Now that we have seen important design patterns and MapReduce algorithms for simpler problems, let’s look at some more complex problems, starting with general joins.

Joins in MapReduce
- Data sets \(S=\{s_1, \ldots, s_{|S|}\} \) and \(T=\{t_1, \ldots, t_{|T|}\} \)
- Find all pairs \((s_i, t_j)\) that satisfy some predicate
- Examples
 - Pairs of similar or complementary function summaries
 - Facebook and Twitter posts by same user or from same location
- Typical goal: minimize job completion time

Function-Join Pattern
- Find groups of summaries with certain properties of interest
 - Similar trends, opposite trends, correlations
 - Groups not known a priori, need to be discovered

Existing Join Support
- Hadoop has some built-in join support, but our goal is to design our own algorithms
 - Built-in support is limited
 - We want to understand important algorithm design principles
- “Join” usually just means equi-join, but we also want to support other join predicates
- Note: recall join discussion from earlier lecture

Joining Large With Small
- Assume data set \(T \) is small enough to fit in memory
- Can run Map-only join
 - Load \(T \) onto every mapper
 - Map: join incoming 5-tuple with \(T \), output all matching pairs
 - Can scan entire \(T \) (nested loop) or use index on \(T \) (index nested loop)
- Downside: need to copy \(T \) to all mappers
 - Not so bad, since \(T \) is small

Distributed Cache
- Efficient way to copy files to all nodes processing a certain task
 - Use it to send small \(T \) to all mappers
- Part of the job configuration
- Hadoop still needs to move the data to the worker nodes, so use this with care
 - But it avoids copying the file for every task on the same node
Recall: Standard Equi-Join Algorithm

- Join condition: S.A = T.A
- Map(s) = (S.A, s); Map(t) = (T.A, t)
- Reduce combines 5-tuples and T-tuples with same key

Problems With Standard Approach

- Degree of parallelism limited by number of distinct A-values
- Data skew
 - If one A-value dominates, reducer processing that key will become bottleneck
- Does not generalize to other joins

Reducer-Centric Cost Model

- Difference between join implementations starts with Map output

Optimization Goal: Minimal Job Completion time

- Assume all reducers are similarly capable
- Processing time at reducer is approximately monotonic in input and output size
- Hence need to minimize max-reducer-input or max-reducer-output
- Join problem classification
 - Input-size dominated: minimize max-reducer-input
 - Output-size dominated: minimize max-reducer-output
 - Input-output balanced: minimize combination of both

Join Model

- Join-matrix M: M(i, j) = true, if and only if (s_i, t_j) in join result
- Cover each true-valued cell by exactly one reducer

Standard Equi-Join Alg.: Random Assignment: Balanced Algorithm:
1-Bucket-Random: Map

- Input: tuple \(x \in S \cap T \), matrix-to-reducer mapping lookup table
- 1. If \(x \in S \) then
 - \(\text{matrixRow} = \text{random}(1, |S|) \)
 - Forall \(\text{regionID} \) in lookup.getRegions(matrixRow)
 - Output (regionID, (k, "S"))
 - Else
 - \(\text{matrixCol} = \text{random}(1, |T|) \)
 - Forall regionID in lookup.getRegions(matrixCol)
 - Output (regionID, (k, "T"))

1-Bucket-Random: Reduce

- Input: (ID, [(x_1, origin_x),..., (x_n, origin_x)])
- 1. Stuples = \(\emptyset \); Ttuples = \(\emptyset \)
- 2. For all \((x_i, \text{origin}_i) \) in input list do
 - 1. If \(\text{origin}_i = "S" \) then Stuples = Stuples \(\cup \) \(\{x_i\} \)
 - Else Ttuples = Ttuples \(\cup \) \(\{x_i\} \)
- 3. joinResult = MyFavoriteJoinAlg(Stuples, Ttuples)
- 4. Output joinResult

1-Bucket-Random Example

Why Randomization?

- Avoids pre-processing step to assign row/column IDs to records
- Effectively removes output skew
- Input sizes very close to target
 - Chernoff bound: due to large number of records per reducer, probability of receiving 10% or more over target is virtually zero
- Side-benefit: join matrix does not have to have \(|S| \cdot |R|\) cells, could be much smaller!

Remaining Challenges

What is the best way to cover all true-valued cells?

And how do we know which matrix cells have value true?

Cartesian Product Computation

- Start with cross-product \(S \times T \)
 - Entire matrix needs to be covered by \(r \) reducer regions (= \(r \) reduce tasks)
- Lemma 1: use square-shaped regions
 - A reducer that covers \(c \) cells of join matrix \(M \) will receive at least \(2 \cdot \sqrt{c} \) input tuples
Optimal Cover for M

- Need to cover all $|S| \cdot |T|$ matrix cells
 - Lower bound for max-reducer-output: $|S| \cdot |T|/r$
 - Lemma 1 implies lower bound for max-reducer-input: $2 \cdot \sqrt{|S| \cdot |T|/r}$
- Can we match these lower bounds?
 - YES: Use r squares, each $\sqrt{|S| \cdot |T|/r}$ cells wide/tall
- Can this be achieved for given S, T, r?

Easy Case

- $|S|$, $|T|$ are both multiples of $\sqrt{|S| \cdot |T|/r}$
- Optimal!

Easy Case

Optimal square region

Join matrix (cross-product)

Also Easy

- $|S| < |T|/r$
 - Implies $|S| < \sqrt{|S| \cdot |T|/r}$
 - Lower bound for input not achievable
- Optimal: use rectangles of size $|S|$ by $|T|/r$

Hard Case

- $|T|/r \leq |S| \leq |T|$ and at least one is not multiple of $\sqrt{|S| \cdot |T|/r}$

Solution For Hard Case

- “Inflate” squares until they just cover the matrix
 - Worst case: only one square did fit initially, but leftover just too small to fit more rows or columns

Near-Optimality For Cross-Product

- Every region has less than $4 \cdot \sqrt{|S| \cdot |T|/r}$ input records
 - Lower bound: $2 \cdot \sqrt{|S| \cdot |T|/r}$
- Every region contains less than $4 \cdot |S| \cdot |T|/r$ cells
 - Lower bound: $|S| \cdot |T|/r$
- Summary: max-reducer-input and max-reducer-output are within a factor of 2 and 4 of the lower bound, respectively
 - Usually much better: if 10 by 10 squares fit initially, they are within a factor of 1.1 and 1.21 of lower bound!
From Cross-Product To Joins

• Near-optimality shown for cross-product
• Randomization of 1-Bucket-Random tends to distribute output very evenly over regions
 – Join-specific mapping unlikely to improve max-reducer-output significantly
 – 1-Bucket-Random wins for any output-size dominated join
• Join-specific mapping has to beat 1-Bucket-Random on input cost: avoid covering empty matrix regions

Finding Empty Matrix Regions

• For a given matrix region, prove that it contains no join result
• Need statistics about S and T and a simple enough join predicate
 – Histogram bucket: S.A > 8 ∧ T.A < 7
 – Join predicate: S.A = T.A
 – Easy to show that bucket property implies negation of join predicate
• Not possible for “blackbox” join predicates

Approximate Join Matrix

Proving buckets to be empty is easy for many popular join types
– Equi-join: S.A = T.A
– Inequality-join: S.A ≤ T.A
– Band-join: R.A - e₁ ≤ S.A ≤ R.A + e₂

For statistics, use histograms
– Two 1-dimensional histograms: one on S the other on T
– Easy and cheap to compute

M-Bucket-I

Uses Multiple-bucket histograms to minimize max-reducer-Input
• First identifies candidate cells, then tries to cover all candidate cells with r regions
 – Binary search over max-reducer-input values
 Min: \(2 \sqrt{\text{#candidateCells} / r}\); max: \(|S| + |T|\)
 – Works on block of consecutive rows
 • Find “best” block (most candidate cells covered per region)
 • Continue with next block, until all candidate cells covered, or running out of regions

M-Bucket-I Illustration

MaxInput = 3
M-Bucket-O

- Similar to M-Bucket-I, but tries to minimize max-reducer-output
- Binary search over max-reducer-output values
- Problem: needs to estimate number of result cells in regions inside a histogram bucket
 - Estimate can be poor, even for fine-grained histogram
 - Input-size estimation much more accurate than output-size estimation

Extension: Memory-Awareness

- Input for region might exceed reducer memory
- Solutions
 - Use I/O-based join implementation in Reduce, or
 - Create more (and hence smaller) regions
- 1-Bucket-Random: use squares of side-length Mem/2
- M-Bucket-I: Instead of binary search on max-reducer-input, set it immediately to Mem
- Similar for M-Bucket-O

Experiments: Basic Setup

- 10-machine cluster
 - Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM, two 250GB 7.2K RPM hard disks
- Hadoop 0.20.2
 - One machine head node, other nine worker nodes
 - One Map or Reduce task per core
 - DFS block size of 64MB
 - Data stored on all 10 machines

