
Common Algorithm Building
Blocks

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Key Learning Goals

• Why is the “order inversion” design pattern
called that way?

• Be able to write the MapReduce and Spark
pseudo-code for all the algorithms in this
module.

2

Introduction
• We discuss approaches and algorithms that

frequently appear as building blocks of larger
data processing pipelines:
– Managing state at different granularities

– Per-record computation

– Content-based data splitting

– Grouping and aggregation

– Duplicate removal

– Random sampling and shuffling

– Quantiles

– Top-k

3

Managing State at Different Granularities

• In previous modules, we worked with task-local
state and discussed two types of global state.

• The first type of global state is a mechanism for
broadcasting read-only data to all tasks of a job.

• The second are global counters and
accumulators, which are initialized and read out
by the driver, but updated by the tasks of a job.

• We will first review those mechanisms, then
introduce the “order inversion” design pattern in
MapReduce.

4

Review: Broadcasting Read-Only State

• In Hadoop MapReduce, we can use the job
Context object to share a small number of
constants with all tasks. Similarly, in Spark all
variables created in the driver are automatically
serialized and shipped with the tasks.

• The file cache in MapReduce allows broadcasting
of larger read-only state via files. In Spark, this is
supported by broadcast variables.

• Note the difference between making a dataset
the input of a job vs broadcasting it. The former
assigns only a partition of the data to each task,
while the latter copies the entire file to all
workers.

5

Review: Global Counters

• Hadoop MapReduce global counters and Spark
accumulators offer limited functionality to avoid
the complexity of shared-memory programs.

– They are initialized and read out by the driver
program, i.e., there is no parallelism.

– They are updated in parallel by the tasks of a job.
However, the only supported update operation is to
add a (positive or negative) value. Addition is
commutative and associative; hence it works correctly
independent of the order in which the updates are
applied. This greatly simplifies distributed consensus.

6

Other Options for Global State?
• Should we manage larger objects in the application

master, e.g., a central priority queue for algorithms
such as single-source shortest path (discussed in a
future module)? No!
– The master’s memory would become a bottleneck.
– Updates of state require shared-memory style

synchronization.

• How about distributing the large object over many
workers?
– This addresses the memory bottleneck at the master.
– If the object can be updated by multiple tasks, then there

still is a need for distributed consensus.
– If each task has exclusive access to a partition, then we are

back to the per-task shared-nothing-style data
management of MapReduce and Spark tasks.

7

The Order Inversion Design Pattern

• In there anything else in the spectrum
between local data exclusively accessed by a
single task and global counters/accumulators?

• Not really, but we will now introduce a
solution that was proposed for MapReduce to
give operations on fine-grained data partitions
access to coarser-grained data needed by
multiple small partitions. For reasons
explained later, this was called “order
inversion.”

8

Example
• Consider a crowd-sourcing project where citizen scientists report birds

they observe. For simplicity, assume participants report a (species, color)
pair every time they see a bird. Our goal is for each species and color to
estimate the conditional probability of the color, given the species.
– The probability of the Northern Cardinal (N.C.) being red is defined as

P(color = red | species = N.C.).

• We can estimate such probabilities from big data by counting the
appropriate quantities. To estimate P(color = C | species = S), we need:
– Frequency count f(S), i.e., the number of observations for species S. In

statistical terms, this is called a marginal.
– Frequency count f(S, C), i.e., the number of observations matching both

species S and color C. In statistical terms, this is called a joint event.
– E.g., we estimate P(color = red | species = N.C.) by dividing the number of red

Northern Cardinal observations by the total number of Northern Cardinal
observations (including all colors), i.e., as f(N.C., red) / f(N.C.)

• This analysis is an example for estimating relative frequencies, a common
data-mining task. Another problem with the same structure is to compute
the normalized word co-occurrence vector for each word in a document
collection. It measures for each word, which other words occur frequently
near it.

9

Obvious Solution Using “Stripes”
• Both f(S) and f(S, C) need to count per species. Hence the species presents

itself as an obvious choice for intermediate key. Starting with this
observation, the MapReduce program “falls into place.” For each input
record (species S, color C), Map emits the record with species S as the key
and color C as the value.
– To enable a Combiner or in-Mapper combining, Map could instead output (C,

1) as the value.

• The Reduce call for species S counts the number of occurrences of each
color to get f(S, C) for each C. At the same time, it keeps track of the
marginal f(S).

10

// Note: If no combining is used, Map could emit
// (S, C), i.e., S as the key and C as the value.
map(observation = (species S, color C))

emit(S, (C, 1))

reduce(S , [(C1, n1), (C2, n2),…])

// H maps a color to a count
init hashMap H
marginal = 0

for all (C, n) in input list do
H[C] += n
marginal += n

for all C in H do
emit((S, C), H[C] / marginal)

Discussion of the Stripe-Based Approach

• Why do we call this a “stripe”-based approach? Think of a
table where each row is indexed by a species and each
column is indexed by a color. A table cell, indexed by the
combination of species S and color C, contains count f(S, C).
By choosing the species as the key, Reduce works with an
entire row of this table, which pictorially looks like a stripe.

• The Stripe, i.e., table row, turns out to be a great fit for
relative frequency computation. Each cell in the Stripe has
the color frequency for the species; and the sum of these
frequencies equals the total for the species. Hence all the
data needed for computing f(S, C)/f(S) for species S is in the
corresponding stripe.

• Is there a drawback to this approach? There are indeed two
major limitations:
– What if data structure H in Reduce exceeds memory size? This

would not happen for the colors here, but it might for other
problems with more columns.

