carla with (age, income) combinations (25,

$50K), (58, $51K), and (27, $52K). Amy and Carla have very similar age
and income, while Bill has similar income, but belongs to a different
generation. However, the absolute age difference is in the 30s, while
the income difference is in the 1000s, dominating the overall distance.

• This problem can be addressed by scaling and weighting.
– Scaling: Differences in attribute domains can be addressed by

normalizing each domain to [0,1], using a linear transformation.
Alternatively, a logarithmic transformation compresses differences
between large values more than for small ones.

– Weighting: Each attribute could be weighted according to its
importance. Then the distance is defined as a weighted sum over the
contributions in the individual dimensions.

• Choosing the appropriate transformation or weights requires expert
knowledge and often involves trial-and-error.

27

Categorical Attributes
• Categorical attributes encode concepts that have no natural notion

of order or numerical difference, making it difficult to choose a
distance measure.
– What is a meaningful distance between brown and black hair color,

and how does it compare to the distance between red and blonde?
– Experts may identify specialized measures, e.g., based on genetic

similarity of bird species.

• The distance for a categorical attribute could be set to 0 if the
values agree, and to 1 otherwise.

• Alternatively, a categorical attribute can be transformed to a set of
binary attributes. For each possible value a binary attribute is
created that is set to 1 if the categorical attribute has this value, and
to 0 otherwise. This is called one-hot encoding.
– Consider hair color with values blonde, red, brown, and black. In the

transformed data, 4-valued attribute hair color is replaced by 4 binary
attributes blonde, red, brown, and black. For a blonde person, they are
set to blonde=1, red=0, brown=0, and black=0.

28

Ordinal Attributes

• Ordinal attributes have a natural notion of order, but
not numerical difference. A typical example are ranks
in the army and star ratings for products. A product
rating of 4 stars is better than 3 stars, but is a 2-star
product twice as good as a 1-star product? Would
different evaluators agree how to quantify the
improvement reflected by one additional star?
– An ordinal attribute could be treated as a categorical

attribute for distance computation. However, this ignores
the additional knowledge about the ordering.

– To preserve the ordering, the values of the ordinal
attribute can be mapped to values in range [0,1]. For
example, product rating k between 0 and 5 stars can be
mapped to k/5. This mapping is based on implicit
assumptions about the differences and ratios between
ratings; it needs to be approached with care.

29

30

Next we explore algorithms that find
clusters.

K-means Clustering
• K-means is one of the most popular clustering

algorithms. It is comparably simple; therefore it
serves as a perfect example for an algorithm that
we can implement from scratch for parallel
execution.

• K-means has solid mathematical foundations,
with a well-defined optimization goal.

• In addition to a distance measure between
objects, the user specifies parameter K, the
number of clusters to be found. Starting from an
initial configuration of K cluster centers, the
algorithm iteratively adjusts the centers to
improve the clustering.

31

What is a Cluster Center?
• K-means uses the centroid of a set of objects as their

cluster center. Given a set C of objects, their centroid m
is defined as 𝑚 =

σ𝒙∈𝐶 𝒙

𝐶
, i.e., m’s value in dimension i is

the average of the values in the i-th dimension over all
objects in C.
– Consider a set C={(1,1), (2,4), (6,4)} of two-dimensional

data points. Its centroid is point ((1+2+6)/3, (1+4+4)/3) =
(3,3).

• As the example shows, the centroid does not need to
be in C.

• To compute the centroid, addition and division need to
be defined for the dimensions. This is guaranteed when
working in a vector space. Categorical and ordinal
attributes need to be transformed to numerical values.

32

K-means Algorithm

• The algorithm pseudo-code is shown below.

• For an example execution, see the next page.

33

// Input: desired number of clusters K, data set D
K-means(K, D) {

Centroids = choose K initial centroids

Repeat until centroids do not change {
For each x in D do

Assign x to the nearest centroid in Centroids

For each C in Centroids do
Re-compute C based on all data objects assigned to it

}
}

The algorithm performs
multiple iterations. In
each iteration, first each
data object is assigned
to the nearest center,
then the centers are
updated based on this
object assignment.

34

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Convergence of K-means: The example shows how cluster centers are adjusted in each
iteration. Colors indicate cluster membership for the input data points. Despite starting
with all three centers in the big group, K-means automatically pushes the centers out to
line up with the “natural” clusters. [from “Introduction to Data Mining" by Pang-Ning Tan,
Michael Steinbach, and Vipin Kumar. Addison-Wesley, 2006]

K-means Details
• K-means is comparably fast with complexity O(n * K * I * d). Here n

denotes the number of input objects, I the number of iterations,
and d the number of dimensions (i.e., attributes of the objects).

• Implementing K-means requires two crucial design decisions:
selection of the initial centers and choice of distance measure.
– The initial centers affect the final clustering found. Unfortunately, no

existing algorithm guarantees to pick initial centers that result in the
best clustering possible. Many heuristics have been proposed, e.g.,
some try to place the initial centers far away from each other to
improve the probability of each turning into the centroid of a different
“natural” cluster.

– A common approach relies on random restarts: Select the initial K
centers randomly from the input data and run K-means until
convergence. Then repeat for another set of K randomly selected
centers, until satisfied with the quality of the best clustering found.

– For vector spaces, the Euclidean distance is commonly used.
Depending on the application one can choose other measures such as
cosine similarity or a correlation coefficient.

35

Evaluating Cluster Quality
• As an unsupervised learning technique, there is no ground

truth about clusters and cluster membership. How can we
evaluate the quality of a clustering?

• In K-means, a centroid represents all objects in the cluster.
If an object is far from the centroid, then the centroid is a
poor representative for it. Hence the quality of a K-means
clustering is evaluated based on the “errors” made by
representing individual objects with the corresponding
cluster centroid. A common error measure in vector space
is the Sum of Squared Error (SSE), defined as
σ𝑖=1
𝐾 σ𝑥∈𝐶𝑖

dist2 𝑚𝑖 , 𝑥 . Here Ci denotes a cluster and mi its
centroid.

• The goal of K-means it to minimize SSE for a given K.
– In general, a larger K will result in lower SSE. Hence it is not

meaningful to use SSE for comparing 2 clusterings that were
obtained for different values of K.

36

K-means Convergence
• K-means iterates until all cluster centers stabilize. This raises two

questions:
• Will SSE improve in each iteration: Yes, until convergence.

– Given K cluster centers, K-means assigns each object to the nearest
center. If it re-assigns an object x from one cluster to another, x’s
distance to its cluster center must have decreased, reducing SSE.

– Given K clusters, K-means updates the centers. It is easy to show that
the centroid has a smaller SSE than any other possible center choice.
Hence if a cluster centroid is updated, SSE must have decreased.

• Will K-means converge: Yes.
– There is a finite number of possible partitionings of n objects into K

partitions.
– K-means iterates until the clustering does not change any more. In

each iteration, SSE decreases.
– Since SSE decreases in each iteration, K-means must have reached a

new partitioning it has not explored before. So, if it tried to go on
forever, it would eventually run out of configurations.

37

Optimality
• The previous discussion showed that each

iteration of K-means improves SSE until it
converges. Unfortunately, this does not mean
that it will always find the optimal clustering, i.e.,
the clustering with the lowest possible SSE for the
given data.

• More formally, K-means is guaranteed to
converge to a local optimum. Since there are
potentially many such local optima, it is not
guaranteed to converge to the global optimum.

• The choice of initial cluster centers determines to
which local optimum K-means will converge. Let’s
look at some examples.

38

39

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

In this example, the initial selection of cluster centers appears poor, because all three
centers are in the same “natural” cluster. However, iteration by iteration the centers
move in the right direction. [from “Introduction to Data Mining" by Pang-Ning Tan,
Michael Steinbach, and Vipin Kumar. Addison-Wesley, 2006]

40

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

In this example, the initial selection of cluster centers appears more reasonable as all
centers are fairly far apart. Unfortunately, K-means gets trapped in a local optimum that
does not correspond to the “natural” clusters. [from “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Addison-Wesley, 2006]

Selecting Initial Cluster Centers
• Since the choice of initial cluster centers determines to which local

optimum K-means converges, researchers have explored how to
find a good initial configuration. Unfortunately, there is no general
solution for this problem.

• Some heuristics attempt to place each initial cluster center in a
different “natural” cluster of the data. The probability of finding
such a configuration through random selection is extremely low.
Hence it is often attempted to place initial centers far apart from
each other. This is not guaranteed to work well either.

• Another option is to use a different clustering algorithm that does
not need an initial configuration, e.g., hierarchical clustering. The
clusters found by that algorithm could inform the choice of initial
centers for K-means.

• Even if K-means is lucky in choosing “good” initial cluster centers in
different natural clusters, it might converge to a “bad” clustering as
we will discuss next.

41

Limitations of K-means
• Assume the user was able to choose the perfect

value of K, the right distance measure, and the
best initial cluster centers. Would this guarantee
that a good clustering is found?

• Unfortunately, there are inherent limitations of K-
means that prevent it from finding the “natural”
clusters under certain circumstances.

• In particular, K-means has problems when
clusters are of differing sizes, densities, or have
non-globular shapes—as we illustrate with
examples below.

42

Differing Sizes

43

Natural clustering: Intuitively, many users
would like to discover the three clusters
indicated by point shape and color.

