Pairs Design Pattern

- Can use combiner or in-mapper combining
- Good: easy to implement and understand
- Bad: huge intermediate-key space (shuffling/sorting cost!)
 - Quadratic in number of distinct terms

Stripes Design Pattern

- Can use combiner or in-mapper combining
- Good: much smaller intermediate-key space
 - Linear in number of distinct terms
- Bad: more difficult to implement, Map needs to hold entire stripe in memory

Beyond Pairs and Stripes

- In general, it is not clear which approach is better
 - Some experiments indicate stripes win for co-occurrence matrix computation
- Pairs and stripes are special cases of shapes for covering the entire matrix
 - Could use sub-stripes, or partition matrix horizontally and vertically into more square-like shapes etc.
- Can also be applied to higher-dimensional arrays
- Will see interesting version of this idea for joins

(3) Relative Frequencies

- Important for data mining
- E.g., for each species and color, compute probability of color for that species
 - Probability of Northern Cardinal being red, \(P(\text{color} = \text{red} \mid \text{species} = \text{N.C.}) \)
 - Count \(f(\text{N.C.}) \), the frequency of observations for N.C. (marginal)
 - Count \(f(\text{N.C., red}) \), the frequency of observations for red N.C.'s (joint event)
 - \(P(\text{red} \mid \text{N.C.}) = \frac{f(\text{N.C., red})}{f(\text{N.C.})} \)
- Similarly: normalize word co-occurrence vector for word \(w \) by dividing it by \(w \)'s frequency

Bird Probabilities Using Stripes

- Use species as intermediate key
 - One stripe per species, e.g., stripe[\text{N.C.}]
- (stripe[species])[color] stores \(f(\text{species}, \text{color}) \)
- Map: for each observation of (species \(S \), color \(C \)) in an observation event, increment (stripe[\(S \)])[\(C \])
 - Output (\(S \), stripe[\(S \)])
- Reduce: for each species \(S \), add all stripes for \(S \)
 - Result: stripeSum[\(S \)] with total counts for each color for \(S \)
 - Can get \(f(\text{S}) \) by adding all stripeSum[\(S \)] values together
 - Get probability \(P(\text{color} = C \mid \text{species} = S) \) as \(\frac{\text{stripeSum}[S][C]}{f(\text{S})} \)

Discussion, Part 1

- Stripe is great fit for relative frequency computation
- All values for computing the final result are in the stripe
- Any smaller unit would miss some of the joint events needed for computing \(f(\text{S}) \), the marginal for the species
- So, this would be a problem for the pairs pattern
Bird Probabilities Using Pairs

- Intermediate key is (species, color)
- Map produces partial counts for each species-color combination in input
- Reduce can compute \(f(\text{species, color}) \), the total count of each species-color combination
- But: cannot compute marginal \(f(S) \)
 - Reduce needs to sum \(f(S, \text{color}) \) for all colors for species \(S \)

Pairs-Based Solution, Take 1

- Make sure all values \(f(S, \text{color}) \) for the same species end up in the same reduce task
 - Define custom partitioning function on species
- Maintain state across different keys in same reduce task
- This essentially simulates the stripes approach in the reduce task, creating big reduce tasks when there are many colors
- Can we do better?

Discussion, Part 2

- Pairs-based algorithm would work better, if marginal \(f(S) \) was known already
 - Reducer computes \(f(\text{species, color}) \) and then outputs \(f(\text{species, color}) / f(\text{species}) \)
- We can compute the species marginals \(f(\text{species}) \) in a separate MapReduce job first
- Better: fold this into a single MapReduce job
 - Problem: easy to compute \(f(S) \) from all \(f(S, \text{color}) \), but how do we compute \(f(S) \) before knowing \(f(S, \text{color}) \)?

Bird Probabilities Using Pairs, Take 2

- Map: for each observation event, emit \(((\text{species S, color C}), 1) \) and \(((\text{species S, dummyColor}), 1) \) for each species-color combination encountered
- Use custom partitioner that partitions based on the species component only
- Use custom key comparator such that \((S, \text{dummyColor}) \) is before all \((S, C) \) for real colors \(C \)
 - Reducer computes \(f(S) \) before the \(f(S, C) \)
 - Reducer keeps \(f(S) \) in state for duration of entire task
 - Reducer then computes \(f(S, C) \) for each \(C \), outputting \(f(S, C) / f(S) \)
- Advantage: avoids having to manage all colors for a species together

Order Inversion Design Pattern

- Occurs surprisingly often during data analysis
- Solution 1: use complex data structures that bring the right results together
 - Array structure used by stripes pattern
- Solution 2: turn synchronization into ordering problem
 - Key sort order enforces computation order
 - Partitioner for key space assigns appropriate partial results to each reduce task
 - Reducer maintains task-level state across Reduce invocations
 - Works for simpler pairs pattern, which uses simpler data structures and requires less reduce memory

(4) Secondary Sorting

- Recall the weather data: for simplicity assume observations are (date, stationID, temperature)
- Goal: for each station, create a time series of temperature measurements
- Per-station data: use stationID as intermediate key
- Problem: reducers receive huge number of (date, temp) pairs for each station
 - Have to be sorted by user code
Can Hadoop Do The Sorting?