– The degree of parallelism of the Reducer workload is limited
by the number of different species. What if we have more
machines than species?

11

Colors

Sp
ec

ie
s

New Attempt Using “Pairs”
• We could address the problems of the Stripe-based approach by splitting

the Reducer work into smaller units. Unfortunately, any smaller unit would
miss some of the joint events needed for computing f(S), the marginal for
the species. To see why, consider a program that uses both species and
color as the intermediate key. For input record (species S, color C), Map
emits ((S, C), 1).
– Combiners and in-Mapper combining can be applied.

• For key (S, C), Reduce computes f(S, C), the frequency count of that
species-color combination. Virtually no memory is used, and the fine
granularity enables up to #species #colors different Reduce tasks.

• So, does this approach have any drawbacks? Yes!
– How can it compute the marginal f(S)? The Reduce call needs f(S, color) for all

colors for species S.
– This could be addressed by running another simple MapReduce program to

pre-compute f(S). However, this approach seems wasteful for Big Data as it
reads the input data twice—once for computing the f(S) and then again for
computing the f(S, C).

• Can we get the best of both worlds, i.e., the one-pass efficiency of Stripes
and the small memory footprint and more fine-grained work partitioning
of Pairs?

12

Fixing the Pairs-Based Approach, Attempt 1

• Let us try and fix the Pairs-based approach so that it
can do all work in a single MapReduce job.

• Notice that if keys (S, C1) and (S, C2) are assigned to
different Reducers, then no Reducer has access to all
data needed for computing f(S). Hence, we must make
sure that all keys (S, any color) for species S end up in
the same Reduce task.
– We already know how to achieve this by defining a custom

Partitioner that assigns a key (S, C) to a Reducer solely
based on S, ignoring the value of C.

• While the custom Partitioner guarantees that all
records for species S will be processed in the same
Reduce task, there still is a separate Reduce call for
each species-color combination.

13

Challenge Question 1
• How can we compute f(S) when each Reduce call

only works with a single color for species S?
– Possible answer 1: The individual Reduce calls for keys

(S, C1), (S, C2), etc could be turned into a single
Reduce call for species S by using a grouping
comparator. (Review the secondary sort design
pattern.)

– Possible answer 2: State can be maintained across the
different Reduce calls for keys (S, C1), (S, C2), etc to
keep track of f(S, C) for all colors C of species S. More
precisely, both the marginal and a hashmap H that
stores the frequency for each color could be defined
at the Reducer class level, letting each Reduce call for
(S, C) update them accordingly. (Review the in-mapper
combining design pattern.)

14

Challenge Question 1
• How can we compute f(S) when each Reduce call

only works with a single color for species S?
– Possible answer 1: The individual Reduce calls for keys

(S, C1), (S, C2), etc could be turned into a single
Reduce call for species S by using a grouping
comparator. (Review the secondary sort design
pattern.)

– Possible answer 2: State can be maintained across the
different Reduce calls for keys (S, C1), (S, C2), etc to
keep track of f(S, C) for all colors C of species S. More
precisely, both the marginal and a hashmap H that
stores the frequency for each color could be defined
at the Reducer class level, letting each Reduce call for
(S, C) update them accordingly. (Review the in-mapper
combining design pattern.)

15

Try to find the answer yourself. This helps you
learn and understand the material.

If you are stuck despite trying hard for 15
minutes, look at previous modules and see if
anything there seems promising.

Challenge Question 1
• How can we compute f(S) when each Reduce call

only works with a single color for species S?
– Possible answer 1: The individual Reduce calls for keys

(S, C1), (S, C2), etc could be turned into a single
Reduce call for species S by using a grouping
comparator. (Review the secondary sort design
pattern.)

– Possible answer 2: State can be maintained across the
different Reduce calls for keys (S, C1), (S, C2), etc to
keep track of f(S, C) for all colors C of species S. More
precisely, both the marginal and a hashmap H that
stores the frequency for each color could be defined
at the Reducer class level, letting each Reduce call for
(S, C) update them accordingly. (Review the in-mapper
combining design pattern.)

16

Are you sure you want to move on and see our
answers?

Challenge Question 1
• How can we compute f(S) when each Reduce call

only works with a single color for species S?
– Possible answer 1: The individual Reduce calls for keys

(S, C1), (S, C2), etc could be turned into a single
Reduce call for species S by using a grouping
comparator. (Review the secondary sort design
pattern.)

– Possible answer 2: State can be maintained across the
different Reduce calls for keys (S, C1), (S, C2), etc to
keep track of f(S, C) for all colors C of species S. More
precisely, both the marginal and a hashmap H that
stores the frequency for each color could be defined
at the Reducer class level, letting each Reduce call for
(S, C) update them accordingly. (Review the in-mapper
combining design pattern.)

17

Last chance to turn back and work on your
own solution…

Challenge Question 1
• How can we compute f(S) when each Reduce call

only works with a single color for species S?
– Possible answer 1: The individual Reduce calls for keys

(S, C1), (S, C2), etc could be turned into a single
Reduce call for species S by using a grouping
comparator. (Review the secondary sort design
pattern.)

– Possible answer 2: State can be maintained across the
different Reduce calls for keys (S, C1), (S, C2), etc to
keep track of f(S, C) for all colors C of species S. More
precisely, both the marginal and a hashmap H that
stores the frequency for each color could be defined
at the Reducer class level, letting each Reduce call for
(S, C) update them accordingly. (Review the in-mapper
combining design pattern.)

