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Key Learning Goals

e What do the letter C, A, P in the CAP
conjecture/theorem stand for?

 What do we mean when we say that one can
only achieve two out of the three (C, A, P)?
— Which does a traditional relational DBMS achieve?
— Which does a distributed DBMs achieve?

— Which do MapReduce and Spark achieve? Don’t
they get them all?




Objective

* Understand the inherent limitations of
processing data in a distributed environment.

* See more of the big picture of big data
processing. In particular, understand the
tradeoffs between MapReduce, Spark,
relational databases, and NoSQL databases.

e Learn about database-style technology
available for the MapReduce and Spark
ecosystems.



Rationale

 The challenges associated with Big Data have resulted in a
flurry of new data management and analysis technology
and products. Marketing departments are doing their best
to (over-) sell their products’ capabilities. In the end, there
is no magic bullet, just different tradeoffs. While products
and buzzwords can change rapidly, the underlying
principles and limitations usually remain a constant.
Understanding more about these principles will prepare
you better for future data analysis challenges, even after
MapReduce, Spark, and other current approaches might
not be in fashion any more.

* Understanding the big picture will allow you to make more
informed decisions to pick the best data analysis
technology or tool for a given task.



The Rise of NoSQL Databases

Relational databases are highly successful tools for big data analysis. However, a
significant number of users considers them limited in terms of performance and
scalability. The most common problems include:

Relational databases are general-purpose data analysis tools. Text, graphs, and arrays can be
stored in tables; and SQL can express many of the desired computations. However, data
analysis tools specifically designed for such data can achieve better performance through
specialized solutions.

* Consider a Web search engine such as Google. Even though a database system could support text
search and inverted indexes, the massive scale and simple “query” structure motivated Web search
companies to custom-build their own highly specialized data management solutions.

The requirement to guarantee data consistency (ACID properties) places a great performance
burden on a database.

* Locking, needed for consistency and isolation, adds overhead to each operation, even if there is no
conflict. Updates have to be logged, requiring expensive writes to stable storage, typically hard disks.
And all processes participating in a distributed transaction must agree on the final outcome.

Data needs to be imported into the DBMS before any query can be executed. This includes
careful schema design (relations and their attributes, indexes) and data cleaning. Even though
this initial effort pays off later in query performance, many users dislike heavy startup cost and
prefer to get “something” running quickly, dealing with data quality and structure issues later
as needed. That approach is particularly appealing when the user needs a quick estimate to
determine if it is worth exploring the data in more depth.



The Rise of NoSQL Databases
(Cont.)

NoSQL databases promise to address these shortcomings. The catchy
name refers to a wide variety of approaches that present themselves as
alternatives to relational technology. As NoSQL systems come and go, the
list of examples below may change, but still illustrates typical approaches:

— Google BigTable and Apache HBase focus on extreme scalability to hundreds
or thousands of machines in a shared-nothing environment. To achieve this,
they limit query functionality and do not support relational-style transactions.
In essence, these systems are persistent key-value stores, allowing fast parallel
lookup of data by key. Amazon’s Dynamo service falls into the same category,
allowing a weakening of data consistency guarantees in order to achieve
greater scalability and data availability.

— MongoDB is specially designed for text and document management. It
achieves scalability by using a weaker consistency model that does not ensure
ACID.

— The Neo4j database is optimized for graph processing, supporting specialized
data structures and query constructs. For example, it is easy to express path
searches , something that requires non-trivial join expressions in SQL. Neo4j
supports transactions.



The Rise of NoSQL Databases
(Cont.)

 The following examples illustrate major tradeoffs between relational and NoSQL
systems:

— Relational databases emphasize data consistency and durability, resulting in comparably
limited scalability and performance. Database programmers can actually choose weaker
consistency levels for a transaction, improving performance at the cost of weaker consistency
guarantees. However, relational databases inherently are designed to be general-purpose data
management tools that put data consistency first.

— Some NoSQL systems such as HBase, Dynamo, and MongoDB sacrifice functionality or
consistency guarantees to achieve greater performance and scalability. Interestingly, as
dealing with weaker consistency notions puts a burden on users, some NoSQL databases are
adding stronger consistency features.

— By specializing a database for a certain type of data or query, high performance can be
achieved without sacrificing consistency.

* This leaves the question if one could have it all: scalability to many machines and
high performance as in key-value stores, but also strong data consistency
guarantees and non-trivial query functionality like in a relational DBMS. Could one
design such a perfect system? It turns out that there are inherent limits, set by the
tradeoffs between data consistency, availability, and the distributed nature of
scalable data processing. We will discuss these results next.



The CAP Theorem

* At the 2000 ACM Symposium on Principles of Distributed
Computing (PODC), Eric Brewer proposed the now famous CAP
conjecture for networked shared-data systems. The CAP conjecture
states that there is an inherent tradeoff between consistency,
availability (for data updates), and tolerance to network partitions.
A version of CAP was proved in 2002 as a theorem by Nancy Lynch
and Seth Gilbert.

— For more details about the CAP theorem, read Eric Brewer’s 2012
article [Brewer, E., "CAP twelve years later: How the "rules" have
changed," IEEE Computer, vol.45, no.2, pp.23-29, Feb. 2012]

— For a more technical view, read Lynch and Gilbert’s paper [Seth Gilbert
and Nancy Lynch. 2002. Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT
News 33, 2 (June 2002), 51-59]



The CAP Theorem (Cont.)

e At the core of the CAP theorem lies the observation that one needs a
consensus protocol to maintain consistent state across machines. Due to
the need for consensus, it is impossible to have perfect data availability
and consistency in the presence of network partitions. In particular:

— C+A case: A system can achieve consistency and availability if there are no
network partitions. This is the tradeoff selected by traditional single-node
database servers.

— C+P case: If network partitions are possible, then consistency can be achieved
as long as only one partition accepts updates for an object. Since updates to
this object are not possible in other partitions, availability is limited. A
distributed relational database typical chooses this tradeoff.

— A+P case: If network partitions are possible and the system still allows updates
in all partitions (to achieve high availability), then copies of an object in
different partitions might become inconsistent. Highly available and scalable
systems such as Amazon’s Dynamo select this tradeoff. To deal with data
inconsistency, they rely on protocols that attempt to consolidate the different
copies of the object after communication is restored.



Understanding the CAP Theorem

e Consider a distributed system with two nodes holding a copy of data item D, e.g.,
the bank account info of a customer.

* Assume a network failure separates the two copies. In practice this could also be
caused by one of the nodes not responding to a request in a timely manner.

* If at least one copy of D allows updates, consistency is weakened: the copies are
not identical to each other any more.

* To preserve consistency, availability has to be weakened. There are two basic ways
to achieve this:

1. During a network partition, both nodes make D available for reading only. This limits data
availability for updates in both partitions.
2. If one node is allowed to update D, the other cannot make it available for reading nor

updating. In this case D is completely unavailable in that other network partition.
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Dealing With Partitions

In practice partitions are rare, hence consistency and
availability are usually achievable. For instance, even in a
wide-area network such as the Internet, there are usually
multiple alternative routes between different nodes.

Still, sometimes nodes that need to achieve consensus
cannot communicate with each other. The system has to
provide a mechanism for dealing with these partitioning
events. In Brewer’s words, when partitioning occurs, the
program has to make a partition decision. There are two
basic choices for this decision:

1. Cancel the operation. This decreases availability.
2. Proceed with the operation. This risks inconsistency.

Re-trying the operation only delays the decision.



CAP Iin Practice

For distributed system design and data processing, it is not helpful to think of CAP
as a statement about having to choose two out of three desirable properties.
Instead, CAP impacts design decisions related to performance and latency.

Wide-area networks tends to have high communication latency. Even without
network failures, a consensus protocol such as Two-Phase Commit (2PC) with
many participating processes will suffer from the high latency. By sacrificing some
consistency, better performance can be achieved.

— The notion of eventual consistency was proposed in this context. Inconsistencies are allowed
temporarily during a failure state. A specialized protocol then fixes the consistency issues after
recovering from the failure state. Analytical results for eventual consistency protocols usually
show that with a “sufficiently long” recovery time after a failure state, consistency will
eventually be reached.

The number of times a program re-tries communication with unresponsive nodes
determines the tradeoff between consistency and availability. Consider a protocol
that tries up to n times to reach another node, then goes ahead with its operation
anyway. More re-tries imply a greater emphasis on consistency at the cost of
delayed availability.

— Since the operation was delayed for n attempts, larger n implies lower availability. On the

other hand, going ahead with the operation despite having failed to communicate, risks
inconsistency. Hence larger n reduces the probability of suffering an inconsistency.



Now that we have a better understanding
of the big picture, let us take a closer look
at a distributed key-value store, which
could be considered a NoSQL database.




Bigtable and HBase

e Bigtable was proposed by Google in a systems
research paper:

— Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A Distributed Storage System for Structured
Data. OSDI'06: Seventh Symposium on Operating
System Design and Implementation, Seattle, WA,
November, 2006

 Apache HBase is an open-source system modeled
after Bigtable. It complements Hadoop
MapReduce and Spark.



Associative Access

 The MapReduce and Spark programs discussed so far
work with data stored in large files, typically stored in
HDEFS or cloud storage systems such as S3.

 HBase offers an alternative data storage option. What
makes HBase attractive for big data analysis compared
to simple files?

* HBase supports fast associative access to small
amounts of relevant data “hidden” in big data. To
understand why this functionality is important, let’s see
how relational databases use indexes for associative
access.



Database Indexes

Database indexes will be illustrated with a small
Student table.

* Assume the table is stored in a file like the one shown
schematically next to it. Instead of the entire tuples,
only their SIDs are indicated.

— Notice that in general these tuples could appear in any

Data tuples

| 50 | Name | Age | GPA |

1
2
3
4
5
6

Alice
Bob
Carla
Dan
Erin

Frank

18
27
20
21
19
20

order.

3.5
3.4
3.8
3.9
3.6
3.8

Data tuples stored in some order in a file

123 a5 6
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No Index: Scanning a Table

Consider the following two queries:
— Q1: Find all students named “Carla.”
— Q2: Find all students 21 years or older.

These queries perform an associative access operation, because they are looking
for all tuples associated with a given attribute value (the name in Q1) or range of
attribute values (the age in Q2).

Both queries can be answered by scanning the data file from beginning to end.
Whenever a tuple satisfying the query condition is encountered during the scan, it
will be sent to the output.

While conceptually simple, scanning an entire table is wasteful for queries that
need to access only a few tuples. Such queries are called selective queries. For
selective queries, we would want a more efficient way of directly locating the
relevant tuples without reading any (or “too many”) of the irrelevant ones. This is
where index structures come into the picture.

r 2 3 a5 N
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Hash Index for Equality Conditions

A database hash index is a disk-based version of the well-
known hash map data structure. The basic version of the
hash index consists of a hash function h and B buckets.

— The hash function maps each database tuple to exactly one of
the B buckets.

— Each bucket initially is a single disk page that can hold multiple
entries. Once this page fills up, overflow pages are added to the
bucket. Depending if the index is clustered or not, the index
pages either store the actual tuples or pointers to the tuple
locations on disk. For simplicity we will focus on the version that
stores tuples in the index.

* Using a hash index with sufficiently large B, relevant tuples
can be found in amortized constant (i.e., independent of
data size) cost.



1
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Hash Index Example

The example hash index has three buckets, it stores the tuples, and each index page fits up to two
tuples. For Q1’s associative access by student name, the index needs a hash function h that hashes
each name to one of the three buckets. A good hash function will achieve a nearly uniform

assignment.

How does Q1 take advantage of this index?

The database recognizes the equality condition name = ‘Carla’ in the query.

It computes h(‘Carla’), determining that all tuples for name ‘Carla’ are in bucket 1.

Instead of reading the entire table, the database only accesses bucket 1 (including its overflow bucket). The
accessed tuples are highlighted in bold. It checks the name constraint on-the-fly, returning only tuple 3.
Hash indexes can significantly reduce cost for queries with equality conditions.

For range conditions, they do not work well. Assume Q1 was looking for a all names starting with
the letter C. Such names could be hashed to any of the buckets, hence the database would not be
able to prune any buckets from the search, resulting in no advantage over the simple scan.

 Name | Age |

Alice
Bob
Carla
Dan
Erin

Frank

1
27
20
21
19
20

EN
8 35

3.4
3.8
3.9
3.6
3.8

h(‘Alice’) =1
h(‘Bob’) =0
h(‘Carla’) =1
h(‘Dan’) = 2
h(‘Erin’) =1
h(‘Frank’) = 2

Primary bucket pages Overflow pages

Bucket0  (2,Bob,27,3.4)
Bucket1  (1,Alice,18,3.5), (3,Carla,20,3.8) > (5,Erin,19,3.6)
Bucket2  (4,Dan,21,3.9), (6,Frank,20,3.8)

Hash index on the name attribute




B-Tree Index for Range Predicates

A B-tree supports both equality and range predicates. It organizes the
domain of the index key hierarchically. Essentially a B-tree is a disk-based
version of the well-known (2,4)-trees and the tree map data structure.

The non-leaf pages of the B-tree contain search keys and pointers, while
the leaf pages contain the actual tuples (or pointers to their locations on
disk).

The search for a given key starts at the tree root, then proceeds along a
single path to the leaves. Leaf pages are linked together and store tuples
in key order. Hence all matches are found by scanning the leaf level from
the initially found page to the “right” or to the “left.”

By construction, B-trees are balanced, i.e., the path from root to leaf has
the same length for every leaf node. This enables the B-tree to guarantee
logarithmic (in the data size) cost for finding a relevant leaf. Similarly, B-
tree updates can be performed in logarithmic time.



B-Tree Example

e Since Q2 selects tuples by age, the index key has to be the age attribute.

 The root node of the example B-tree contains age 20 as the search key. The left
pointer guides the search to all students 20 years or younger, while the right one
points to those older than 20 years.

e Similarly, in the next level the pointers guide the search to the corresponding leaf
pages based on search keys stored there.

* Notice that the tuples in the leaves are perfectly sorted by age. This happens by
design, enabling fast range searches.

* This example gives a flavor of the B-tree structure. In practice, index pages contain
many more search keys (and the corresponding pointers).

ptr 20 ptr Root node
ptr 19 ptr ptr
(1,Alice,18,3.5), (5,Erin,19,3.6) {——> (6,Frank,20,3.8), (3,Carla,20,3.8) (4,Dan,21,3.9) {——> (2,B0b,27,3.4)

Leaves, connected through pointers



Processing Q2

Q2: Find tuples with age 21 or older.

_____________________

\4
ptr 20 ptr
ptr 19 ptr ptr 21 ptr
(1,Alice,18,3.5), (5,Erin,19,3.6) (———> (6,Frank,20,3.8), (3,Carla,20,3.8) (———> (4,Dan,21,3.9) {——> (2,Bob,27,3.4)

The search starts at the root node with search key value age = 21.
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Processing Q2

Q2: Find tuples with age 21 or older.

ptr 20 ptr
ptr 19 ptr ptr 21  ptr
(1,Alice,18,3.5), (5,Erin,19,3.6) (———> (6,Frank,20,3.8), (3,Carla,20,3.8) (———> (4,Dan,21,3.9) {——> (2,Bob,27,3.4)

Since 21 > 20, the search proceeds with the right pointer.

23



Processing Q2

Q2: Find tuples with age 21 or older.

ptr 20 ptr
ptr 19 ptr ptr 21 ptr
(1,Alice,18,3.5), (5,Erin,19,3.6) (———> (6,Frank,20,3.8), (3,Carla,20,3.8) (———> (4,Dan,21,3.9) {——> (2,Bob,27,3.4)

Since 21 is now equal to the search key, the search proceeds with the
left pointer.
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Processing Q2

Q2: Find tuples with age 21 or older.

ptr 20 ptr
ptr 19 ptr ptr 21 ptr
(1,Alice,18,3.5), (5,Erin,19,3.6) (———> (6,Frank,20,3.8), (3,Carla,20,3.8) (———> (4,Dan,21,3.9) {——> (2,Bob,27,3.4)

In the leaf reached, all tuples are checked to see if they satisfy the
query condition.

25



Processing Q2

Q2: Find tuples with age 21 or older.

ptr 20 ptr
ptr 19 ptr ptr 21 ptr
(1,Alice,18,3.5), (5,Erin,19,3.6) (———> (6,Frank,20,3.8), (3,Carla,20,3.8) (———> (4,Dan,21,3.9) &> (2,Bob,27,3.49)

Since Q2 specified an inequality that includes all older students, the search continues
at the leaf level, following the right pointer to the next leaf until the end.

As the example illustrates, the index nodes guide the search directly to the pages
with the relevant tuples. Depending on data and query, cost savings compared to the
sequential scan can be significant.

26



We now discuss how to use HBase as a B-
tree.
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HBase Overview

MapReduce and Spark do not have built-in DBMS-style index support.
Hence the corresponding programs implementing Q1 and Q2 would scan
through the entire input file to compute the result. Even though this scan
happens in parallel, it wastes resources for selective queries.

HBase addresses this limitation by adding efficient lookup capability to the
Hadoop and Spark ecosystems. One can view it as a somewhat simplified
distributed B-tree.

Like a database, HBase stores tables consisting of rows and columns. And
like HDFS, it scales by adding more nodes. With hundreds or thousands of
nodes, it can scale to billions of rows and millions of columns.

However, HBase does not support SQL. It also does not offer transactions
or ACID, but ensures row-level atomicity.

Overall, HBase is neither a distributed file system nor a database. It can
most accurately be characterized as a highly scalable distributed key-value
store that efficiently supports associative access for selective equality and
range queries.



Data Model

Data is stored in tables, consisting of rows and columns. A cell is defined by a row-
column combination; and is versioned.

— In atable storing a Web crawl, a cell might contain the HTML of www.northeastern.edu on
different dates. By default the last three versions are kept. The default version identifier is the
time of insertion. Cell content is stored as an un-interpreted array of bytes.

Each row is uniquely identified by a row key, similar to a database table’s primary
key. It is a byte array, hence any serializable type can serve as the row key type.

An HBase table is stored sorted by row key, where the sort is byte-ordered.

— Like for the B-tree, the sorting property can be exploited to improve performance when
accessing data in HBase. Hence the row key needs to be chosen wisely according to data
properties and query workload. (This will be discussed soon.)

— Since keys are sorted based on their byte-array representation, the programmer has to ensure
that the byte-encoded key ordering agrees with the desired ordering.
Columns are grouped into column families. For example, weather data could have
a temperature family with columns temperature:air and temperature:dew_point.
Column families are stable and need to be specified as part of the table schema
definition. On the other hand, individual columns can be added or removed easily.
All column family members are stored and managed together.

— Inrelational databases, every column has to be specified when creating a table. Adding or
removing columns constitutes a major operation.



http://www.northeastern.edu/

Illustration

The following example from "HBase: The Definitive Guide" by Lars George illustrates how data is
stored in an HBase table. There are three column families: data, meta, and counters. The example
row identified by key “row1” contains multiple versions in the data column family, but only one for
the meta:mimetype column. Even though the table content conceptually is sparse (note the empty
cells in the bottom representation), HBase in practice stores the data very compactly (as shown at
the top).

The timestamp values indicate when the corresponding update was performed. An update can
specify values for a subset of the existing columns, or it can create new columns in existing column
families on-the-fly.

Given data as in row 1, where each update affected only some of the columns and where some
columns contain multiple versions, what will be returned to a query accessing this row?

— When asking for a row, by default only the last value in each cell will be returned with its timestamp. In the
example, the data with timestamp tq in data, timestamp tg in meta:mimetype, timestamp t; in meta:size, and
timestamp tq in counters will be returned. (The earlier values can also be requested explicitly.)

When inserting a row, new columns can be created on-the-fly for an existing column family. For
instance command put ‘mytable’, ‘row’’, ‘meta:color’, 'blue’ adds a row with key ‘row?’ to table ‘mytable.
New column ‘color’ is created in column family meta; the value in this column is ‘blue’.

Command get ‘mytable’, row? will then return

COLUMN CELL

meta:color timestamp=..., value=blue
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Data Storage

HBase can store the data in a variety of file systems,
including the local file system, HDFS, and Amazon’s S3.

Master

An HBase table is automatically partitioned into sookeeper
regions, each covering a range of row keys. Each region L > duster
is managed by a RegionServer. Range partitioning on X v "

row keys benefits queries that look up a single row key
or a range of row keys.

— For example, assume a table containing rows with keys 0 to g <
99 is partitioned into four regions [0,24], [25,49], [50,74], and : N N
[75,99]. A client trying to access the row with key 32 only N X
needs to contact the single RegionServer that manages range v, Regonsener  Reglonserver Regionserver
[25,49]. It finds this RegionServer by contacting the HBase
master. Similarly, a client reading rows with keys 57 to 70 « ¥
would only communicate with the RegionServer responsible e HDFS

for [50,74].

— What would happen if the table was hash-partitioned into
regions? Then keys in range 57 to 70 could be scattered all
over the RegionServers, requiring the client to read from all
of them.

Image source: Hadoop: The Definitive Guide by Tom White
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Challenge Question

* For MapReduce and Spark programs, we always attempted
to balance load across different machines. For HBase, why
do we want to minimize the number of RegionServers
contacted? Doesn’t this lead to load imbalance on the
RegionServers?

— Yes, but that is a feature, not a bug. Balancing load is desirable
for reducing running time. And if HBase had to process only a
single query, then that would be a viable goal.

— However, typically an HBase table is accessed by multiple clients
at the same time. In that scenario it is better to optimize for
throughput, i.e., the number of requests processed per second.
Throughput is higher, the lower the cost per query—and total
cost per query decreases with decreasing number of
RegionServers accessed by it.



Storage Discussion

* Notice the similarity to the B-tree index: The HBase Master
corresponds to the B-tree root node, which contains search
keys and pointers to the corresponding RegionServers. A
RegionServer corresponds to a giant leaf node in the B-tree.
Hence HBase is similar to a very shallow B-tree with giant
nodes.

* When using HBase in practice, one needs to be aware that
a table is only partitioned once it reaches a certain size. A
small table is stored in a single partition on a single
RegionServer. As data is inserted and a partition exceeds
the maximum allowed size, it will be split and distributed
over multiple RegionServers.

— One can force even a small table to be split by providing key-
range data.



Accessing HBase: The Big Picture

The process of accessing HBase tables mirrors the way files are
accessed in HDFS.

A client connects to the ZooKeeper service to find the HBase
Master. From the Master, it learns about the RegionServer holding
the requested data. The client caches the region information it has
learned for future accesses.

— ZooKeeper is a distributed consensus protocol that ensures the
existence of exactly one HBase Master, even in the presence of
failures.

The client then contacts the corresponding RegionServer(s) for the
actual data directly.

Write-ahead logging to HDFS ensures durability even if a
RegionServer crashes. HBase supports simplified relational-
database style redo operations of committed writes.



Accessing HBase: Queries

Data in an HBase table can be accessed by row key (like a B-tree
index lookup) or by scanning.

— Access by row key requires the client to specify the desired row key.

— For a scan, the user can specify a range consisting of a start row and a
stop row. By default, the scan will include all rows.

For the scan, a filter can also be specified. The filter determines for
each row, if it will be sent from HBase to the client. This is useful for
selective queries on attributes other than the row key.