- Use (stationID, date) as intermediate key
 - Problem: records for the same station might end up in different reduce tasks
 - Solution: custom partitioner, using only stationID component of key for partitioning
- General value-to-key conversion design pattern
 - To partition by X and then sort each X-group by Y, make (X, Y) the key
 - Define key comparator to order by composite key (X, Y)
 - Define partitioner and grouping comparator for (X, Y) to consider only X for partitioning and grouping
 * Grouping part is necessary if all dates for a station should be processed in the same Reduce invocation (otherwise each station-date combination ends up in a different Reduce invocation)

Design Pattern Summary

- In-mapper combining: do work of combiner in mapper
- Pairs and stripes: for keeping track of joint events
- Order inversion: convert sequencing of computation into sorting problem
- Value-to-key conversion: scalable solution for secondary sorting, without writing own sort code

Tools for Synchronization

- Cleverly-constructed data structures for key and values to bring data together
- Preserving state in mappers and reducers, together with capability to add initialization and termination code for entire task
- Sort order of intermediate keys to control order in which reducers process keys
- Custom partitioner to control which reducer processes which keys

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - (De-)serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation vary
 - Combiners can make a big difference
 - Combiners vs. in-mapper combining
 - RAM vs. disk vs. network

Joins in MapReduce

- Data sets $S=\{s_1, \ldots, s_{|S|}\}$ and $T=\{t_1, \ldots, t_{|T|}\}$
- Find all pairs (s_i, t_j) that satisfy some predicate
- Examples
 - Pairs of similar or complementary function summaries
 - Facebook and Twitter posts by same user or from same location
- Typical goal: minimize job completion time

Now that we have seen important design patterns and MapReduce algorithms for simpler problems, let's look at some more complex problems.
Function-Join Pattern

- Find groups of summaries with certain properties of interest
 - Similar trends, opposite trends, correlations
 - Groups not known a priori, need to be discovered

Existing Join Support

- Hadoop has some built-in join support, but our goal is to design our own algorithms
 - Built-in support is limited
 - We want to understand important algorithm design principles
- “Join” usually just means equi-join, but we also want to support other join predicates
- Note: recall join discussion from earlier lecture

Joining Large With Small

- Assume data set T is small enough to fit in memory
- Can run Map-only join
 - Load T onto every mapper
 - Map: join incoming S-tuple with T, output all matching pairs
 - Can scan entire T (nested loop) or use index on T (index nested loop)
- Downside: need to copy T to all mappers
 - Not so bad, since T is small

Distributed Cache

- Efficient way to copy files to all nodes processing a certain task
 - Use it to send small T to all mappers
- Part of the job configuration
- Hadoop still needs to move the data to the worker nodes, so use this with care
 - But it avoids copying the file for every task on the same node

Recall: Standard Equi-Join Algorithm

- Join condition: S.A=T.A
- Map(s) = \{s.A, s\}; Map(t) = \{t.A, t\}
- Reduce combines S-tuples and T-tuples with same key

Problems With Standard Approach

- Degree of parallelism limited by number of distinct A-values
- Data skew
 - If one A-value dominates, reducer processing that key will become bottleneck
- Does not generalize to other joins
Reducer-Centric Cost Model

- Difference between join implementations starts with Map output

\[\text{Join output} \]
\[\text{time} = f(\text{input size}) \]
\[\text{time} = f(\text{output size}) \]

Optimization Goal: Minimal Job Completion time

- Assume all reducers are similarly capable
- Processing time at reducer is approximately monotonic in input and output size
- Hence need to minimize:
 - Max-reducer-input and/or
 - Max-reducer-output
- Join problem classification
 - Input-size dominated: minimize max-reducer-input
 - Output-size dominated: minimize max-reducer-output
 - Input-output balanced: minimize combination of both

Join Model

- Join-matrix M: \(M(i, j) = \text{true} \), if and only if \((s_i, t_j)\) in join result
- Cover each true-valued cell by exactly one reducer

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
</tr>
</tbody>
</table>

\[\text{max-reducer-input} = 8 \]
\[\text{max-reducer-output} = 4 \]

Standard Equi-Join Alg.: Random Assignment: Balanced Algorithm: