Pairs Design Pattern

```plaintext
map(docID a, doc d)
for all term w in doc d do
  for all term u NEAR w do
    Emit(pair (w, u), count 1)

reduce(pair p, counts [c1, c2,...])
  sum = 0
  for all count c in counts do
    sum += c
  Emit(pair p, count sum)
```

- Can use combiner or in-mapper combining
- Good: easy to implement and understand
- Bad: huge intermediate-key space (shuffling/sorting cost!)
 - Quadratic in number of distinct terms

Stripes Design Pattern

```plaintext
map(docID a, doc d)
for all term w in doc d do
  H = new hashMap
  for all term u NEAR w do
    H[u]++
  Emit(term w, stripe H)

reduce(term w, stripes [H1, H2,...])
  Hout = new hashMap
  for all stripe H in stripes do
    Hout = ElementWiseSum(Hout, H)
  Emit(term w, stripe Hout)
```

- Can use combiner or in-mapper combining
- Good: much smaller intermediate-key space
 - Linear in number of distinct terms
- Bad: more difficult to implement, Map needs to hold entire stripe in memory
Beyond Pairs and Stripes

- In general, it is not clear which approach is better
 - Some experiments indicate stripes win for co-occurrence matrix computation
- Pairs and stripes are special cases of shapes for covering the entire matrix
 - Could use sub-stripes, or partition matrix horizontally and vertically into more square-like shapes etc.
- Can also be applied to higher-dimensional arrays
- Will see interesting version of this idea for joins

(3) Relative Frequencies

- Important for data mining
- E.g., for each species and color, compute probability of color for that species
 - Probability of Northern Cardinal being red, P(color = red | species = N.C.)
 - Count $f(N.C.)$, the frequency of observations for N.C. (marginal)
 - Count $f(N.C., red)$, the frequency of observations for red N.C.’s (joint event)
 - $P(red | N.C.) = \frac{f(N.C., red)}{f(N.C.)}$
- Similarly: normalize word co-occurrence vector for word w by dividing it by w’s frequency
Bird Probabilities Using Stripes

• Use species as intermediate key
 – One stripe per species, e.g., stripe[N.C.]
• (stripe[species])[color] stores f(species, color)
• Map: for each observation of (species S, color C) in an observation event, increment (stripe[S])[C]
 – Output (S, stripe[S])
• Reduce: for each species S, add all stripes for S
 – Result: stripeSum[S] with total counts for each color for S
 – Can get f(S) by adding all stripeSum[S] values together
 – Get probability P(color = C | species = S) as (stripeSum[S])[C] / f(S)

Discussion, Part 1

• Stripe is great fit for relative frequency computation
• All values for computing the final result are in the stripe
• Any smaller unit would miss some of the joint events needed for computing f(S), the marginal for the species
• So, this would be a problem for the pairs pattern
Bird Probabilities Using Pairs

- Intermediate key is (species, color)
- Map produces partial counts for each species-color combination in input
- Reduce can compute $f(\text{species}, \text{color})$, the total count of each species-color combination
- But: cannot compute marginal $f(S)$
 - Reduce needs to sum $f(S, \text{color})$ for all colors for species S

Pairs-Based Solution, Take 1

- Make sure all values $f(S, \text{color})$ for the same species end up in the same reduce task
 - Define custom partitioning function on species
- Maintain state across different keys in same reduce task
- This essentially simulates the stripes approach in the reduce task, creating big reduce tasks when there are many colors
- Can we do better?
Discussion, Part 2

• Pairs-based algorithm would work better, if marginal \(f(S) \) was known already
 – Reducer computes \(f(\text{species, color}) \) and then outputs \(f(\text{species, color}) / f(\text{species}) \)
• We can compute the species marginals \(f(\text{species}) \) in a separate MapReduce job first
• Better: fold this into a single MapReduce job
 – Problem: easy to compute \(f(S) \) from all \(f(S, \text{color}) \), but how do we compute \(f(S) \) before knowing \(f(S, \text{color}) \)?