Optimal K-means result: The large natural cluster
contains many more points than the small ones. Due
to the different diameters of the natural clusters, K-
means cannot find them. Even if it started with the
perfect cluster centers, it would converge to a
clustering as shown, because that minimizes SSE. For
instance, note that points on the left fringe of the
large cluster are closer to the center of the left small
cluster than to the center of the large cluster.

[from “Introduction to Data Mining" by Pang-Ning
Tan, Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006]

Differing Density

44

Natural clustering: Intuitively, many users
would like to discover the three clusters
indicated by point shape and color.

Optimal K-means result: In this example, each
of the natural clusters has about the same
number of points. However, due to their
different densities, the large natural cluster has
a much larger diameter than the other two.
This results in the same problem as for the
previous example with differing sizes.[from “Introduction to Data Mining" by Pang-Ning

Tan, Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006]

Non-globular Shapes

45

Natural clustering: Intuitively, many users
would like to discover the two clusters
indicated by point shape and color.

Optimal K-means result: Due to the elongated
shape, some points of the left natural cluster
are closer to the right natural cluster than to
their own center. Again, even if K-means started
with the perfect cluster centers, it would still
converge to a clustering as shown, because that
minimizes SSE.[from “Introduction to Data Mining" by Pang-Ning

Tan, Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006]

Addressing K-means Limitations
• There exist solutions for the inherent problems of K-

means.
• Choose a different algorithm:

– Each clustering algorithm is designed for a certain intuitive
notion of a cluster. For instance, if the user is looking for
clusters based on point density, not based on minimizing
SSE, then they should consider an algorithm designed for
finding density-based clusters.

• Fix K-means through post-processing:
– Instead of using the desired K, the user can run K-means

for some K’ > K. Then the K’ clusters found are post-
processed by a combination of the following operations:

• Eliminate small clusters that may represent outliers.
• Split very large clusters.
• Merge clusters that are close to each other.

46

Fixing the Differing-Size Problem

47

The K-means run for K’=10 found 10 small clusters, each part of one of the three natural
clusters. An appropriate post-processing algorithm might be able to combine the 8 small
clusters in the middle to form the large natural cluster.

[from “Introduction to Data Mining" by Pang-Ning
Tan, Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006]

Fixing the Differing-Density Problem

48

The K-means run for K’=10 found 10 small clusters, each part of one of the three natural
clusters. An appropriate post-processing algorithm might be able to combine the 8 small
low-density clusters on the left to form the large natural cluster.

[from “Introduction to Data Mining" by Pang-Ning
Tan, Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006]

Fixing the Shape Problem

49

[from “Introduction to Data Mining" by Pang-Ning
Tan, Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006]

The K-means run for K’=10 found 10 small clusters, each part of one of the two natural
clusters. An appropriate post-processing algorithm might be able to combine each group
of five adjacent small clusters into the corresponding large natural cluster.

K-Means and Outliers
• K-means is sensitive to outliers, because each centroid is an

average of the cluster members. Even a single outlier with a
very large value in a dimension can dominate the average.

• This problem is addressed by the K-medoids algorithm.
Instead of the centroid, it represents a cluster by its medoid,
which is the most centrally located real object in a cluster.
– The algorithm works like K-means, but finding the medoid is

computationally more expensive than finding the centroid. For
an exact solution, the algorithm would try all objects in the
cluster to find the one that minimizes SSE. To reduce cost, it may
explore only a randomly selected subset.

50

Centroid

Cluster without outliers Cluster with an outlier

Centroid

Distributed K-Means
• Like other iterative algorithms, e.g., for graph

processing, we distinguish between immutable and
evolving data. The former should be loaded once and
then kept in memory, while the latter potentially needs
to be shuffled across the network.
– For clustering, the set of input objects is fixed. Each task

receives a partition of this dataset.
– Cluster centers can change in each iteration. When centers

change, membership of objects in clusters might also
change.

• Which data structures do we need to represent the
immutable and evolving data?
– We store the data objects in Objects and the cluster centers

in Centers.

51

Distributed K-Means (Cont.)
• Each iteration consists of two rounds.
• Round 1:

– Each task receives a partition of Objects. Spark can re-use
these partitions in later iterations.

– We broadcast Centers to all tasks.
– The task assigns each object in the partition to the closest

center. (Note that centroid computation benefits from
combining.)

• Round 2:
– Each task receives a group of objects that were assigned to

the same center. (It might receive multiple such groups.)
– The task computes the new center for the group by

averaging the coordinates of all objects in the group.

• The output of round 2 is the new set of centers.

52

K-Means in MapReduce
• We implement round 1 as Map and round 2 as Reduce. Centers is broadcast using

the file cache. Mappers must read their chunk of Objects anew in every iteration.
• The driver program repeatedly calls this program, putting the new Centers in the file

cache after each iteration.

53

Class Mapper {
Centroids // Array containing the K cluster centers

setup()
Centroids = read centroids from file cache

map(object o) {
closestCenter = Centroids[0]
minDist = dist(closestCenter, o)

for i=1 to k-1 {
if (dist(Centroids[i], o) < minDist))
closestCenter = Centroids[i]
minDist = dist(Centroids[i], o)

}
emit(closestCenter, o)

}
}

reduce(center, [o1, o2,…]) {
for each object o in inputList {

update object count
update coordinate-sum for each dimension

}

newCentroid = compute the average
for each dimension

emit (newCentroid)
}

Algorithm Analysis

• In each iteration, the entire Objects file is
transferred to Mappers, then from Mappers to
Reducers. Reducers write out the (usually small)
file with the new centroids, which is broadcast to
all Mappers in the next iteration. Like for the
iterative graph algorithms, performance suffers
from MapReduce’s inability to exploit the
repetitive structure of the computation.

– In fact, the MapReduce program executed on many
machines can take much longer to finish than the
sequential program.

54

K-Means in Spark
• Spark’s ability to maintain data in memory in RDDs or

DataSets enables the desired implementation where the
object set is kept across iterations.

• If we implement the algorithm from scratch, we need to:
– Broadcast the new centers to all Executors using broadcast() or

create a Scala collection that is automatically sent to all tasks.
– Keep Objects in an RDD or DataSet. Use cache() or persist() to tell

Spark to keep it in memory as much as possible.
– Use map on Objects, calling a function that for object o emits pair

(nearestCenterID, o).
– Group by nearestCenterID and aggregate each group to

compute the average in each dimension.

• For real code (from the Spark 2.4.0 distribution) look at
http://khoury.northeastern.edu/home/mirek/code/SparkK
Means.scala

• Or we can just use machine learning library Spark MLlib.

55

http://khoury.northeastern.edu/home/mirek/code/SparkKMeans.scala

K-Means in MLlib with RDD
(from Spark 2.3.2 Documentation)

56

import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data
val data = sc.textFile("data/mllib/kmeans_data.txt")
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()

// Cluster the data into two classes using KMeans
val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(parsedData, numClusters, numIterations)

// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(parsedData)
println(s"Within Set Sum of Squared Errors = $WSSSE")

// Save and load model
clusters.save(sc, "target/org/apache/spark/KMeansExample/KMeansModel")
val sameModel = KMeansModel.load(sc, "target/org/apache/spark/KMeansExample/KMeansModel")

K-Means in Mllib With DataSet
(from Spark 2.3.2 Documentation)

57

import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.ml.evaluation.ClusteringEvaluator

// Loads data.
val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt")

// Trains a k-means model.
val kmeans = new KMeans().setK(2).setSeed(1L)
val model = kmeans.fit(dataset)

// Make predictions
val predictions = model.transform(dataset)

// Evaluate clustering by computing Silhouette score
val evaluator = new ClusteringEvaluator()

val silhouette = evaluator.evaluate(predictions)
println(s"Silhouette with squared euclidean distance = $silhouette")

// Shows the result.
println("Cluster Centers: ")
model.clusterCenters.foreach(println)

Alternative Parallel Version
• Often we compute many alternative clusterings for the same data:

– Usually we do not know the best choice for K, therefore we try different values
for it.

– We also may want to explore different distance measures and initial cluster
centers.

• For each K, distance measure, and initial configuration, the clustering can
be computed independently. This suggests another approach to
parallelization: Broadcast the data to all workers and let each task
compute a clustering using the sequential K-means algorithm for a
different parameter combination.

• In MapReduce we can achieve this by creating a parameter file containing
a different parameter combination (K-value, distance measure, and set of
initial centers; the latter specified by providing a random seed) in each
line. Map reads a line with parameters and computes the corresponding
clustering in a single task.
– Usually the parameter file will be smaller than the default file-split size. To

ensure multiple Map tasks, use NLineInputFormat to create small input splits
based on lines in the file.

– Mappers receive the file with the data objects via the file cache.

• The pseudo-code is shown on the next page.

58

59

// The input file is copied to each worker using the distributed file cache
Class Mapper {

data D

setup() {
D = read input data from file cache

}

map(…, parameters p) {
// Kmeans() is a sequential implementation of the K-means algorithm
clustering = Kmeans(D, p)

emit(p, clustering)
}

}

60

Now we change gears and look at
supervised learning, in particular
classification and prediction (a.k.a.
regression).

Classification and Prediction
• Classification and prediction are among the most common data

mining tasks in practice. The goal is to predict some output of
interest for a given input record, for instance:
– Predict if somebody is likely to repay a mortgage.
– Predict if a credit-card transaction is fraudulent.
– Predict if the customer will purchase the product.
– Predict the probability of observing a certain species in a given

environment.

• Classification and prediction are supervised learning methods: They
rely on the availability of labeled training data, i.e., records where
both input and correct output are known.

