Let us now look at implementing graph algorithms in MapReduce.

Why Graphs?
• Discussion is based on the book and slides by Jimmy Lin and Chris Dyer
• Analyze hyperlink structure of the Web
• Social networks
 – Facebook friendships, Twitter followers, email flows, phone call patterns
• Transportation networks
 – Roads, bus routes, flights
• Interactions between genes, proteins, etc.

What is a Graph?
• $G = (V, E)$
 – V: set of vertices (nodes)
 – E: set of edges (links), $E \subseteq V \times V$
• Edges can be directed or undirected
• Graph might have cycles or not (acyclic graph)
• Nodes and edges can be annotated
 – E.g., social network: node has demographic information like age; edge has type of relationship like friend or family

Graph Problems
• Graph search and path planning
 – Find driving directions from A to B
 – Recommend possible friends in social network
 – How to route IP packets or delivery trucks
• Graph clustering
 – Identify communities in social networks
 – Partition large graph to parallelize graph processing
• Minimum spanning trees
 – Connected graph of minimum total edge weight

More Graph Problems
• Bipartite graph matching
 – Match nodes on “left” with nodes on “right” side
 – E.g., match job seekers and employers, singles looking for dates, papers with reviewers
• Maximum flow
 – Maximum traffic between source and sink
 – E.g., optimize transportation networks
• Finding “special” nodes
 – E.g., disease hubs, leader of a community, people with influence

Graph Representations
• Usually one of these two:
 – Adjacency matrix
 – Adjacency list
Adjacency Matrix

- Matrix M of size $|N|$ by $|N|$
 - Entry $M(i,j)$ contains weight of edge from node i to node j; 0 if no edge

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 \\
3 & 1 & 0 & 0 \\
4 & 1 & 0 & 1 \\
\end{array}
$$

Properties

- Advantages
 - Easy to manipulate with linear algebra
 - $M \cdot M$: entry $(i,j) = \text{number of two-step paths from node } i \text{ to node } j$
 - Operation on outlinks and inlinks corresponds to iteration over rows and columns

- Disadvantage
 - Huge space overhead for sparse matrix
 - E.g., Facebook friendship graph

Adjacency List

- Compact row-wise representation of matrix

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 \\
3 & 1 & 0 & 0 \\
4 & 1 & 0 & 1 \\
\end{array}
\quad
1: 2, 4 \\
2: 1, 3, 4 \\
3: 1 \\
4: 1, 3
$$

Properties

- Advantages
 - More space-efficient
 - Still easy to compute over outlinks for each node

- Disadvantage
 - Difficult to compute over inlinks for each node

- Note: remember inverse Web graph discussion

Parallel Breadth-First Search

- Case study: single-source shortest path problem
 - Find the shortest path from a source node s to all other nodes in the graph

- For non-negative edge weights, Dijkstra’s algorithm is the classic sequential solution
 - Initialize distance $d[s]=0$, all others to ∞
 - Maintain priority queue of nodes sorted by distance
 - Remove first node u from queue and update $d[v]$ for each node v in adjacency list of u if (1) v is in queue and (2) $d[v] > d[u]+\text{weight}(u,v)$

Dijkstra’s Algorithm Example
Parallel Single-Source Shortest Path

- Priority queue is core element of Dijkstra’s algorithm
 - No global shared data structure in MapReduce
- Dijkstra’s algorithm proceeds sequentially, node by node
 - Taking non-min node could affect correctness of algorithm
- Solution: perform parallel breadth-first search
Parallel Breadth-First Search

• Start at source s
• In first round, find all nodes reachable in one hop from s
• In second round, find all nodes reachable in two hops from s, and so on
• Keep track of min distance for each node
 — Also record corresponding path
• Iterations stop when no shorter path possible

MapReduce Code: Single Iteration

```java
map(nid n, node N) // N stores node's current min distance and adjacency list
  d = N.distance
emit(nid n, N) // Pass along graph structure
for all nid m in N.adjacencyList do
  emit(nid m, d + w(n,m)) // Emit distances to reachable nodes
```

```java
reduce(nid m, [d1,d2,...])
  dMin = ∞; M = ∅
  for all d in [d1,d2,...] do
    if isNode(d) then
      M = d
    else if d < dMin then
      dMin = d
    if dMin < M.distance
      M.distance = dMin // Needed to avoid overwriting of source node’s distance
emit(nid m, node M)
```

Overall Algorithm

• Need driver program to control the iterations
• Initialization: SourceNode.distance = 0, all others have distance = ∞
• When to stop iterating?
 • If all edges have weight 1, can stop as soon as no node has ∞ distance any more
 — Can detect this with Hadoop counter
 • Number of iterations depends on graph diameter
 — In practice, many networks show the small-world phenomenon, e.g., six degrees of separation

Dealing With Diverse Edge Weights

• “Detour” path can be shorter than “direct” connection, hence cannot stop as soon as all node distances are finite
• Stop when no node’s shortest distance changes any more
 — Can be detected with Hadoop counter
 — Worst case: |N| iterations

MapReduce Algorithm Analysis

• Brute-force approach that performs many irrelevant computations
 — Computes distances for nodes that still have infinity distance
 — Repeats previous computations inside “search frontier”
• Dijkstra’s algorithm only explores the search frontier, but needs the priority queue
Typical Graph Processing in MapReduce
- Graph represented by adjacency list per node, plus extra node data
- Map works on a single node u
 - Node u's local state and links only
- Node v in u's adjacency list is intermediate key
 - Passes results of computation along outgoing edges
- Reduce combines partial results for each destination node
- Map also passes graph itself to reducers
- Driver program controls execution of iterations

PageRank Introduction
- Popularized by Google for evaluating the quality of a Web page
- Based on random Web surfer model
 - Web surfer can reach a page by jumping to it or by following the link from another page pointing to it
 - Modeled as random process
- Intuition: important pages are linked from many other (important) pages
 - Goal: find pages with greatest probability of access

PageRank Definition
- PageRank of page n:
 \[P(n) = \alpha \frac{1}{|V|} + (1 - \alpha) \sum_{m \in L(n)} \frac{P(m)}{C(m)} \]
 - $|V|$ is number of pages (nodes)
 - α is probability of random jump
 - $L(n)$ is the set of pages linking to n
 - $P(m)$ is m's PageRank
 - $C(m)$ is m's out-degree
- Definition is recursive
 - Compute by iterating until convergence (fixpoint)

Computing PageRank
- Similar to BFS for shortest path
- Computing $P(n)$ only requires $P(m)$ and $C(m)$ for all pages linking to n
 - During iteration, distribute $P(m)$ evenly over outlinks
 - Then add contributions over all of n's inlinks
- Initialization: any probability distribution over the nodes

PageRank Example

PageRank Example
PageRank in MapReduce

MapReduce Code

Map\((\text{nid, node N})\) // N stores node's current PageRank and adjacency list
p = N.pageRank / |N.adjacencyList| emit(\(\text{nid, N}\)) // Pass along graph structure
for all \(\text{nid m} \in \text{N.adjacencyList}\) do emit(\(\text{nid m, p}\)) // Pass PageRank mass to neighbors

Reduce(\(\text{nid m, [p1,p2,...]}\))
\(s = 0; M = \emptyset\)
for all \(p\) in \([p1,p2,...]\) do
if isNode\(p\) then
\(M = p\) // Recover graph structure
else
\(s += p\) // Sum incoming PageRank contributions
\(M\).pageRank = \(\alpha / |V| + (1 - \alpha) \cdot s\)
emit(\(\text{nid m, node M}\))

Dangling Nodes

- Consider node \(x\) with no outgoing links
 - \(P(x)\) is not passed to any other node, hence gets "lost" in the Map phase
- Need to correct for the missing probability mass
 - Model: assume dangling page links to all pages
 - Mathematically equivalent to
 \[
 P(n) = \frac{1}{|V|} + (1 - \alpha) \left(\frac{\delta}{|V|} + \sum_{m \in \text{L}(n)} \frac{P(m)}{C(m)} \right)
 \]
 - \(\delta\): missing PageRank mass due to dangling nodes

PageRank with Dangling Nodes

- Challenge: need \(\delta\), which is the sum over the current page ranks of dangling nodes
 - MR-job1: compute \(\delta\)
 - MR-job2: compute new PageRank using \(\delta\)
- Alternative computations?
 - Order inversion pattern to make sure \(\delta\) is available in all reduce tasks

Number of Iterations

- PageRank computation iterates until convergence
 - PageRank of all nodes no longer changes (or is within small tolerance)
 - Needs to be checked by driver
- Original PageRank paper: 52 iterations until convergence on graph with 322 million edges
 - Highly dependent on data properties

General Graph Processing Issues

- Sequential algorithms often use global data structure for efficiency
- In MapReduce with adjacency list representation, information can only be passed locally to or from direct neighbors
 - But can pre-compute other data structures, e.g., two-hop neighbors
- Presented algorithms have Map output of \(O(\text{#edges})\), which works well for sparse graphs
General Graph Processing Issues

• Partitioning of graph into chunks strongly affects effectiveness of combiners
 – Often best to keep well-connected components together
• Numerical stability for large graphs
 – PageRank of individual page might be so small that it underflows standard floating point representation
 – Can work with logarithm-transformed numbers instead