Bird Probabilities Using Pairs, Take 2

• Map: for each observation event, emit \(((\text{species } S, \text{color } C), 1) \) and \(((\text{species } S, \text{dummyColor}), 1) \) for each species-color combination encountered
• Use custom partitioner that partitions based on the species component only
• Use custom key comparator such that \((S, \text{dummyColor})\) is before all \((S, C)\) for real colors \(C \)
 – Reducer computes \(f(S) \) before the \(f(S, C) \)
 • Reducer keeps \(f(S) \) in state for duration of entire task
 – Reducer then computes \(f(S, C) \) for each \(C \), outputting \(f(S, C) / f(S) \)
• Advantage: avoids having to manage all colors for a species together
Order Inversion Design Pattern

- Occurs surprisingly often during data analysis
- Solution 1: use complex data structures that bring the right results together
 - Array structure used by stripes pattern
- Solution 2: turn synchronization into ordering problem
 - Key sort order enforces computation order
 - Partitioner for key space assigns appropriate partial results to each reduce task
 - Reducer maintains task-level state across Reduce invocations
 - Works for simpler pairs pattern, which uses simpler data structures and requires less reducer memory

(4) Secondary Sorting

- Recall the weather data: for simplicity assume observations are (date, stationID, temperature)
- Goal: for each station, create a time series of temperature measurements
- Per-station data: use stationID as intermediate key
- Problem: reducers receive huge number of (date, temp) pairs for each station
 - Have to be sorted by user code
Can Hadoop Do The Sorting?

• Use (stationID, date) as intermediate key
 – Problem: records for the same station might end up in different reduce tasks
 – Solution: custom partitioner, using only stationID component of key for partitioning
• General value-to-key conversion design pattern
 – To partition by X and then sort each X-group by Y, make (X, Y) the key
 – Define key comparator to order by composite key (X, Y)
 – Define partitioner and grouping comparator for (X, Y) to consider only X for partitioning and grouping
 • Grouping part is necessary if all dates for a station should be processed in the same Reduce invocation (otherwise each station-date combination ends up in a different Reduce invocation)

Design Pattern Summary

• In-mapper combining: do work of combiner in mapper
• Pairs and stripes: for keeping track of joint events
• Order inversion: convert sequencing of computation into sorting problem
• Value-to-key conversion: scalable solution for secondary sorting, without writing own sort code
Tools for Synchronization

- Cleverly-constructed data structures for key and values to bring data together
- Preserving state in mappers and reducers, together with capability to add initialization and termination code for entire task
- Sort order of intermediate keys to control order in which reducers process keys
- Custom partitioner to control which reducer processes which keys

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - (De-)serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation vary
 - Combiners can make a big difference
 - Combiners vs. in-mapper combining
 - RAM vs. disk vs. network
Now that we have seen important design patterns and MapReduce algorithms for simpler problems, let’s look at some more complex problems.

Joins in MapReduce

- Data sets $S = \{s_1, \ldots, s_{|S|}\}$ and $T = \{t_1, \ldots, t_{|T|}\}$
- Find all pairs (s_i, t_j) that satisfy some predicate
- Examples
 - Pairs of similar or complementary function summaries
 - Facebook and Twitter posts by same user or from same location
- Typical goal: minimize job completion time
Function-Join Pattern

• Find groups of summaries with certain properties of interest
 – Similar trends, opposite trends, correlations
 – Groups not known a priori, need to be discovered

Existing Join Support

• Hadoop has some built-in join support, but our goal is to design our own algorithms
 – Built-in support is limited
 – We want to understand important algorithm design principles
• “Join” usually just means equi-join, but we also want to support other join predicates
• Note: recall join discussion from earlier lecture
Joining Large With Small

• Assume data set T is small enough to fit in memory

• Can run Map-only join
 – Load T onto every mapper
 – Map: join incoming S-tuple with T, output all matching pairs
 • Can scan entire T (nested loop) or use index on T (index nested loop)

• Downside: need to copy T to all mappers
 – Not so bad, since T is small

Distributed Cache

• Efficient way to copy files to all nodes processing a certain task
 – Use it to send small T to all mappers

• Part of the job configuration

• Hadoop still needs to move the data to the worker nodes, so use this with care
 – But it avoids copying the file for every task on the same node
Recall: Standard Equi-Join Algorithm

- Join condition: S.A = T.A
- Map(s) = (s.A, s); Map(t) = (t.A, t)
- Reduce combines S-tuples and T-tuples with same key

Problems With Standard Approach

- Degree of parallelism limited by number of distinct A-values
- Data skew
 - If one A-value dominates, reducer processing that key will become bottleneck
- Does not generalize to other joins
Reducer-Centric Cost Model

- Difference between join implementations starts with Map output

Optimization Goal: Minimal Job Completion time

- Assume all reducers are similarly capable
- Processing time at reducer is approximately monotonic in input and output size
- Hence need to minimize:
 - Max-reducer-input and/or
 - Max-reducer-output
- Join problem classification
 - Input-size dominated: minimize max-reducer-input
 - Output-size dominated: minimize max-reducer-output
 - Input-output balanced: minimize combination of both
Join Model

- Join-matrix M: $M(i, j) = true$, if and only if (s_i, t_j) in join result
- Cover each true-valued cell by exactly one reducer

Standard Equi-Join Alg.:

Random Assignment:

Balanced Algorithm: