CS 6240: Parallel Data Processing in MapReduce

Mirek Riedewald

Course Information

• Homepage: http://www.ccs.neu.edu/home/mirek/classes/2012-F-CS6240/
 – Announcements
 – Lecture handouts
 – Office hours
• Homework management through Blackboard
• Prerequisites: CS 5800/CS 7800, or consent of instructor

Grading

• Homework/project: 60%
• Midterm 30%
• Participation 10%
 – Ask/answer in class; answer questions on Piazza
• No copying or sharing of homework solutions!
 – But you can discuss general challenges and ideas
• Material allowed for exams
 – Any handwritten notes (originals, no photocopies)
 – Printouts of lecture summaries distributed by instructor

Instructor Information

• Instructor: Mirek Riedewald (332 WVH)
 – Office hours: Tue 4:00-5:30pm
 – Post questions on Piazza
 – Email for appointment if you cannot make it during office hours (or stop by for 1-minute questions)
• TA: Alper Okcan (472 WVH)

Course Materials

• Hadoop: The Definitive Guide by Tom White
• Hadoop in Action by Chuck Lam
 – Use your myNEU credentials
• Other resources mentioned in syllabus and class homepage

Course Content and Objectives

• How to process Big Data
 – Different from traditional approaches to parallel computation for smaller data
• Learn important fundamentals of selected approaches
 – Current trends and architectures
 – Parallel programming in (raw) MapReduce
 • Programming model and Hadoop open source implementation
 – Creating data processing workflows with Pig Latin
 – HBase for storing and managing big data
 – MapReduce versus SQL and other related approaches
• Various problem types and design patterns
Course Content and Objectives

- Gain an intuition for how to deal with big-data problems
- Hands-on MapReduce practice
 - Writing MapReduce programs and running them on the Amazon Cloud
 - Understanding the system architecture and functionality below MapReduce
 - Learning about limitations of MapReduce
- Might produce publishable research

Words of Caution 1

- We can only cover a small part of the parallel computation universe
 - Do not expect all possible architectures, programming models, theoretical results, or vendors to be covered
 - Explore complementary courses in CCIS and ECE
- This really is an algorithms course, not a basic programming course
 - But you will need to do a lot of non-trivial programming

Words of Caution 2

- This is still a fairly new course, so expect rough edges like too slow/fast pace, uncertainty in homework load estimation
- There are few certain answers, as people in research and leading tech companies are trying to understand how to deal with big data
- We are working with cutting edge technology
 - Bugs, lack of documentation, new Hadoop API
- In short: you have to be able to deal with inevitable frustrations and plan your work accordingly...
 - ...but if you can do that and are willing to invest the time, it will be a rewarding experience

Running Your Code

- You need to set up an account with Amazon Web Services (AWS)
- Requires a credit card
- We give you $100 in credit for this course
 - Should be sufficient for all assignments
 - Develop and test on your laptop
 - Deploy once you are confident things work
 - Monitor your job and make sure it terminates as expected

How to Succeed

- Attend the lectures and take your own notes
 - Helps remembering (compared to just listening)
 - Capture lecture content more individually than our handouts
 - Free preparation for exams
- Go over notes, handouts, book soon after lecture
 - Try to explain material to yourself or friend
- Look at content from previous lecture right before the next lecture to “page-in the context”

How to Succeed

- Ask questions during the lecture
 - Even seemingly simple questions show that you are thinking about the material and are genuinely interested
- Work on the HW assignment as soon as it comes out
 - Can do most of the work on your own laptop
 - Time to ask questions and deal with unforeseen problems
 - We might not be able to answer all last-minute questions right before the deadline
- Students with disabilities: contact me by September 18
What Else to Expect?

• Need strong Java programming skills
 – Code for Hadoop system is in Java
 – Hadoop supports other languages, but use at your own risk (we cannot help you and have not tested it)
• Need strong algorithms background
 – Analyze problems and solve them using an unfamiliar framework
• Basic understanding of important system concepts
 – File system, processes, network basics, computer architecture

Why Focus on MapReduce?