• Formally, consider a data set with attributes X1,…,Xd, and Y. From
this data, a model is trained, which is a function f:(X1,…,Xd)→Y. This
function can then be used to predict the unknown output y for a
given input record (x1,…,xd). For classification problems, Y is a
discrete attribute, called the class label. For prediction problems, Y
is a continuous attribute.

61

Classification Example: Labeled Data

• Given a data set of recent graduates, NEU
wants to predict for each graduating senior if
they will receive a job offer within a year of
graduation (column “Job Offer?”).

62

Name Age GPA Major Job Offer?

Joe 24 3.7 CS Yes

Amy 28 3.9 CS Yes

Joe 29 3.3 ECE Yes

Bill 24 3.1 Bio No

Beth 22 3.8 Art No

Name Age GPA Major Job Offer?

Mary 23 4.0 CS Yes

Joe 24 3.9 Hist No

Amy 25 3.6 CS Yes

Training Data Test Data

Classification Example: Induction
• Induction refers to the process of training (or “fitting”) a model that

captures the relationship between input attributes (name, age, GPA,
major) and output (job offer).

• Many different models can be fit to the same training data, some more
realistic (Model 1) than others (Model 2). It usually is not that obvious to
identify the more realistic model.
– Models may pick up correlations that are not causal relationships, e.g., the

name of a person is not causing the person to get a job offer. This is an
idiosyncrasy of the given data.

– Larger training data protects better against such spurious relationships, e.g.,
when a Joe or Amy without job offer appear in the data, but it does not
eliminate it.

63

Model 1: IF (major = CS OR major = ECE)
THEN job = Yes; ELSE job = No

Model 2: IF (name = Joe OR name = Amy)
THEN job = Yes; ELSE job = No

Name Age GPA Major Job Offer?

Joe 24 3.7 CS Yes

Amy 28 3.9 CS Yes

Joe 29 3.3 ECE Yes

Bill 24 3.1 Bio No

Beth 22 3.8 Art No

Classification Example: Deduction
• Deduction refers to the process of using the model to make

predictions.
• The more meaningful Model 1 gets more of the test records right

than Model 2. The fraction of correctly classified test records is
called the accuracy of the model.

• To evaluate a model realistically, the test records should not be
used for training and should be drawn from the same distribution
as future records for which the model will be used to make a
prediction.

64

Model 1: IF (major = CS OR major = ECE)
THEN job = Yes; ELSE job = No

Model 2: IF (name = Joe OR name = Amy)
THEN job = Yes; ELSE job = No

Name Age GPA Major Job Offer?

Mary 23 4.0 CS Yes

Joe 24 3.9 Hist No

Amy 25 3.6 CS Yes

Model 1 prediction Model 2 prediction

Yes No

No Yes

Yes Yes

Decision Trees

• Decision trees are a popular technique for
classification problems. A decision tree splits
the data space recursively in order to separate
the different classes from each other as much
as possible.

• The nodes of the tree contain split attributes
that guide the search to the appropriate leaf
when making a prediction.

65

66

X2

< 0.33?

 : 0

 : 3

 : 4

 : 0

X2

< 0.47?

 : 4

 : 0

 : 0

 : 4

X1

< 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

The decision tree on the right defines partitions of the data space. The goal of

these partitions is to have “pure” leaves, i.e., have ideally only members of a

single class in a leaf.

The decision boundary is the border between two neighboring regions of different

classes. For trees that split on a single attribute at a time, the decision boundary

is parallel to the axes.

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

Tree Uniqueness

• For a given data set, there are usually many
structurally different trees that achieve similar
accuracy on the training data.

• For consistent data, there is more than one
tree structure that perfectly represents the
entire training data set.

– Data is consistent if it does not contain two
records that have the same input values, but
different output.

• We look at two examples next.

67

Decision Tree That Exactly Represents the
Training Data

68

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Split Attributes

Training Data Model
[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

A Different Decision Tree That Exactly
Represents the Same Training Data.

69

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

Making Predictions

• Given a record containing only values for the
input attributes, the tree will find the data
partition this record falls into. It will then
return a class value based on the training
records in that partition.

• Tree traversal starts at the root, following the
pointer to the next node based on the input
value for the node’s split attribute.

• Let us look at an example.

70

71

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

Test Data
Start from the root of the tree

72

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

Check the Refund value to
determine which pointer to
follow.

73

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

Refund = No, therefore follow
the right pointer.

74

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

Check the Marital Status value to
determine which pointer to
follow.

75

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

Follow the corresponding pointer
to the leaf node.

76

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

[Example source: “Introduction to Data Mining" by
Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Addison-Wesley, 2006]

The reached leaf node only contains
training records with Cheat = No. Hence
the tree will return Cheat = No as the
predicted class.