— Consider a query for students with GPA above 3.8 in the Students
table, assuming that the HBase table’s row key is SID. Since the
ordering on SID does not benefit the selection on GPA in any way, the
entire table has to be scanned. However, instead of sending all student
rows back to the client and removing the irrelevant ones there, adding
the filter to the HBase scan will avoid sending the irrelevant rows in
the first place. This can significantly reduce cost, saving valuable
network bandwidth.



Scan with Filter

b

Client

Scan

=

1. Client creates Scan with Filter

2. Send serialized Scan
with Filter data

Scan

Fiter]

Scan

Filter]

Store Store Store Store
Scanner| |Scanner Scanner| |Scanner
RegionScanner Region5canner

RegionServer

b

Scan
Filter

Scan

Store Store Store Store
Scanner| |Scanner Scanner| |Scanner
RegionScanner RegionScanner

RegionServer

3. RegionServers desenalize Scan with Filter and use it with internal Scanners

Source: HBase: The Definitive Guide, by Lars George
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Accessing HBase: Queries (Cont.)

* HBase does not support additional indexes on columns other than the row key.
This limits its ability to support associative access on different columns and column
combinations. (Though, projects exist for adding such indexes.)

— Consider again the client looking for students with GPA above 3.8. Without an index on the
GPA column, HBase cannot tell which rows contain the desired data, except by reading every
row and checking its GPA value. Adding a filter to the scan does not reduce this cost, but only
the data transfer to the client.

* In arelational database, a secondary B-tree index on GPA could potentially find the
1% relevant rows by accessing a few index nodes, avoiding access to many of the
irrelevant rows.

— Assume the Students table was organized by age in a B-tree like the example shown before.
Since the tuples in the leaves are sorted by age, they are usually not sorted in any way by GPA.
Unfortunately, creating the same type of (clustered) index on GPA would resort the tuples by
GPA, destroying the order on age. This is where secondary indexes come in handy. Instead of
actual tuples, a secondary (non-clustered) index will only store pointers to their locations on
disk. These pointers can be sorted by GPA without affecting the sort order of the tuples
themselves. While now all pointers to the relevant tuples can be found efficiently as before,
the corresponding disk locations could be “all over the place” in the data file. Hence in
practice the cost of accessing the tuples will be higher than for the clustered index.

* While secondary indexes often reduce query cost, they increase update cost:
Whenever the data changes, the secondary index must be updated, too.



Accessing HBase: Queries (Cont.)

* |n contrast to a relational database, HBase does not
support joins. Hence the join would have to be
executed by the client, e.g., a MapReduce or Spark
program that fetches the data from the HBase tables.

* Alternatively, one can store the join result as an HBase
table, i.e., de-normalize the data. While this creates
redundancy and results in a very large “wide” table
(and hence is usually discouraged in relational
databases), HBase’s scalability in terms of both the
number of rows and columns often makes this
approach feasible in practice.



Accessing HBase: Clients

 HBase can be accessed from a variety of clients,
including:
— A MapReduce Java or Spark Scala program.
— Avro.
— REST.
— Thrift.
e Take a look at this simple Java client from "Hadoop:

The Definitive Guide" by Tom White that performs a
few standard operations against an HBase table:

— http://www.ccs.neu.edu/home/mirek/code/NewExampleC
lient.java



http://www.ccs.neu.edu/home/mirek/code/NewExampleClient.java

HBase and MapReduce/Spark

 HBase is well integrated with Hadoop
MapReduce and Spark. For both, one can use
the functionality in library
org.apache.hadoop.hbase.

— For instance, class TablelnputFormat for Mapper
input makes sure each Map task receives a single
region of the table. This way regions line up with
Map tasks, the same way HDFS file chunks do.

— Class TableOutputFormat allows a Reducer to
write directly to an HBase table, instead of HDFS.



HBase and Hadoop Example

 We illustrate the use of HBase from a MapReduce
program with an example taken from "Hadoop:
The Definitive Guide" by Tom White.

* In this example, weather station information and
their temperature observations need to be
loaded into HBase tables. Then these tables are
qgueried to (1) retrieve information about a
specified station and (2) retrieve the most recent
reports for a specified station.

— To store information about weather stations and the

observations they made, two tables are used: stations
and observations.



The Stations Table

* This table stores detailed information about each
weather station, including its name and location.

* Since the data will be looked up based on station

Ds, it makes sense to use stationid as the row
cey.

* |t suffices to create a single column family “info”.

ndividual columns such as info:name,

info:location, and info:description will store the
station information.




The Observations Table

* This table stores the air temperatures recorded
by each station at different times, i.e., each
individual measurement is a tuple (stationid,
time, airtemp). How should these tuples be
stored in the table?

* The most important decision is the choice of the
row key. Since HBase stores the rows sorted by
key, choosing a good key can significantly improve
performance.

* What makes a good key?



Criteria for Choosing a Row Key

Number of RegionServers accessed: Assume the table is evenly
distributed over 100 RegionServers and there are 1000 different
stations. If the data is randomly sorted, then a query for records of
station S has to access all 100 RegionServers. If the data is sorted by
stationid, then most likely all records for station S are located on a
single server (assuming approximately uniform distribution). Hence
by using stationid as the key, fewer RegionServers need to be
contacted.

Result ordering: HBase scanners can start at a specified row and
then return the following rows in order. If these rows are needed in
order of some data attribute(s), then making this attribute part of
the HBase table’s row key will automatically ensure that the
scanner delivers the rows in the desired order. (Note the similarity
to secondary sort!)

Unigueness of rows: The row key should meaningfully distinguish
rows from each other.



Uniqueness of Rows

* To better understand this requirement, consider if stationid by itself would
make a good row key for the observations table.

— No. Assume each station reports dozens of temperature measurements daily.
By default HBase keeps the three latest versions for each row, therefore with
stationid alone as the key, only the last three measurements for each station
would be kept. One can increase the number of old row versions to be kept,
but this is an inelegant workaround. The real problem here is that the row
identifier is not sufficient as a unique identifier.

* Then, how about HBase system time as part of the row key?

— One might consider wall-clock time of insertion as a “quick-and-dirty” way of
creating unique row keys. This usually is not a good idea for two reasons. First,
in a distributed system one would need a service that assigns timestamps
according to consistent global clock. Otherwise two machines might
accidentally choose the same timestamp. Second, from a design point of view,
it is preferable to work with identifiers that naturally distinguish different
entities. For the observations data, each temperature record is uniquely
identified by stationid and time of measurement. Hence the time of
measurement is a more sensible choice instead of the time a machine inserted
the record into the HBase table.



Choosing the Key for Observations

* Based on the criteria discussed, we choose (stationid, measurement
time) as the row key:

— For the temperature observations, the combination of stationid and
time of measurement uniquely identifies each observation tuple,
hence (stationid, time) and (time, stationid) are good row key
candidates from this point of view.

— The workload consists of queries looking for measurements from an
individual station. This again suggests that stationid should be part of
the row key. If the data is sorted by stationid, then such requests will
access a comparably small range in the HBase table, i.e., only one or
maybe two RegionServers (depending on the number of partitions and
measurements per station).

— The user wants to receive temperature measurements from a station
in temporal order, starting with the most recent. This suggests that the
time of measurement should be part of the key, but only secondary to
the stationid.



Choosing the Key for Observations
(Cont.)

* In summary, the row key for the observations table should be the
combined byte array consisting of stationid and time. Since keys are sorted

based on the natural order of these bytearrays, the following needs to be
taken into account:

— Converting key fields to a byte array sometimes requires padding, i.e., adding
additional digits (usually zeros) to make sure the byte array ordering agrees
with the intended ordering of the composite keys. For example, if stationid
values vary in their length when transformed to a byte array, then padding is
needed to make all of these byte arrays equal in length before concatenating
them with the corresponding byte array for the time field.

— The natural conversion from timestamp to byte array would result in an
increasing sort order on the time field. Hence the byte array for the time field

needs to be inverted before concatenating it with the corresponding stationid
byte array.

e Take alook at the source code from Tom White’s book at
http://www.ccs.neu.edu/home/mirek/code/RowKeyConverter.java.

— It assumes that no padding is needed for stationid; reverseOrderTimestamp
achieves sorting in decreasing order of observation time.



http://www.ccs.neu.edu/home/mirek/code/RowKeyConverter.java

HBase MapReduce Code: Data Import

First import data from a source (usually a file) into HBase. Here is
the code from Tom White’s book:

— http://www.ccs.neu.edu/home/mirek/code/NewHBaseStationImporte
r.java (it uses

http://www.ccs.neu.edu/home/mirek/code/NewHBaseStationQuery.|
ava)

— http://www.ccs.neu.edu/home/mirek/code/HBaseTemperaturelmport
er.java (it uses
http://www.ccs.neu.edu/home/mirek/code/NewHBaseTemperatureQ
uery.java)

The Map function of the temperature importer program reads a
temperature record and parses it. Instead of writing the
corresponding key-value pair to an HDFS file or passing it to a

Reducer, this program inserts it into an HBase table.

The program assumes that the observations table already exists.



http://www.ccs.neu.edu/home/mirek/code/NewHBaseStationImporter.java
http://www.ccs.neu.edu/home/mirek/code/NewHBaseStationQuery.java
http://www.ccs.neu.edu/home/mirek/code/HBaseTemperatureImporter.java
http://www.ccs.neu.edu/home/mirek/code/NewHBaseTemperatureQuery.java

Performance Considerations

To populate an HBase table with big data, use a Map-only job as shown above.
(Reducers can use the same approach.) When the HBase libraries are used
correctly, the connection from a Map task to HBase is established and closed only
once, not for every map call. Spark works similarly with the HBase libraries.

When inserting into an empty table, this table will not be partitioned over multiple
RegionServers until it grows large enough. Hence initially all Mappers will send
their records to the same RegionServer, creating a bottleneck. As the table grows
and gets distributed over multiple RegionServers, insert performance improves.
HBase also allows small tables to be pre-partitioned to avoid this bottleneck.

To distribute data-import load evenly over the RegionServers, data should be
inserted in random order of the row key. Avoid situations where all Mappers are
likely to write to the same RegionServer at the same time.

When performing a huge number of insertions, make sure the insert operations
are buffered. Buffering allows efficient bulk inserts into HBase, instead of costly
individual ones.
— Check if the put() operation uses buffering. You might have to disable auto-flush and set the
size of the write buffer. When using buffering, make sure the buffer is flushed in the end. Take

a look at http://www.ccs.neu.edu/home/mirek/code/HBaseTemperatureDirectimporter.java
and http://www.ccs.neu.edu/home/mirek/code/HBaseTemperatureBulkimporter.java.



http://www.ccs.neu.edu/home/mirek/code/HBaseTemperatureDirectImporter.java
http://www.ccs.neu.edu/home/mirek/code/HBaseTemperatureBulkImporter.java

HBase MapReduce Code: Queries

* Alookup by row key on the stations table is shown in

http://www.ccs.neu.edu/home/mirek/code/NewHBase
StationQuery.java

— Since HBase tables are range-partitioned on row key, the
get() request for a specific stationid will request data from
a single RegionServer, minimizing cost. That RegionServer
can quickly find the desired row using binary search. This is
much cheaper than scanning through the entire table.

— The RegionServer to be contacted for a given row key is
found as follows. The HBase Master records for each
RegionServer the minimal and maximal key value for the
range of rows it manages for an HBase table. Since the
data is range-partitioned on the row key, there is at most
one RegionServer whose range includes the given key.



http://www.ccs.neu.edu/home/mirek/code/NewHBaseStationQuery.java

HBase MapReduce Code: Queries

A scan of the observation table is shown in
http://www.ccs.neu.edu/home/mirek/code/NewHBaseTemperatureQuery

.Java
— This program retrieves a block of rows. The Scan object is instantiated with a

starting row, identified through a row key. In the example, we are interested in
the maxCount most recent observations for a given station. Not knowing the
date of the most recent observation, one has to “play it safe” and use the
combination (stationld, Long.MAX_VALUE) to start at the largest possible
timestamp. If the start row key does not exist, then the scan will automatically
start at the next row.

One can similarly specify a stop row, i.e., a key for the last row to be accessed.
This further reduces cost, because partitions outside this range would not
participate in the query at all. (This is like working with a much smaller HBase
table!) In the example, the user is interested in a certain number of rows,
hence the scanner stops reading at the right row anyway.

The scanner retrieves rows in row-key order. Hence if this order agrees with
the desired output order, no sorting in user code is needed. The rows can be
traversed in order using a ResultScanner. It works similar to an iterator in Java.


http://www.ccs.neu.edu/home/mirek/code/NewHBaseTemperatureQuery.java

In the final section of this module, we
explore Hive.

Note: some of this information might be
slightly out of date. It will be updated
periodically (next time: summer 2019).




Hive

Hive was initially developed by Facebook, but is
now an Apache open source project.

It originally added SQL-style data analysis
functionality on top of Hadoop MapReduce.

— Users can write queries in HiveQL, a dialect of SQL.
These queries are automatically converted to plain
Java MapReduce programs and can then be executed
on a Hadoop cluster.

Hive can now also execute queries via Spark.

Hive can also take on the role of a database
server.




System Overview

Typically Hive is run on a single machine. There it
transforms user queries into MapReduce or Spark jobs.

One can also run Hive as a database server, allowing
applications to connect to it and run Hive commands
using interfaces such as Thrift, JDBC, and ODBC.

Data is represented through tables, like in a relational
database. A special database called metastore contains
the metadata, in particular table schemas.

Hive can be run in interactive mode (using the Hive
shell) or in batch mode, passing an input file containing
a Hive query.



Hive Storage

* Hive can use a variety of file systems to store its data,
including the local file system, HDFS, and S3. From a
physical storage point of view, there are two types of
tables:

— For a managed table, Hive moves the corresponding data files
into its own warehouse directory. Assuming the file was already
located in the same file system, this simply performs a renaming
operation, requiring no physical data movement.

— An external table remains at a location outside the Hive
warehouse directory. When creating an external table, Hive
simply records the data file’s location. At query time, it will read
the data from there. Hence the data file does not even need to
exist at table creation time, as long as it is available at query
time. This enables assigning different schemas to the same file.



Creating Hive Tables

 Asin a relational database, the CREATE TABLE
statement creates a database table. It
specifies table name and schema, i.e., all
attributes and their types. The ROW FORMAT
clause tells Hive how to interpret the input
data.

CREATE TABLE records (year STRING, temperature INT, quality INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';



Loading Data

 The LOAD statement does not load any data tuples into the table. For
managed tables, Hive moves the input file into its warehouse directory,
into a subdirectory with the same name as the table. For an external table,

only the input file location is recorded. Data will only be loaded lazily at
query execution time.

— This is different from a relational database where all data has to be physically
imported into the tables before it can be queried.

* The lazy approach avoids data import cost until the data is queried. On the
downside, the on-the-fly parsing of the input file at query time increases

guery execution cost and might uncover data parsing errors that would
not be discovered beforehand.

— The lazy approach to data loading makes sense for Hive, because a Hive query
is converted to a MapReduce or Spark job executed on the input file. Tables
and SQL-like query functionality simply provide a convenient interface.

LOAD DATA INPATH 'input/ncdc/micro-tab/sample.txt’
OVERWRITE INTO TABLE records;



Partitions

Tables can be physically divided into partitions based on the value of designated
partition column(s). This feature can reduce query cost for big data.

— Consider an Internet application that creates a massive log of user activities. Assume a typical
qguery focuses on users from a single country and their activity in the most recent month. In
this case the log table should be partitioned by country and date, so that only a small number
of partitions is accessed.

The partition attribute’s values determine the directory structure where the files
with the corresponding data are stored. For example, the data for 10-10-2014 and
USA would be stored in subdirectory .../10-10-2014/USA. Since the country and
date are encoded in the directory names, the corresponding attributes will not be
part of the table schema any more.

— Partition attributes can still be used in a query. That query can access any number of the
partitions.

The example code creates a partitioned table for a log file whose tuples consist of
a date/time field, country, and a line of text. Date and country are used for
partitioning, while the time of day value and the text line define the table schema.

CREATE TABLE logs (timestamp BIGINT, line STRING)
PARTITIONED BY (date STRING, country STRING);



Buckets

Buckets do not create separate directories like partitions. Instead,
they are used for re-ordering data in a table. The CLUSTERED BY
clause groups the data by some attribute(s) and the SORTED BY
clause ensures sorting within each group.

Hive determines the bucket a tuple belongs to by hashing on the
clustering attribute(s), then taking this hash output value modulo

the number of buckets.

This functionality is particularly useful for equi-joins, if both input
tables are bucketed on the same columns (and the join columns are
used for bucketing). This enables an efficient hash-join and sort-
merge join style implementation—the latter only if sorting on the
join attribute(s) was applied within each group.

CREATE TABLE bucketed users (id INT, name STRING)
CLUSTERED BY (id) SORTED BY (id ASC) INTO 4 BUCKETS;



Hive Queries

SELECT year, MAX(temperature)
FROM records
WHERE temperature !=9999
AND (quality = 0 OR quality = 1 OR quality = 4 OR quality =5 OR quality = 9)
GROUP BY year;

The above query in HiveQL finds the maximum temperature for each year,
only considering observation reports with valid temperatures and quality.

HiveQL is very similar to SQL. It does not fully support the SQL-92
standard, but can express many common SQL queries. In fact, the above
example is a perfectly fine SQL query.

— Note that Hive allows complex types such as ARRAY, MAP, and STRUCT to be
stored in a database column. This differs from relational databases, which

usually limit columns to primitive types. (Complex types need to be expressed
through the use of additional tables.)

For more details about HiveQL, consult the Hive manual.



Joins in Hive

* Hive supports inner join, outer join, and semi join. It uses a rule-
based optimizer for generating efficient query plans before
performing the conversion to a Hadoop program. A more
sophisticated cost-based optimizer could be added in the future.

* The examples below illustrate various joins of tables sales and
things. All these HiveQL queries are also valid SQL queries.

SELECT sales.*, things.*
FROM sales JOIN things ON (sales.id = things.id);

SELECT sales.*, things.*
FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);

SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);



Advanced Query Features

* HiveQL supports sub-queries, but in a much more
limited way than relational databases. (Initially sub-
qgueries were restricted to the FROM clause, but this
might change as the system evolves.)

* Hive also supports the creation of views, i.e., tables
defined by a HiveQL query. However, these views
cannot be materialized and hence need to be
generated on-the-fly when the query referencing a
view is executed.

* Like in relational databases, HiveQL functionality can
be extended through user-defined functions. These
functions can be written in Java.



Hive versus Relational Databases

Both Hive and relational databases need to create tables, but they differ in the way
data is loaded.

— In arelational database, data needs to be physically loaded into the tables before it can be
queried. At the time the data is loaded, the table schema is enforced. This approach is called
“schema on write.”

— Hive’s LOAD statement does not read or parse the data file at all. Instead, Hive enforces the
table schema on-the-fly at query execution time. This approach is referred to as “schema on
read.”

— Schema on write requires greater effort at data load time, but usually results in better query
performance because the data is already parsed and readily available in a database-controlled
format. Having the data managed by the database also allows it to create index structures or
apply compression. Schema on read eliminates the initial startup cost for data loading, but it
increases query execution cost.

A major advantage of schema on read is that it makes it easy to change the
schema of a table. In a relational database, a schema change leads to potentially
costly physical data re-organization. In Hive, it merely changes the way the data is
being interpreted when it is read from file during query execution. Furthermore,
with external tables, it is possible to associate different table names and schemas
with the same input file, without having to copy the data. This would not work
with Hive’s internal tables, because the file is stored in a directory named after the
table; hence one cannot associate two different table names with the same file.



Hive versus Relational Databases
(Cont.)

In relational databases, table entries are fully updateable. Hive does not
support updates or deletions of existing data, only inserting of new rows.

Hive indexing support is rudimentary compared to relational databases,
but is being improved and expanded. However, note that in order to
create an index, the data file has to be physically loaded, the index be
materialized in some form, and then be managed by Hive.

Hive initially did not support ACID transactions, but locking at different
levels of granularity (table and partition) was added. Expect Hive to
become more like a relational database in the near future.

Hive’s data model supports complex types (ARRAY, MAP, STRUCT) in table
columns, something generally not allowed by relational systems.

Hive currently relies on a much less sophisticated optimizer than most
commercial databases.



Summary

When processing big data in a distributed system, we are facing
inherent tradeoffs between data consistency, data availability, and
the system’s ability to tolerate network partitions (or high latency).
This means that any scalable data processing system has to make
compromises on at least one of these aspects.

— Relational databases traditionally emphasize consistency and
availability, limiting their scalability in terms of the number of nodes
participating in a transaction.

— Some NoSQL databases relax consistency in order to achieve high
availability even when running on many nodes.

— Hadoop and Spark appear to magically achieve high data availability
and scalability to many nodes, without compromising consistency. In
reality, they limit availability because existing data cannot be modified.
And dealing with machine failures through task re-execution can result
in slightly weaker consistency guarantees if a program is non-
deterministic.



Quick Note about Nondeterministic
Programs

A program is non-deterministic if its output depends on random choices.
However, not all MapReduce or Spark programs using random number
generators will necessarily suffer from data consistency issues.

Citation from [Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. OSDI'04: Sixth Symposium on Operating
System Design and Implementation, San Francisco, CA, December, 2004]

— “In the presence of non-deterministic operators, the output of a particular
reduce task R1 is equivalent to the output for R1 produced by a sequential
execution of the non-deterministic program. However, the output for a
different reduce task R2 may correspond to the output for R2 produced by a
different sequential execution of the non-deterministic program. Consider
map task M and reduce tasks R1 and R2. Let e(Ri) be the execution of Ri that
committed (there is exactly one such execution). The weaker semantics arise
because e(R1) may have read the output produced by one execution of M and
e(R2) may have read the output produced by a different execution of M.”



Summary (Cont.)

* HBase is a highly scalable key-value store that is
well integrated with Hadoop MapReduce and
Spark. It adds the ability to look up individual
rows or ranges of rows based on a row key,
essentially providing some form of indexing
capability for MapReduce and Spark.

* Hive provides a scalable distributed data
warehousing environment. It trades scalability for
somewhat restricted functionality compared to
traditional relational data warehousing
technology.



CYK: Question 1

* For each question, select if it is true, false, or not
enough information to answer it.

1. HBase supports relational-database style
transactions and SQL.

2. HBase works really well for cases where a
MapReduce program needs to look up only a
few records based on a key attribute.

3. We can write plain-Java Hadoop programs that
read their input data from an HBase table and
store job results in an HBase table.

4. HBase is more scalable than Hive.



N

Question 2

Consider an HBase table Reviews with row key (productID, customerID,
date) and columns price and score. Each customer and product has a
unique ID. Every time a customer purchases a product, she submits a
score. Assume there are 1000 different products and 10,000 customers.
Customer-product pairs are uniformly distributed in the review data. The
same review information is also stored in an HDFS file.

For each of the following queries, assume it is the only query you need to
run, but you will need to run it every day. Decide if you want to create the
Reviews table as described above, or if you would rather use the file in
HDFS. Select both if you believe this cannot be answered clearly in either
way.

Find the average score for each productID.
Find the average score for productID P10.

Find all tuples for the combination of productID P5, customerID C12, and
date 10-10-2013.

Find all tuples for customerID C91.
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