• MapReduce is viewed as one of the biggest breakthroughs for processing massive amounts of data.
• It is widely used at technology leaders like Google, Yahoo, Facebook.
• It has huge support by the open source community.
• Amazon provides special support for setting up Hadoop MapReduce clusters on its cloud infrastructure.
• It plays a major role in current database research conferences (and many other research communities)

Why Parallel Processing?

• Answer 1: big data

How Much Information?

• Source: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
• 5 exabytes (10^18) of new information from print, film, optical storage in 2002
 – 37,000 times Library of Congress book collections (17M books)
• New information on paper, film, magnetic and optical media doubled between 2000 and 2003
• Information that flows through electronic channels—telephone, radio, TV, Internet—contained 18 exabytes of new information in 2002

Web 2.0

• Billions of Web pages, social networks with millions of users, millions of blogs
 – How do friends affect my reviews, purchases, choice of friends
 – How does information spread?
 – What are “friendship patterns”
• Small-world phenomenon: any two individuals likely to be connected through short sequence of acquaintances

Facebook Statistics

- 955M active users (June ’12), 81% outside US/Canada
- More than 100 petabytes of photos and videos
- August 2011: 30 billion pieces of content (web links, news stories, blog posts, notes, photo albums, etc.) shared each month
 - Avg. user created 90 pieces of content per month

Business World

- Fraudulent/criminal transactions in bank accounts, credit cards, phone calls
 - Billions of transactions, real-time detection
- Retail stores
 - What products are people buying together?
 - What promotions will be most effective?
- Marketing
 - Which ads should be placed for which keyword query?
 - What are the key groups of customers and what defines each group?
- Spam filtering

eScience Examples

- Genome data
- Large Hadron Collider
 - Petabytes of raw data per year
- SkyServer
 - 818 GB, 3.4 billion rows
- “Universal access to data about life on earth and the environment”
- Cornell Lab of Ornithology
 - 107M observations, 100s of attributes

Our ScoIopax Project

- Search for patterns in prediction models based on user preferences
 - Make this as easy and fast as Web search

Why Parallel Processing?

- Answer 1: big data
- Answer 2: hardware trends

The Good Old Days

- **Moore’s Law**: number of transistors that can be placed inexpensively on an integrated circuit doubles about every 2 years
- Computational capability improved at similar rate
 - Sequential programs became automatically faster
- Parallel computing never became mainstream
 - Reserved for high-performance computing niches
“New” Realities

- “Party” ended around 2004
- Heat issues prevent higher clock speeds
- Clock speed remains below 4 GHz

Multi-Core CPUs

- Clock speed stagnates, but number of cores increases
 - Core is like a processor, but shares chip with other cores
 - Cores typically share some cache, memory bus, access to same main memory
- Need to keep multiple cores busy to exploit additional transistors on chip
 - Multi-threaded applications

Processor Example (Source: Intel)

Typical Multi-Core Properties

- Each core has some local cache (e.g., L1, L2)
- The cores share some cache (e.g., L3)
- All cores access same memory through bus
- Misses become much more expensive from L1 to L3, even more when accessing memory

Important Numbers (Source: Google’s Jeff Dean @LADIS’09)

- L1 cache reference: 0.5 ns
- Branch mispredict: 5 ns
- L2 cache reference: 7 ns
- Mutex lock/unlock: 25 ns
- Main memory reference: 100 ns
- Compress 1 KB with Zippy: 3,000 ns
- Send 2 KB over 1 Gbps network: 20,000 ns
- Read 1 MB sequentially from memory: 250,000 ns
- Round trip within same data center: 500,000 ns
- Disk seek: 10,000,000 ns
- Read 1 MB sequentially from disk: 20,000,000 ns
- Send packet CA -> Holland -> CA: 150,000,000 ns

Other Trends

- Datacenter as a computer
 - Hundreds to tens of thousands of commodity machines for large-scale data processing
- Cloud computing
 - Often powered by data center(s)
- GPU computing
 - Initially developed for fast parallel graphics computations, now also used for general computations
- Parallel data processing is becoming mainstream
Parallel Architectures

- Multi-core chips
- Datacenter as a computer

Warehouse-Scale Computer (WSC)

- Hundreds or thousands of commodity PCs
 - Better cost per unit of computational capability than specialized hardware due to economies of scale of commodity hardware
 - Easy to "scale out" by adding more machines
- Organized in racks in data centers
- Relatively homogenous hardware and system software platform with common system management layer
 - Often run smaller number of very large applications like Internet services

Basic Architecture

Source: Barroso, Holzle (2009)

Typical Specs

- Low-end servers in 1U enclosure in 7’ rack
- Rack-level switch with 1- or 10-Gbps links
- Connected by one or more cluster switches
 - Can include >10,000 servers
- Local (cheap) disks on each server
 - Managed by global distributed file system
- Might have Network Attached Storage (NAS) devices for more centralized storage solution

Storage Hierarchy

Source: Barroso, Holzle (2009)

Programming WSCs

- Build cluster infrastructure and services that hide architecture complexity from developers
 - Program it like a single big computer, but avoid inefficient code
- Need easy way to keep hundreds or thousands of CPUs busy
- Handle failures transparently
 - With 1000 commodity machines, failures are the norm, not the exception
 - Developers want to focus on their application, not how to deal with failures of hardware and low-level services
- This is where MapReduce comes into the picture!
Parallel Architectures

- Multi-core chips
- Datacenter as a computer
- Cloud computing

The Cloud

- Many different versions of Clouds
- Common idea: customers use virtual resources without knowing details about underlying hardware
 - Could run on cluster, multiple data centers, or large parallel machine
- Typical use 1: reserve virtual machines to create virtual cluster
- Typical use 2: connect through Web browser and run favorite application
- Typical use 3: build own app on top of services offered by Cloud provider
 - Database, document management, Web design, workflow, analytics

Cloud Computing

- Goal: Move data and programs from desktop PCs and corporate server rooms to “compute cloud”
- Related buzzwords: on-demand computing, software as a service (SaaS), Internet as platform
- Starts to replace shrink-wrap software
 - MSFT Word on desktop PC vs. Google Docs

Back to the Future...

- 1960s: service bureaus, time-sharing systems
 - Hub-and-spoke configuration: terminal access through phone lines, central site for computation
- 1980s: PCs “liberate” programs and data from central computing center
 - Customization of computing environment
 - Client-server model

...or not?

- Cloud is not the same as 1960’s hub
 - Client can communicate with many servers at the same time
 - Servers can communicate with each other
- Still, functions migrate to distant data centers
 - “Core” and “fringe”
 - Storage, computing, high bandwidth, and careful resource management in core
 - End users initiate requests from fringe

Why Clouds?

- High price of total control
 - Software installation, configuration, and maintenance
 - Maintenance of computing infrastructure
 - Difficult to grow and shrink capacity on demand
- Easier software development
 - Replaces huge variety of operating environments by computing platform of vendor’s choosing
 - But: server interaction with variety of clients
- Easier to deploy updates and bug fixes
- Easier to leverage multi-core, parallel systems
 - Single instance of Word cannot utilize 100 cores, but 100 instances of Word can
Example Cloud Offerings

- **Document processing**
 - Google Docs: word processor, spreadsheet, presentations
 - Adobe: Acrobat.com, Photoshop Express
 - Microsoft Office 365

- **Enterprise applications**
 - Salesforce.com: customer relationship management, sales marketing apps
 - Microsoft Dynamics CRM, IBM Tivoli Live

- **Cloud infrastructure**
 - Amazon Web Services: storage, computing as needed (pay as you go)
 - IBM Smart Cloud, Google App Engine, Force.com, Microsoft Azure

- **Cloud OS**
 - User interface in Web browser
 - New browser war: browser as new Cloud OS