18

Okay, here we go:

Challenge Question 1: Answers
• How can we compute f(S) when each Reduce call

only works with a single color for species S?
– Possible answer 1: The individual Reduce calls for keys

(S, C1), (S, C2), etc could be turned into a single
Reduce call for species S by using a grouping
comparator. (Review the secondary sort design
pattern.)

– Possible answer 2: State can be maintained across the
different Reduce calls for keys (S, C1), (S, C2), etc to
keep track of f(S, C) for all colors C of species S. More
precisely, both the marginal and a hashmap H that
stores the frequency for each color could be defined
at the Reducer class level, letting each Reduce call for
(S, C) update them accordingly. (Review the in-mapper
combining design pattern.)

19

Challenge Question 1: Answers
• How can we compute f(S) when each Reduce call

only works with a single color for species S?
– Possible answer 1: The individual Reduce calls for keys

(S, C1), (S, C2), etc could be turned into a single
Reduce call for species S by using a grouping
comparator. (Review the secondary sort design
pattern.)

– Possible answer 2: State can be maintained across the
different Reduce calls for keys (S, C1), (S, C2), etc to
keep track of f(S, C) for all colors C of species S. More
precisely, both the marginal and a hashmap H that
stores the frequency for each color could be defined
at the Reducer class level, letting each Reduce call for
(S, C) update them accordingly. (Review the in-mapper
combining design pattern.)

20

Challenge Question 2
• Does either of these approaches (grouping

comparator, in-Reducer combining) really give us
a better solution than the Stripes approach?
– No. These “improved” Pairs-based approaches have

the same drawbacks as the Stripes-based approach.
By using a custom Partitioner that only considers the
species, Reduce task granularity is back at the species
level, like for Stripes. Similarly, since f(S) is computed
together with the f(S, C) frequencies, all separate
color frequencies for species S have to be kept until
the last record for species S is processed. Hence the
memory footprint is not smaller than for Stripes
either. Essentially the attempt at improving the Pairs-
based approach made it “simulate” the Stripe-based
approach!

21

Challenge Question 2
• Does either of these approaches (grouping

comparator, in-Reducer combining) really give us
a better solution than the Stripes approach?
– No. These “improved” Pairs-based approaches have

the same drawbacks as the Stripes-based approach.
By using a custom Partitioner that only considers the
species, Reduce task granularity is back at the species
level, like for Stripes. Similarly, since f(S) is computed
together with the f(S, C) frequencies, all separate
color frequencies for species S have to be kept until
the last record for species S is processed. Hence the
memory footprint is not smaller than for Stripes
either. Essentially the attempt at improving the Pairs-
based approach made it “simulate” the Stripe-based
approach!

22

Same approach as before: Try to find the
answer yourself.

Write down your own answer before looking
at ours.

Challenge Question 2: Answer
• Does either of these approaches (grouping

comparator, in-Reducer combining) really give us
a better solution than the Stripes approach?
– No. These “improved” Pairs-based approaches have

the same drawbacks as the Stripes-based approach.
By using a custom Partitioner that only considers the
species, Reduce task granularity is back at the species
level, like for Stripes. Similarly, since f(S) is computed
together with the f(S, C) frequencies, all separate
color frequencies for species S must be kept until the
last record for species S is processed. Hence the
memory footprint is not smaller than for Stripes
either. Essentially the attempt at improving the Pairs-
based approach made it “simulate” the Stripe-based
approach!

23

Fixing the Pairs-Based Approach, Attempt 2

• The failed attempts so far had tried to compute f(S) for
species S concurrently with the different f(S, C) for that
same species. This forced us to (1) send all Map output
records for species S to the same Reducer and (2) keep
the counts for all f(S, C) around until the very last
record for species S was processed by the Reducer, i.e.,
the moment f(S) would finally be known.

• If the program had known f(S) from the beginning, it
could have been “broadcast” to the Reduce calls for
keys (S, C), for all colors C. This is similar to global state,
but for a smaller scope—here per individual species.

• How can we achieve this sharing of coarser-grained
data across functions working on more fine-grained
data?

24

State Sharing with Global Counters
• The program below assumes that there is a global counter

for each species. There are two problems with this idea:
– All species must be known in advance in the driver, before any

task accesses the input. We cannot dynamically create new
counters in a task.

– Tasks cannot read the counter value, therefore Reduce has no
access to the marginal.

• With global counters not working out, we need another
way to make species counts f(S) available in Reduce.

25

map(observation: (species S, color C))
// Update global counter for species S.
// This counter must have been created
// beforehand by the driver.
marginal_S.add(1)

emit((S, C), 1)

reduce((S, C), [n1, n2,…])
frequency = 0

for all n in input list do
frequency += n

// Here we assume that the counter can be read
// in a Reduce task.
emit((S, C), frequency / marginal_S)

Solution Using Order Inversion
• Like Pairs, the program below uses intermediate key (species, color). In addition to ((S, C), 1), Map

emits ((S, dummy), 1) for computing f(S). We exploit that Reduce calls in the same Reducer are
executed in key order: Defining a key comparator that puts “dummy” ahead of each real color
guarantees that reduce((S, dummy),…) will be executed before reduce((S, C),…) for any real color C.

• A custom Partitioner that partitions only on the species ensures that all records for a species are
processed in the same Reduce task.

• The Reducer class needs a task-level variable to keep track of marginal f(S). Since the Reduce call
for the dummy color happens first, f(S) will be known before the Reduce call f(S, C) for any color C.
Since the key comparator sorts by species first, it also guarantees that the right marginal f(S) is
available even if multiple species are assigned to the same Reduce task.