Data Sets

- Cloud
 - Cloud reports from ships and land stations
 - 382 million records, 28 attributes, 28.8GB total size
- Cloud-5-1, Cloud-5-2
 - Independent random samples from Cloud, each with 5 million records
- Synth-α
 - Pair of data sets of 5 million records each
 - Record is single integer between 1 and 1000
 - Data set 1: uniformly generated
 - Data set 2: Zipf distribution with parameter α
 - For α=0, data is perfectly uniform

Skew Resistance: Equi-Join

- 1-Bucket-Random vs. standard equi-join algorithm
- Output-size dominated join
 - Max-reducer-output determines runtime

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Output size (billion)</th>
<th>1-Bucket-Random</th>
<th>Standard algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output imbalance</td>
<td>Runtime (sec)</td>
<td>Output imbalance</td>
</tr>
<tr>
<td>Synth-0</td>
<td>25.00</td>
<td>1.0030</td>
<td>1.0000</td>
</tr>
<tr>
<td>Synth-0.4</td>
<td>24.99</td>
<td>1.0023</td>
<td>1.254</td>
</tr>
<tr>
<td>Synth-0.6</td>
<td>24.98</td>
<td>1.0033</td>
<td>1.778</td>
</tr>
<tr>
<td>Synth-0.8</td>
<td>24.95</td>
<td>1.0068</td>
<td>3.010</td>
</tr>
<tr>
<td>Synth-1</td>
<td>24.91</td>
<td>1.0089</td>
<td>5.312</td>
</tr>
</tbody>
</table>

Selective Band-Join

```
SELECT S.date, S.longitude, S.latitude, T.latitude
FROM Cloud AS S, Cloud AS T
WHERE S.date = T.date AND S.longitude = T.longitude AND ABS(S.latitude - T.latitude) <= 10
```

- 390M output vs. 764M input records
- M-Bucket-I for different histogram granularities
M-Bucket-I Results

37

Runtime for MapReduce only!

10-run averages (stdev < 15%)

M-Bucket-I Details

• M-Bucket-I for 1-bucket histogram is improved version of original 1-Bucket-Random
 – 1-Bucket-Random might keep reducers idle
• Out-of-memory for 1-bucket and 100-bucket cases
 – Used memory-aware version of algorithm
 – Creates \(c \times r \) regions for \(r \) reducers for smallest integer \(c \) that allows in-memory processing
• Input duplication rate: total mapper output size vs. total mapper input size
 – 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms with 1, 10, 100, 1000, 10K, 100k, and 1M buckets

Not-So-Selective Band-Join

```sql
SELECT S.latitude, T.latitude
FROM Cloud-5-1 AS S, Cloud-5-2 AS T
WHERE ABS(S.latitude-T.latitude) <= 2
```

• 22 billion output vs. 10 million input records
• M-Bucket-O for different histogram granularities

M-Bucket-O Results

10-run averages (stdev < 4%)

M-Bucket-O Details

• M-Bucket-O for 1-bucket histogram is improved version of original 1-Bucket-Random
• Data set has 5951 distinct latitude values
• Input duplication rate: total mapper output size vs. total mapper input size
 – 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with 1, 10, 100, 1000, and 5951 buckets

<table>
<thead>
<tr>
<th>Step</th>
<th>Number of histogram buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quantiles</td>
<td>0</td>
</tr>
<tr>
<td>Histogram</td>
<td>0</td>
</tr>
<tr>
<td>Heuristic</td>
<td>74</td>
</tr>
<tr>
<td>Join</td>
<td>49,384</td>
</tr>
<tr>
<td>Total</td>
<td>49,458</td>
</tr>
</tbody>
</table>

M-Bucket-I on Cloud data set (input-size dominated join):

<table>
<thead>
<tr>
<th>Step</th>
<th>Number of histogram buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quantiles</td>
<td>0</td>
</tr>
<tr>
<td>Histogram</td>
<td>0</td>
</tr>
<tr>
<td>Heuristic</td>
<td>0.04</td>
</tr>
<tr>
<td>Join</td>
<td>1279</td>
</tr>
<tr>
<td>Total</td>
<td>1279</td>
</tr>
</tbody>
</table>
Summary

- Join model for creation and reasoning about parallel algorithms
- Near-optimal randomized algorithm for output-size dominated joins
- Improved heuristics for popular very selective joins

Future Directions

- Multi-way theta-joins
- Optimizer to select best implementation for given join problem
- Consider other optimization goals