Challenges

- **Scalability**
 - More users, complex interactions between applications

- **Many-to-many communication**
 - Client invokes programs on multiple servers, server talks to multiple clients

- **Browser is limited compared to traditional OS**
 - Limited functionality
 - Fewer development tools

More Challenges

- **Heterogeneous environment**
 - Database backend with SQL
 - JavaScript, HTML at client
 - Server app written in PHP, Java, Python
 - Information exchanged as XML

- **New role for open source movement?**
 - Open source word processor vs. running a service

Biggest Problems

- **Privacy, security, reliability**
 - What if the service is not accessible?
 - Who owns the data?
 - Lose access to data if bill not paid?
 - Guarantee that deleted documents are really gone?
 - How aggressive about protecting data, e.g., against government access?
 - How to know if data is leaked to third party?

Parallel Architectures

- **Multi-core chips**
- **Datacenter as a computer**
- **Cloud computing**
- **GPU computing**

GPU vs. CPU

- **Optimized for massively parallel processing**
 - Graphics processing

- **Challenge: how to create applications for 100s of cores?**
 - Example: NVIDIA developed CUDA
 - Used widely for general-purpose computations

Source: NVIDIA
CUDA (Source: NVIDIA)

- CUDA programming model provides abstractions for data and task parallelism
 - Programmer can express parallelism in high-level languages such as C, C++, Fortran or driver APIs such as OpenCL™ and DirectX™-11 Compute
 - Programming model guides programmers to partition the problem into coarse sub-problems that can be solved independently in parallel
 - Fine grain parallelism in the sub-problems is then expressed such that each sub-problem can be solved cooperatively in parallel

Course Content in a Nutshell

- In big-data processing, usually the same computation needs to be applied to a lot of data
 - Possibly many such steps (think “workflow”)
- Divide the work between multiple processors
 - Make sure you can handle data transfer efficiently
- Combine intermediate results from multiple processors

Why This Is Not So Easy

- How can the work be partitioned?
- What if too much intermediate data is produced?
- How do we start up and manage 1000s of jobs?
- How do we get large data sets to processors or move processing to the data?
- How do we deal with slow responses and failures?

More Problems

- Shared resources limit scalability
 - Cost of managing concurrent access
- Shared-nothing architectures still need communication for processes to share data
- Easy to get into problems like deadlocks and race conditions
- It is generally difficult to reason about the behavior and correctness of concurrent processes
 - Especially when failures are part of the model
- Inherent tradeoff between consistency, availability, and partition tolerance (Brewer’s Conjecture)

What Can We Do?

- Work at the right level of abstraction
 - Too low-level: difficult to write programs, e.g., to deal with locks; need to customize code for different systems
 - Too high-level: poor performance if control for crucial bottleneck is “abstracted away”
- Use more declarative style of programming
 - Define WHAT needs to be computed, not HOW this is done at the low level
 - Well-known success story: SQL and databases

Recipes for Success

- Use hardware that can scale out, not just up
 - Doubling the number of commodity servers is easy, but buying a double-sized SMP machine is not.
- Have data located near the processors
 - Sending petabytes around is not a good idea
- Avoid centralized resources that are likely bottlenecks, e.g., single shared memory bus for many cores
- Read and write data sequentially
 - Assume random I/O takes 20 msec, disk streams data sequentially at 100 MB/sec, and record size is 1 KB
 - During 1 random I/O, can read 2000 records sequentially
- MapReduce does all this, and its level of abstraction seems to have hit a sweet spot
Algorithms First

- No matter which parallel programming model we use, we first need to understand what part of a computation can be performed in parallel
- More precisely...

Writing Parallel Programs

- Analyze problem and identify what can be done in parallel
 - Dependencies: if I need data D as input for a task, then I cannot run this task and the creation of D in parallel.
 - Coordination requirements: when do parallel tasks have to communicate and how much data is sent?
 - Best sequential algorithm might not be easy to parallelize—find alternative solutions
- Create an efficient implementation
 - Make sure solution is a good fit for the given architecture and programming model

Examples

- Let us look at some examples to get a feeling for the challenges

Sum Of Integers

- Compute sum of a large set of integers
- Sequential: simple for-loop (scan)
- Parallel: assign chunk of data to each processor to compute local sum, then add them together
- Algorithmically easy, but...
 - Where do the chunks come from? Partitioning data file into multiple chunks might take as long as sequential computation.
 - What if data transfer is the bottleneck? Then pushing k chunks from disk to k cores might not be a good idea.
 - Who computes final sum and how do the local sums get there?

Word Count

- Count the number of occurrences of each word in a large document
- Sequential: read document sequentially, update counters for each word
 - Need data structure, e.g., hash map, to keep track of counts
- Parallel: each processor does this for a chunk using local data structure, then counts are aggregated
- Improvement (?): use shared data structure for counts
 - Good: no “replication”, no need for final summation step
 - Bad: need to coordinate access to shared data structure, not a good fit for shared-nothing architecture
- What if some documents are much larger than others?
 - Need to deal with data skew, e.g., break up large documents

Median

- Find the median of a set of integers
- Holistic aggregate function
 - Chunk assigned to a processor might contain mostly smaller or mostly larger values, and the processor does not know this without communicating extensively with the others
- Parallel implementation might not do much better than sequential one
- Efficient approximation algorithms exist
Parallel Office Tools

- Parallelize Word, Excel, email client?
- Need to rewrite them as multi-threaded applications
 - Seem to naturally have low degree of parallelism
- Leverage economies of scale: \(n \) processors (or cores) support \(n \) desktop users by hosting the service in the Cloud
 - E.g., Google docs

Before exploring parallel algorithms in more depth, how do we know if our parallel algorithm or implementation actually does well or not?

Measures Of Success

- If sequential version takes time \(t \), then parallel version on \(n \) processors should take time \(t/n \)
 - \(\text{Speedup} = \frac{\text{sequentialTime}}{\text{parallelTime}} \)
 - Note: job, i.e., work to be done, is fixed
- Response time should stay constant if number of processors increases at same rate as “amount of work”
 - \(\text{Scaleup} = \frac{\text{workDoneParallel}}{\text{workDoneSequential}} \)
 - Note: time to work on job is fixed

Things to Consider: Amdahl’s Law

- Consider job taking sequential time \(1 \) and consisting of two sequential tasks taking time \(t_1 \) and \(1-t_1 \), respectively
- Assume we can perfectly parallelize the first task on \(n \) processors
 - Parallel time: \(t_1/n + (1-t_1) \)
 - \(\text{Speedup} = \frac{1}{1-t_1(n-1)/n} \)
 - \(t_1=0.9, n=2: \text{speedup} = 1.81 \)
 - \(t_1=0.9, n=10: \text{speedup} = 5.3 \)
 - \(t_1=0.9, n=100: \text{speedup} = 9.2 \)
 - Max. possible speedup for \(t_1=0.9 \) is \(\frac{1}{1-0.9} = 10 \)

Implications of Amdahl’s Law

- Parallelize the tasks that take the longest
- Sequential steps limit maximum possible speedup
 - Communication between tasks, e.g., to transmit intermediate results, can inherently limit speedup, no matter how well the tasks themselves can be parallelized
- If fraction \(x \) of the job is inherently sequential, speedup can never exceed \(1/x \)
 - No point running this on too many processors

Performance Metrics

- Total execution time
 - Part of both speedup and scaleup
- Total resources consumed
- Total amount of money paid
- Total energy consumed
- Optimize some combination of the above
 - E.g., minimize total execution time, subject to a money budget constraint
Popular Solution: Load Balancing

• Avoid overloading one processor while other is idle
 – Careful: if better balancing increases total load, it might not be worth it
 – Careful: optimizes for response time, but not necessarily other metrics like $ paid

• **Static load balancing**
 – Need cost analyzer like in DBMS

• **Dynamic load balancing**
 – Easy: Web search
 – Hard: join