Parallel Decision Trees

• For classification and prediction techniques in
general, and trees in particular, both induction
(model training) and deduction (model use)
are potential targets for parallelization.

• Due to their regular structure, trees are easier
to parallelize than many other classification
techniques.

77

Parallel Decision Tree Induction
• Tree induction starts with all training records at the root, recursively

partitioning the data until a stopping condition is met. For each
node, the split predicate, i.e., the condition determining how to
partition the data, is selected based on a heuristic such as
information gain. Typical stopping conditions are (1) pure node (all
records in the node belong to the same class), (2) no split attributes
left, and (3) too few records in the partition.

• Trees offer two obvious opportunities for parallel training:
– A tree node partitions the data space, e.g., records with Refund = Yes

go one way, those with Refund = No another. The split decisions in one
subtree are independent of those in the other, therefore they can be
performed in parallel without communication.

– To find a node’s split predicate, each attribute and its possible split
values are explored. The score for each of these candidate predicates
can be computed independently, but afterward coordination is
required to select the split predicate with the highest score.

78

Refund

Yes No

Partition further Partition further

79

// This program assumes that each node performs a binary split into “left” and “right” partition
map(nodeID, listOfRecords) {

leftPartition = {}; rightPartition = {}

// Find best split predicate for the node
for each attribute A

for each possible split point S
computeScore(listOfRecords, A, S)
Keep track of the (A, S) pair with the highest score

// Let (bestA, bestS) be the winning split predicate. Partition the data according to the split predicate.
for each record r in listOfRecords

if satisfiesPredicate(r , (bestA, bestS))
leftPartition.add(r)

else
rightPartition.add(r)

// Write the node information containing nodeID, split predicate, and child node IDs to file
treeFile.write(nodeID, (bestA, bestS), newID(nodeID, left), newID(nodeID, right))

// Emit the two partitions for further splitting in the next iteration
if not stoppingConditionMet(leftPartition)

emit(newID(nodeID, left), leftPartition)

if not stoppingConditionMet(rightPartition)
emit(newID(nodeID, right), rightPartition)

}

This algorithm parallelizes
computation by training different
subtrees concurrently.

MapReduce Program Discussion
• The program uses a breadth-first approach to train the tree layer-

by-layer in each iteration.
• Initially the input is the root-node ID and the entire training set. A

single Map function call finds the split predicate for the root and
partitions the data accordingly. In the next iteration, there are two
Map calls—one for each child node of the root. And so on.

• As the computation proceeds, initially the number of different
partitions increases, resulting in greater possible parallelism.

• At some point splitting in some branches ends as the stopping
condition is met. Hence at some point there will be fewer Map
function calls as the tree grows deeper.

• In the beginning each iteration reads the entire input data and
writes out the re-partitioned input. As nodes meet the stopping
condition, their data records will not be transferred any more,
slowly decreasing data transfer as the computation winds down.

80

Improvements
• In the Map function, finding the best split predicate

involves repeated reading of the input records—at least
once for each attribute. This will be expensive when the
data does not fit in memory. To reduce cost, one can work
with a random sample, which usually provides a good
approximate score and hence results in splits of similar
quality.

• For data sets with a huge number of attributes, e.g., text-
analysis applications in information retrieval, one should
consider parallelizing the process of finding the best split
attribute for a node. However, if different split attributes
for the same node are explored in different Map tasks, then
Reduce will be needed to find the winner and perform the
data partitioning.

• Once the training data at a node fit in memory, the entire
subtree could be trained in the map function.

81

Counting for Split Finding
• To find the best split point for attribute A, the data at

the current subtree root is sorted on A. then all
possible “middle” points between consecutive A-values
are explored to find the one with the highest score.
– The score is determined by a purity measure (e.g.,

information gain, Gini, gain ratio) for classification, or
variance for prediction.

82

A B Label

2 50 +

5 10 -

1 30 +

3 20 -

Training data

Counting for Split Finding
• To find the best split point for attribute A, the data at

the current subtree root is sorted on A. then all
possible “middle” points between consecutive A-values
are explored to find the one with the highest score.
– The score is determined by a purity measure (e.g.,

information gain, Gini, gain ratio) for classification, or
variance for prediction.

83

A B Label

2 50 +

5 10 -

1 30 +

3 20 -

Training data 1 2 3 5

+ + - -
Training data sorted on A

Counting for Split Finding
• To find the best split point for attribute A, the data at

the current subtree root is sorted on A. then all
possible “middle” points between consecutive A-values
are explored to find the one with the highest score.
– The score is determined by a purity measure (e.g.,

information gain, Gini, gain ratio) for classification, or
variance for prediction.

84

A B Label

2 50 +

5 10 -

1 30 +

3 20 -

Training data 1 2 3 5

+ + - -
Training data sorted on A

Split point candidate 1.5

Number of + and - cases
going left

+: 1
-: 0

Number of + and - cases
going right

+: 1
-: 2

Counting for Split Finding
• To find the best split point for attribute A, the data at

the current subtree root is sorted on A. then all
possible “middle” points between consecutive A-values
are explored to find the one with the highest score.
– The score is determined by a purity measure (e.g.,

information gain, Gini, gain ratio) for classification, or
variance for prediction.

85

A B Label

2 50 +

5 10 -

1 30 +

3 20 -

Training data 1 2 3 5

+ + - -
Training data sorted on A

Split point candidate 1.5 2.5

Number of + and - cases
going left

+: 1
-: 0

+: 2
-: 0

Number of + and - cases
going right

+: 1
-: 2

+: 0
-: 2

Counting for Split Finding
• To find the best split point for attribute A, the data at

the current subtree root is sorted on A. then all
possible “middle” points between consecutive A-values
are explored to find the one with the highest score.
– The score is determined by a purity measure (e.g.,

information gain, Gini, gain ratio) for classification, or
variance for prediction.

86

A B Label

2 50 +

5 10 -

1 30 +

3 20 -

Training data 1 2 3 5

+ + - -
Training data sorted on A

Split point candidate 1.5 2.5 4

Number of + and - cases
going left

+: 1
-: 0

+: 2
-: 0

+: 2
-: 1

Number of + and - cases
going right

+: 1
-: 2

+: 0
-: 2

+: 0
-: 1

Counting for Split Finding
• To find the best split point for attribute A, the data at

the current subtree root is sorted on A. then all
possible “middle” points between consecutive A-values
are explored to find the one with the highest score.
– The score is determined by a purity measure (e.g.,

information gain, Gini, gain ratio) for classification, or
variance for prediction.

87

A B Label

2 50 +

5 10 -

1 30 +

3 20 -

Training data 1 2 3 5

+ + - -
Training data sorted on A

Split point candidate 1.5 2.5 4

Number of + and - cases
going left

+: 1
-: 0

+: 2
-: 0

+: 2
-: 1

Number of + and minus
cases going right

+: 1
-: 2

+: 0
-: 2

+: 0
-: 1

Split point 2.5 is
the winner,
because it
perfectly separates
classes + and -.

Parallel Counting for Split Finding
• Can we count the number of + and – cases going

left versus right for all possible split points in
parallel?

• We do not want to copy all data records to all
tasks. However, if a task only receives some of the
records, then it cannot even determine possible
split points.
– In the example, assume task 0 only receives the

records with A-values 1 and 3. Then the middle point
would be 2, not 1.5. Intuitively, task 0 cannot
determine the correct split candidates, because it is
missing some of the data.

• Range-partitioning would help, but can we find a
cheaper solution?

88

Parallel Counting with Predefined Split
Points

• What if each task knew all possible split points from the
beginning? If all tasks count the left and right class
distribution for the same split candidates, then it is easy to
find the total counts.
– In the example, assume each task was told to check split points

1.5 and 3.5.

89

Round 1, task 0

Training data
partition

A B Label

2 50 +

5 10 -

Round 1, task 1

Training data
partition

A B Label

1 30 +

3 20 -

Parallel Counting with Predefined Split
Points

• What if each task knew all possible split points from the
beginning? If all tasks count the left and right class
distribution for the same split candidates, then it is easy to
find the total counts.
– In the example, assume each task was told to check split points

1.5 and 3.5.

90

Round 1, task 0

Training data
partition

A B Label

2 50 +

5 10 -

Round 1, task 1

Training data
partition

A B Label

1 30 +

3 20 -

Output:
1.5: left(+: 0, -: 0), right(+: 1, -: 1)
3.5: left(+: 1, -: 0), right(+: 0, -: 1)

Parallel Counting with Predefined Split
Points

• What if each task knew all possible split points from the
beginning? If all tasks count the left and right class
distribution for the same split candidates, then it is easy to
find the total counts.
– In the example, assume each task was told to check split points

1.5 and 3.5.

91

Round 1, task 0

Training data
partition

A B Label

2 50 +

5 10 -

Round 1, task 1

Training data
partition

A B Label

1 30 +

3 20 -

Output:
1.5: left(+: 0, -: 0), right(+: 1, -: 1)
3.5: left(+: 1, -: 0), right(+: 0, -: 1)

Output:
1.5: left(+: 1, -: 0), right(+: 0, -: 1)
3.5: left(+: 1, -: 1), right(+: 0, -: 0)

Parallel Counting with Predefined Split
Points

• What if each task knew all possible split points from the
beginning? If all tasks count the left and right class
distribution for the same split candidates, then it is easy to
find the total counts.
– In the example, assume each task was told to check split points

1.5 and 3.5.