• The Reduce task now has a constant (i.e., independent of the number of species and colors)
memory footprint. It needs the marginal for a single species and a single counter for the currently
processed species-color combination.

26

map(…, observation: (species S, color C)) {
emit((S, dummy), 1)
emit((S, C), 1)

}

Partitioner: partition by species

Key comparator for (species, color):
- Sort by species first, then by color
- Make sure color “dummy” comes
before all real colors

Class Reducer {
marginal // per-task state

reduce((S, C), [n1, n2,…]) {
if C = dummy { // Compute marginal f(S)
marginal = 0
for all n in input list do marginal += n

} else { // Real color: compute f(S, C)
colorCnt = 0
for all n in input list do colorCnt += n
emit((S, C), colorCnt / marginal)

}
}

}

Discussion
• How does this new solution compare to the previous attempts?

– Pro: It reads the input only once, like the Stripes approach.
– Pro: It requires virtually no heap memory, like the initial Pairs approach.
– Potential con: Map duplicates every input record, therefore two copies of the

input data are transferred from Mappers to Reducers. However, in practice
combining can often dramatically reduce this data transfer.

– Same: Reduce granularity still is limited by the number of species.

• Interestingly, this approach in principle supports a finer Reduce-task
granularity at the cost of more data replication in the Map phase. The
code on the next slide illustrates this idea. By producing k replicas in Map,
each for a different dummy color, the keys (S, C1), (S, C2), etc. can be
distributed over k different Reduce tasks. The Partitioner must ensure that
each of these tasks receives one of the (S, dummyi) keys as well, so that it
can compute the marginal.
– For Big-Data problems, k-fold data duplication can result in poor performance

unless combining is very effective.
– It is not clear how to implement this idea. We will see a simpler solution to the

partition-granularity challenge in a future module where synthetic keys are
introduced.

27

Multiple Vertical Partitions (on Color)

28

map(observation: (species S, color C)) {
emit((S, dummy1), 1)
emit((S, dummy2), 1)
…
emit((S, dummyk), 1)
emit((S, C), 1)

}

Partitioner: partition by species and color,
distributing the colors for species S over k
Reduce tasks and making sure each of these
Reduce tasks receives exactly one of the
dummyi colors for that species.

Key comparator for (species, color):
- Sort by species first
- Make sure color “dummy” comes

before all real colors

Class Reducer {
marginal

reduce((S, C), [n1, n2,…]) {

if C = dummy {
// Compute marginal f(S)
marginal = 0
for all n in input list do
marginal += n

} else {
// Real color, hence compute f(S, C)
colorCnt = 0
for all n in input list do
colorCnt += n

emit((S, C), colorCnt / marginal)
}

}
}

Order Inversion Design Pattern Summary

• This design pattern for computing state at different granularities and for
controlling the order in which this state is computed, is called “order
inversion.”
– In what sense does it invert order? We can compute f(S) as the sum of the f(S,

C), summing over all colors C. Hence the “natural” order of computation
would be to obtain all the f(S, C) for species S first and then add them up to
obtain f(S). The order-inversion design pattern turns this around by first
computing f(S) and then the individual f(S, C).

• Without order inversion, the programmer would need either (1) larger and
more complex data structures to bring the right data together (e.g.,
hashmap H for a Stripe) or (2) more MapReduce jobs to compute the
intermediate results.

• Order inversion turns a synchronization problem into an ordering problem:
– MapReduce gives the programmer no explicit synchronization primitives.

Hence order inversion relies on the key order to enforce a computation order.

• Tradeoff: This approach enables the use of simpler data structures and
less Reducer memory, without requiring additional MapReduce phases. It
can achieve more fine-grained partitioning at the cost of data replication.
A Combiner or in-Mapper combining may soften the negative
performance impact of this data replication.

29

Do We Need Order Inversion in Spark?

• Challenge: try to solve the relative-frequency
counting problem for the (species, color) data,
using DataSet and pair RDD in Spark. Then check
how the program is executed by Spark.
– Is the execution more like the Pairs or more like the

Stripes approach?
– Is it like the order inversion implementation? If not,

can you change that?

• Do we need order inversion in Spark?
– Make sure you understand what aspects of the

program order inversion improves, compared to Pairs
and Stripes.

– Then explore if the same improvements matter for
Spark. If so, can they be achieved in Scala?

30

32

Next, we will explore a variety of useful
“small” algorithms.

Per-Record Computation
• Per-record computation is easy to parallelize and fairly common:

– The relational selection operator filters out records using a predicate. For
example, from a dataset of flights, it can return all flights into Boston.

– The relational projection operator removes fields from a record. For example,
it could remove the flight arrival time field if it is not needed for the analysis.

– The Unix grep command finds all lines in a (text) file that match a user-defined
search pattern such as “Northeastern.”

• Task: Given function F(), transform each input record x to F(x).
• Solution: Each task applies F() to its input records one-by-one. No shuffling

is needed. For operators that filter records, e.g., selection and grep, F(x)
conceptually returns NULL if x is filtered out.

33

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

F(x0) F(x1) F(x2) F(x3) F(x4) F(x5) F(x6) F(x7) F(x8) F(x9)

Apply function F to each input record.

Input:

Output:

Implementations

34

DBMS (SQL): Assume the input relation R has schema (A1, A2, A3)

Generic solution: SELECT F(A1, A2, A3) FROM R
Selection: SELECT * FROM R WHERE F(A1, A2, A3)
Projection (on A1): SELECT A1 FROM R

MapReduce:

// Generic and projection
map(…, x)

emit(F(x))

// Selection
map(…, x)

if F(x) then emit(x)

Spark:

myRDD.map(x => F(x)) // generic
myRDD.filter(F(x)) // selection

myDS.map(x => F(x)) // generic
myDS.filter(F(x)) // selection
myDS.select(“A1”) // projection

Discussion
• The MapReduce implementation is a Map-only job. To

specify this, the number of Reducers must be set to zero.
– Look at the grep program from the Miner/Shook book on

MapReduce design patterns:
http://khoury.northeastern.edu/home/mirek/code/Distributed
Grep.java

• The MapReduce, Spark, and generic SQL solution read the
entire input. If every input record must be processed
anyway, then this is the best one can do.

• For the selection operator, we are only interested in the
matching records. Database systems provide index
structures that can significantly reduce access cost for
conditions that select only a small fraction of the input.
MapReduce and Spark do not have such indexes. In a future
module we will discuss HBase, a distributed key-value store
that supports index-like lookups in a distributed system.

35

http://khoury.northeastern.edu/home/mirek/code/DistributedGrep.java

Content-Based Data Splitting
• Consider product reviews by users of an online shopping site, stored as

records with schema (userID, isPreferred, productID, productCategory,
review). An analyst might be interested in exploring reviews by preferred
users separately from those by regular users. Similarly, a product-centric
exploration might require training of separate data mining models for
different product categories.

• Task: Partition the input into p separate subsets based on properties of
the input records.

• Solution: Like per-record computation, each task goes through its input
records one-by-one, sending the record to the desired output channel. No
data shuffling is needed.

• This approach can also be used for problems where some input records
are assigned to zero or more than one partitions.

36

Input:

Output:

Implementation in MapReduce
• A simple Map-only job can solve this task. It uses the

MultipleOutputs class to write to different output files.
Each of them can store records of a different type, e.g., one
might store text data, another pairs of integer numbers.
The Map function determines the partition the input record
belongs to, then emits it to the appropriate output file
using MultipleOutputs.write().

• For m Map tasks and p output partitions, this program will
generate mp output files. (Each Map task writes to its own
set of p output files!) If these files are too small, they can
be concatenated using HDFS file-system commands.

• Check out the example code from the Miner/Shook book
for a program that parses XML documents to assign each to
one of four partitions based on the “Tags” element:
http://khoury.northeastern.edu/home/mirek/code/Binning
.java

37

http://khoury.northeastern.edu/home/mirek/code/Binning.java

Discussion

• The elegance of the MapReduce program lies
in reading the input only once and generating
all partitions concurrently.

• In SQL or Spark, there is no equivalent
construction. Instead, one could specify each
partition with its own query.

– The DBMS and Spark optimizer should
automatically determine that all partitions can be
generated with a single pass through the input
data.

38

Grouping and Aggregation
• Data can be partitioned without shuffling only if the possible partitions are

known in advance. For aggregation and when the partitions are not
known, shuffling is needed. We have seen this for Word Count. More
examples:
– An inverted index for a document collection returns the identifiers of all

documents that contain a given search string. To create this index for the
Internet, for each word w, generate the list of URLs where w occurs.

– For a graph, generate the inverted graph in adjacency-list format.

• Task: Partition the input on a key and compute an aggregate of the values
in each partition.

• Solution: The first round filters records and removes irrelevant attributes.
Then the shuffle phase ensures that all records with the same key end up
together, so that the next stage can perform the per-group aggregation.

39

Input:

Groups:

Output: agg agg agg

Implementations

40

DBMS (SQL): Assume the input relation R has schema (Key, Val)

SELECT Key, myAGG(Val) FROM R GROUP BY Key

MapReduce:

map(key k, val v)
emit(k, v)

reduce(key, [val1, val2,…])
compute agg = myAGG(val1, val2,…)
emit(key, agg)

Spark:

myPairRDD.aggregateByKey(aggFunction)

myDS.groupBy(“Key”).agg(aggFunction)

Grouping RDDs in Spark
• groupByKey transformation: for a pair RDD of

type (K, V), it returns an RDD of type (K,
Iterable[V])—one group per key.
– All values for a key are collected in memory. When

computing aggregates, it usually is more memory-
efficient to use aggregateByKey, reduceByKey, or
foldByKey instead.

• group(keyGenFct) transformation groups an
ordinary RDD by extracting a key for each
element and then grouping by key.
– For an RDD of type T, keyGenFct: T => K generates keys

of type K. Grouping is applied to those keys.
– rdd.groupBy(f) is equivalent to

rdd.map(x => (f(x), x)).groupByKey().

41

Grouping and Aggregation in Spark
• combineByKey transformation is a powerful function to group and

aggregate elements of a pair RDD of type (K, V). It has several parameters:
– createCombiner: V => C creates the first combined value of type C from the

first key’s value in each partition. It is used to set the initial value, e.g., v ->
(v,1) for AVG.

– mergeValue: (C, V) => C merges the other values for the same key in the same
partition into the combined value, e.g., ((s,c), v) -> ((s+v), (c+1)) for AVG.

– mergeCombiners: (C, C) => C merges combined values across partitions, e.g.,
((s1,c1), (s2,c2)) -> (s1+s2, c1+c2) for AVG.

– partitioner is required and determines the resulting RDD’s partitioning. If it is
the same as the current Partitioner, then no shuffling is performed. In that
case, mergeCombiners would not be executed.

– mapSideCombine: Boolean = true specifies whether to merge combined
values in partitions before shuffling.

– serializer: Serializer = null allows use of a custom serializer, instead of the
default one specified in Spark configuration parameter spark.serializer.

• It generalizes and is used to implement aggregateByKey, groupByKey,
foldByKey, and reduceByKey.

42

Discussion
• For distributive and algebraic aggregates one can use a

Combiner or in-Mapper combining in MapReduce and
in Spark, the corresponding functions that aggregate
before shuffling. Examples for such aggregates are
sum, count, average, minimum, maximum, and
standard deviation. Combining is not applicable to
holistic aggregates, e.g., median, except in the form of
simple compression. For instance, one can replace set
{A, A, B, A, B} by the more compact {(A,3), (B,2)}.

• Consider using a custom Partitioner for load balancing
purposes.

• Consider secondary sort to simplify the Reduce
computation, e.g., to guarantee an increasing order of
values in the Reduce input list for finding the
minimum.

43

Global Aggregation: Standard Approach

• Sometimes one would like to compute a single “global”
aggregate for the entire input, e.g., the average delay over
all flights. This can be done like grouping-and-aggregation.
– In MapReduce, each Mapper computes the per-split aggregate,

using in-Mapper combining or a Combiner. Then these values
are associated with a “dummy” key and aggregated by a single
Reduce call.

44

DBMS (SQL): Assume the input relation R has attribute A
SELECT myAGG(A) FROM R

MapReduce:

map(key k, val v)
emit(dummy, v)

reduce(dummy, [val1, val2,…])
emit(myAGG(val1, val2,…))

Spark:

myRDD.aggregate(…, aggFunction,…)

myDS.agg(aggFunction)

Global Aggregation with Global
Counters/Accumulators

• The standard approach we just discussed requires
shuffling. Can we avoid this, i.e., can we run the
equivalent of a Map-only job? Based on what you have
seen so far, this seems impossible, because a task
aggregating a data partition cannot compute the global
aggregate.

• Simple aggregates like sum and count can be computed
with a Map-only job by exploiting Hadoop’s global
counter feature. It is available through the Counter
class. Global counter variables can be defined in
MapReduce user code and any task can increment
them or set their value. No matter which task updates
a counter, in the end it will reflect the updates
performed by all completed tasks. In Spark, the
corresponding feature are Accumulators.

45

Global Aggregation with Global
Counters/Accumulators (Cont.)

• By using multiple global counters, one could also
compute aggregates for multiple groups of input
records. For this to work, the groups must be
known in advance. For instance, assuming all
airlines are known in advance, one can define
counters for each of them. An input record would
result in counter updates for the corresponding
airline only.
– Check out the example code from the Miner/Shook

book at
http://khoury.northeastern.edu/home/mirek/code/Co
untNumUsersByStateDriver.java It counts the number
of users per US state using global counters.

46

http://khoury.northeastern.edu/home/mirek/code/CountNumUsersByStateDriver.java

Duplicate Removal
• Duplicate removal eliminates repeat occurrences of

records in an input file. It is a special case of grouping-
and-aggregation: identical records form groups and
from each group exactly one representative is output.

• Task: Eliminate all duplicates from the input.

• Solution: Group by the record content, then emit a
single representative for each group.
– The equivalent of in-Mapper combining can be applied to

remove duplicates within the same split before shuffling.

– An appropriately defined comparator determines when
two records are considered identical. This could be based
on a subset of the fields of the records.

47

Implementation

48

DBMS (SQL):

SELECT DISTINCT * FROM R
SELECT DISTINCT column1, column2,… FROM R

MapReduce:

map(key k, val v)
emit((k, v), NULL)

reduce((k, v), [NULL, NULL,…])
emit(k, v)

Spark:

myRDD.distinct()

myDS.dropDuplicates()
myDS.dropDuplicates(column1, column2,…)

Real Code

• Check out the example code from the
Miner/Shook book at
http://khoury.northeastern.edu/home/mirek/
code/DistinctUserDriver.java

• The program finds all distinct user IDs. Since
the input records are in XML format, they are
parsed to access the user ID element.

49

http://khoury.northeastern.edu/home/mirek/code/DistinctUserDriver.java

Random Sampling
• Random sampling is crucially important for big-data analysis. Working with

a random sample lowers computational cost while often still producing a
good approximation of the desired result. Small random samples are also
useful for testing and debugging.

• Task: Sample a fraction of approximately p, 0.0 < p 1.0, of the input
records uniformly at random.
– This means each input record should have the same probability p of being

selected for the output.

• Solution: Each data partition can be sampled independently with sampling
rate p. A pseudorandom-number generator determines if the input record
will be emitted: If the generator produces a floating-point number rnd in
the range 0.0 rnd < 1.0, then the input record is emitted if and only if rnd
< p. No shuffling is needed.
– For an input set of n records, this approach does not guarantee to produce

exactly pn output records. However, when dealing with large numbers of
records, the resulting sample size in practice will be very close.

50

Input:

Output: Sampling rate p = 0.3

Random-Number-Generator Subtleties
• Libraries for generating “random” numbers usually provide only

pseudorandom-number generators. This means that the generator will be
initialized by some seed, e.g., based on the system clock. Then it produces
a deterministic sequence of values that “appear random.” For the same
seed, the generator will produce the exact same sequence of numbers.
Seed choices are not truly random by nature. Hence in practice one should
ideally only rely on a single pseudorandom-number-generator instance.
Whenever a random number is needed, it should be produced by that
same generator instance. This will result in better randomness than
instantiating many different generators.
– If you use Java’s Math.random() method whenever you need a random

number, your program will automatically follow the preferred approach: The
first call of Math.random() creates a single new pseudorandom-number
generator object, which is then used for all future calls to this method and is
used nowhere else.

– Since different tasks cannot share the same generator object, a distributed
program will have a separate generator instance per task.

• When dealing with big data, the period of a pseudorandom-number
generator matters. It is the longest sequence of numbers generated,
before the sequence starts repeating. The period should be larger than the
number of times the generator is called.

51

Implementation

52

DBMS (SQL):

SELECT * FROM R WHERE random() <= p

MapReduce:

map(key k, val v)
// Assume random() produces a pseudorandom
// number n in the range 0.0 ≤ n < 1.0
if random() < p then emit(k, v)

Spark:
// Sample without replacement: set first
// argument to FALSE
myRDD.sample(FALSE, p)

myDS.sample(p)
myDS.sample(FALSE, p)

More Info on Sampling in Spark

• There are different sampling functions:
– Transformation sample(withReplacement:

Boolean, fraction: Double, seed: Long =
Utils.random.nextLong)
• Fraction is the sampling rate, not the exact sample size.

– Action takeSample(withReplacement: Boolean,
num: Int, seed: Long = Utils.random.nextLong)
• Returns exactly num elements

– Action take(num: Int)
• Scans RDD partitions until sufficiently many elements

are returned. This does not randomly select elements
from the entire RDD!

53

Real Code

• Check out the example code from the
Miner/Shook book at
http://khoury.northeastern.edu/home/mirek/
code/SimpleRandomSampling.java

• Notice how this program uses a single
pseudorandom-number generator per Map
task.

54

http://khoury.northeastern.edu/home/mirek/code/SimpleRandomSampling.java

Random Shuffling
• Random shuffling, i.e., arranging records in a file in a random order,

can be useful in many situations. After a file is randomly shuffled,
each block will contain a random sample of records. Hence one can
obtain a random sample of exactly k records by simply reading the
first k records from the shuffled file.

• Task: Randomly shuffle a given input file. Each input record should
have the same probability of ending up in any position in the
shuffled file.

• Solution: We sort the input by a (pseudo-) random key, which is
assigned by tasks in the first round of computation.
– Instead of sorting, a simpler “random grouping” by the pseudorandom

key would also suffice. For random keys, hash partitioning will create
such a random grouping. Since each input record can still end up in
any position with the same probability, there is no need for the more
expensive (due to the quantile sampling step) and potentially less
load-balanced (if quantiles are poorly approximated) range
partitioning.

55

Implementation

56

DBMS (SQL):
SELECT * FROM R ORDER BY random()

MapReduce:
map(key k, val v)

// To avoid duplicate keys, chose the random
// number from a large domain, e.g., floating
// point numbers between 0.0 and 1.0.
emit(random(), (k, v))

// If none of the random keys are identical, then
// the input list contains only a single record
reduce(rnd, [(k1, v1), (k2, v2),…])

for each (k, v) in input list
emit(k, v)

Spark:

myRDD.map(x => (rand(), x))
.sortByKey()

myRDD.map(x => (rand(), x))
.groupByKey

myDS.sort(rand())

Real Code

• Check out the example code from the
Miner/Shook book at
http://khoury.northeastern.edu/home/mirek/
code/AnonymizeDriver.java

• This program assigns a random integer as the
key.

57

http://khoury.northeastern.edu/home/mirek/code/AnonymizeDriver.java

Approximate Quantiles
• Quantiles such as the median provide important information about a data

distribution. For instance, the median housing price is a measure of wealth
for a neighborhoods. Furthermore, range-partitioning based on quantiles
results in balanced load distribution because the number of records
between consecutive quantiles is the same (unless there are many
duplicates).

• As discussed in a previous module, exact quantiles can be found by sorting
the data and then picking the records at the corresponding positions, e.g.,
the record in the middle for the median. In practice, approximate
quantiles often suffice. The approach discussed here can find approximate
quantiles in a single pass over the input data.

• Task: Find approximate quantiles or percentiles.
• Solution: The main idea is to randomly sample input records in the first

round. Then all sampled records are sorted by a single task in round 2. The
approximate quantiles are collected from the sorted sample.
– A good choice is to create a sample that is large, but still fits into the memory

of the round-2 task.

58

Records sampled:

Median selected
from sample:

Challenge Question

• What are the drawbacks of a sample that is
too small or too large?

– The smaller the sample, the less data is available
for determining the quantiles. This leads to poorer
approximation quality.

– On the other hand, if sample size exceeds the
amount of memory, sorting it would be
significantly more expensive.

59

Challenge Question: Answer

• What are the drawbacks of a sample that is
too small or too large?

– The smaller the sample, the less data is available
for determining the quantiles. This leads to poorer
approximation quality.

– On the other hand, if sample size exceeds the
amount of memory, sorting it would be
significantly more expensive.

60

Implementation in MapReduce
• The algorithm for approximate quantiles is shown below.
• Would secondary sort be helpful here? It eliminates the need for sorting in

user code. And if the number of records in the input list is known, reduce()
can scan through the sorted list and pick the quantiles from the
appropriate positions on-the-fly.
– Then the reduce function would not need more than a few bytes of memory

to hold the currently read input record and to maintain a counter for the
position in the list.

– Unfortunately, it is not clear how to obtain the size of the input list without
reading it twice. (This is not supported by the iterator, therefore, to read it
twice, the list must be copied into memory.) A global counter could track the
number of sampled records, but it cannot be read by the Reduce task of the
same job. Order inversion could help here.

61

reduce(dummy, [(k1, v1), (k2, v2),…]) {
copy all records from the input list into array A
sort array A

for each quantile position i in sorted array A
emit(A[i])

}

map(key k, val v)
// Assume random() produces a
// pseudorandom number n in the
// range 0.0 ≤ n < 1.0
if random() < p then emit(dummy, (k, v))

Approximate Quantiles using Order
Inversion

• The job has one Reduce task. The key is (k1, k2) where k1 is “sample” or
“count” and k2 is a sampled record (k,v) or a count value, respectively. The
key comparator first compares k1, using “count” < “sample”; if equal, it
compares k2, where count values are ordered arbitrarily and (k,v) tuples
are ordered based on their given ordering property. A grouping
comparator ignores the k2 component of the key.

62

Class Reducer {
sampleSize = 0

reduce(flag, [x1, x2,…]) {
if flag = “count” then

for all x in input list
sampleSize += x

else // flag = “sample”
position = 0
for each x = (k,v) in input list

position++
if position/sampleSize is a quantile position

emit(k, v)
}

}

map(key k, val v) {
if random() < p then {

// Emit the sampled record as before
emit(“sample”, (k, v))

// This is needed to get the sample size
emit(“count”, 1)

}
}

Implementation in Spark
• We could implement the MapReduce algorithm

equivalently in Spark Scala. It first calls the sample
function, then collects the sampled data at the driver.
The driver then performs sorting and quantile selection
on the corresponding collection.
– Alternatively, after sampling, we can map each record x to

(dummy, x), then use repartitionAndSortWithinPartitions
to sort the single partition for the dummy key.

• Spark DataFrames also support the approxQuantile
function. It uses a one-pass algorithm with
approximation-quality guarantees. See [M. Greenwald
and S. Khanna. Space-efficient Online Computation of
Quantile Summaries. In Proc. ACM SIGMOD Int. Conf.
on Managament of Data, pages 58-66, 2001] for
details.

63

Implementation in a DBMS

• The SQL standard does not seem to include a
function for computation of approximate
quantiles.

• Database vendors offer their own versions of
quantile and percentile computation
functions. For example, Vertica (as of
September 2018) supports an approximate
algorithm based on a research paper [T.
Dunning and O. Ertl. Computing Extremely
Accurate Quantiles Using t-Digests. 2017]

64

Top-K Records
• In addition to quantiles, one can gain valuable information

about a big dataset from the K most important records. This
could be the top-K largest (or smallest) records based on
some field or attribute, e.g., the most active users, people
who spend the most money or time, or users with the most
friendship links.

• Task: Find the K records that have the largest value of some
attribute of interest.

• Solutions:
– For large K, sort the input and then select the first K records.
– For small K, sorting can be avoided. The main idea is to scan the

input only once. In the first round, each task finds the local top-
K in its partition. All local top-K are sent to a single task that
merges them into the final result. Correctness is guaranteed,
because if a record is in the global top-K, it must be in one of the
local top-K.

65

MapReduce Implementation
• The algorithm below could also use the secondary sort

design pattern to simplify the reduce function. With
secondary sort, the reduce function simply picks up the
first K records in the input list.

66

Class Mapper {
localTopK

setup() { init localTopK }

map(v)
if (v ranks above the last value in localTopK)

// Adding v must also evict the now
// (K+1)-st value from localTopK
localTopK.add(v)

cleanup()
for each v in localTopK emit(dummy, v)

}

reduce(dummy, [v1, v2,…])
init globalTopK

for each value v in input list
if (v ranks above the last value in globalTopK)

// Adding v must also evict the now
// (K+1)-st record from globalTopK
globalTopK.add(v)

for each value v in globalTopK
emit(v)

}

Real Code

• Check out the example code from the
Miner/Shook book at
http://khoury.northeastern.edu/home/mirek/
code/TopTenDriver.java

• This program finds the top-10 users with the
greatest reputation. Since the input records
are in XML format, they are parsed to access
the reputation element.

67

http://khoury.northeastern.edu/home/mirek/code/TopTenDriver.java

Implementation in Spark and DBMS

68

DBMS (SQL): Assume the input relation R has attribute A

SELECT * FROM R
ORDER BY A
FETCH FIRST K ROWS ONLY

Spark:

// The RDD needs to have an implicit Ordering for the type of objects stored
myRDD.top(K)
myRDD.takeOrdered(K)

myDS.sort(A).head(K)

More Info about Top-K in Spark
• takeOrdered(k) and top(k) actions return the k first and

last elements of the RDD, respectively. Ordering is
determined by an implicit Ordering object defined in
scope.

• When applied to pair RDDs of type (K, V), order would
not be based on key, but on (K, V) tuples. To change
this, one needs to have an implicitly defined
Ordering[(K, V)] object in scope. This is the case for
simple key and value types by default.

• Implementation in Spark corresponds to the top-K
MapReduce algorithm: it takes the top-K elements
from each partition, then merges them into a single
top-K list.
– Note that the final result will end up in the driver’s

memory.

69

Summary

• Big data analysis often involves partitioning,
sampling, and summarizing of data. Parallel
solutions in MapReduce and Spark are
comparably straightforward, sometimes not
requiring any data shuffling.

• In most cases, design patterns introduced
previously, e.g., in-Mapper combining and
secondary sort, can significantly improve
performance or reduce coding effort.

70

References

• M. Greenwald and S. Khanna. Space-efficient
Online Computation of Quantile Summaries.
In Proc. ACM SIGMOD Int. Conf. on
Managament of Data, pages 58-66, 2001

– https://scholar.google.com/scholar?cluster=61845
40005789557130&hl=en&as_sdt=0,22

71

https://scholar.google.com/scholar?cluster=6184540005789557130&hl=en&as_sdt=0,22