92

Round 1, task 0

Training data
partition

A B Label

2 50 +

5 10 -

Round 1, task 1

Training data
partition

A B Label

1 30 +

3 20 -

Output:
1.5: left(+: 0, -: 0), right(+: 1, -: 1)
3.5: left(+: 1, -: 0), right(+: 0, -: 1)

Output:
1.5: left(+: 1, -: 0), right(+: 0, -: 1)
3.5: left(+: 1, -: 1), right(+: 0, -: 0)

Round 2 then groups by split point and aggregates the counts as:
1.5: left(+: 1, -: 0), right(+: 1, -: 2)
3.5: left(+: 2, -: 1), right(+: 0, -: 1)

How Well Does This Work?
• Data can be partitioned in any way, without duplication, and both

round 1 and round 2 parallelize well. However, if round 2 has
multiple tasks, then a third round is needed to find the split with
the best score.

• How do we select the split-point candidates for an attribute A?
– We can pick evenly-spaced values from A’s domain. More candidates

result in higher computation cost but increase the probability of
finding a good split point. In the example, the optimal split is missed,
because no candidate between 3 and 5 was tried.

– To not miss the optimal splits, we could sort the input on A and use all
middle values between consecutive A-values. This adds extra sort cost
and often produces too many candidates, resulting in high cost during
the parallel counting phase.

• For more information, see [Biswanath Panda, Joshua S. Herbach,
Sugato Basu, and Roberto J. Bayardo. PLANET: Massively Parallel
Learning of Tree Ensembles with MapReduce. Proc. Int. Conf. on
Very Large Data Bases (VLDB), 2009]. This is the algorithm on which
Spark’s tree implementation in MLlib is based.

93

Parallel Decision Tree Deduction
• For a single test record, parallelizing deduction will usually not be

efficient. Even for large trees, it would be faster to access nodes in a
file instead of running multiple MapReduce iterations.

• Parallel deduction becomes viable if predictions are made for a
huge set of test records. The tree model can broadcast to all worker
machines; then each Map call independently computes the
prediction for a test record.

94

// The file with the decision tree is made available through the file cache
Class Mapper {

tree

setup()
tree = load tree from file cache

map(test record r) {
output = tree.makePrediction(r)
emit(r, output)

}
}

Decision Trees in Spark
• We can again rely on MLlib for a ready-to-use solution.

Look at the source code to see how it is implemented.
– The code below shows excerpts from the example in the

Spark 2.3.2 documentation.

95

// spark.ml
val dt = new DecisionTreeClassifier()

.setLabelCol("indexedLabel")

.setFeaturesCol("indexedFeatures")

// Chain indexers and tree in a Pipeline.
val pipeline = new Pipeline()

.setStages(Array(labelIndexer, featureIndexer,
dt, labelConverter))

// Train model. This also runs the indexers.
val model = pipeline.fit(trainingData)

// Make predictions.
val predictions = model.transform(testData)

// spark.mllib
val model = DecisionTree.trainClassifier(trainingData,
numClasses, categoricalFeaturesInfo,

impurity, maxDepth, maxBins)

// Evaluate model on test instances and compute test
error
val labelAndPreds = testData.map { point =>

val prediction = model.predict(point.features)
(point.label, prediction)

}

Other Classification and Prediction
Methods

• In addition to decision trees, numerous other
classification and prediction techniques have
been proposed. Many are complex and hence
not easy to parallelize. The following is a list of
popular techniques:
– Support Vector Machines (SVMs)

– Artificial Neural Networks (ANNs)/Deep Learning

– Nearest Neighbor

– Naïve Bayes

– Bayesian networks

– Regression.

96

Summary
• Data mining techniques are crucial tools for discovering

hidden patterns in big data. Unfortunately, many
techniques are complex. Available implementations
often are highly optimized for centralized in-memory
processing.

• For some of the simpler techniques such as K-means
clustering and decision trees, parallel implementations
can be designed with reasonable effort.

• As a fallback, when the input data is too big to fit in
memory, create an in-memory sample and then apply
an existing centralized implementation. While not
perfect, this often gives a good approximation of the
desired results. And it can be parallelized easily by
exploring different samples and/or model parameter
settings on different worker machines.

97

References

• Data mining textbook: Jiawei Han, Micheline
Kamber, and Jian Pei. Data Mining: Concepts
and Techniques, 3rd edition, Morgan
Kaufmann, 2011

• Biswanath Panda and Joshua S. Herbach and
Sugato Basu and Roberto J. Bayardo. PLANET:
Massively Parallel Learning of Tree Ensembles
with MapReduce. Proc. Int. Conf. on Very
Large Data Bases (VLDB), 2009
– https://scholar.google.com/scholar?cluster=11753

975382054642310&hl=en&as_sdt=0,22

98

https://scholar.google.com/scholar?cluster=11753975382054642310&hl=en&as_sdt=0,22

