Extension: Combiner Functions

- Recall earlier discussion about combiner function
 - Pre-reduces mapper output before transfer to reducers
 - Does not change program semantics
- Usually (almost) same as reduce function, but has to have same output type as Map
- Works only for some reduce functions that can be incrementally computed
 - \(\text{MAX}(5, 4, 1, 2) = \text{MAX} (\text{MAX}(5, 1), \text{MAX}(4, 2)) \)
 - Same for \(\text{SUM}, \text{MIN}, \text{COUNT}, \text{AVG} (= \frac{\text{SUM}}{\text{COUNT}}) \)

```java
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class MaxTemperatureWithCombiner {
    public static void main(String[] args) throws IOException {
        if (args.length != 2) {
            System.err.println("Usage: MaxTemperatureWithCombiner <input path> +
                                "<output path>");
            System.exit(-1);
        }
        JobConf conf = new JobConf(MaxTemperatureWithCombiner.class);
        conf.setJobName("Max temperature");
        FileInputFormat.addInputPath(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        conf.setMapperClass(MaxTemperatureMapper.class);
        conf.setCombinerClass(MaxTemperatureReducer.class);
        conf.setReducerClass(MaxTemperatureReducer.class);
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        JobClient.runJob(conf);
    }
}
```

Note: combiner here is identical to reducer class.
Extension: Custom Partitioner

- Partitioner determines which keys are assigned to which reduce task
- Default HashPartitioner essentially assigns keys randomly
- Create custom partitioner by implementing Partitioner interface in org.apache.hadoop.mapred
 - Write your own getPartition() method

Extension: MapFile

- Sorted file of (key, value) pairs with an index for lookups by key
- Must append new entries in order
 - Can create MapFile by sorting SequenceFile
- Can get value for specific key by calling MapFile’s get() method
 - Found by performing binary search on index
- Method getClosest() finds closest match to search key
Extension: Counters

• Useful to get statistics about the MapReduce job, e.g., how many records were discarded in Map
• Difficult to implement from scratch
 – Mappers and reducers need to communicate to compute a global counter
• Hadoop has built-in support for counters
• See ch. 8 in Tom White’s book for details

Hadoop Job Tuning

• Choose appropriate number of mappers and reducers
• Define combiners whenever possible
 – But see also later discussion about local aggregation
• Consider Map output compression
• Optimize the expensive shuffle phase (between mappers and reducers) by setting its tuning parameters
• Profiling distributed MapReduce jobs is challenging.
Hadoop and Other Programming Languages

• Hadoop Streaming API to write map and reduce functions in languages other than Java
 – Any language that can read from standard input and write to standard output

• Hadoop Pipes API for using C++
 – Uses sockets to communicate with Hadoop’s task trackers

Multiple MapReduce Steps

• Example: find average max temp for every day of the year and every weather station
 – Find max temp for each combination of station and day/month/year
 – Compute average for each combination of station and day/month

• Can be done in two MapReduce jobs
 – Could also combine it into single job, which would be faster
Running a MapReduce Workflow

• Linear chain of jobs
 – To run job2 after job1, create JobConf’s conf1 and conf2 in main function
 – Call JobClient.runJob(conf1); JobClient.runJob(conf2);
 – Catch exceptions to re-start failed jobs in pipeline

• More complex workflows
 – Use JobControl from org.apache.hadoop.mapred.jobcontrol
 – We will see soon how to use Pig for this

MapReduce Coding Summary

• Decompose problem into appropriate workflow of MapReduce jobs
• For each job, implement the following
 – Job configuration
 – Map function
 – Reduce function
 – Combiner function (optional)
 – Partition function (optional)
• Might have to create custom data types as well
 – WritableComparable for keys
 – Writable for values
Let’s see how we can create complex MapReduce workflows by programming in a high-level language.

The Pig System

- Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins: *Pig Latin: a not-so-foreign language for data processing*. SIGMOD Conference 2008: 1099-1110
- Several slides courtesy Chris Olston and Utkarsh Srivastava
- Open source project under the Apache Hadoop umbrella
Overview

• Design goal: find sweet spot between declarative style of SQL and low-level procedural style of MapReduce
• Programmer creates Pig Latin program, using high-level operators
• Pig Latin program is compiled to MapReduce program to run on Hadoop

Why Not SQL or Plain MapReduce?

• SQL difficult to use and debug for many programmers
• Programmer might not trust automatic optimizer and prefers to hard-code best query plan
• Plain MapReduce lacks convenience of readily available, reusable data manipulation operators like selection, projection, join, sort
• Program semantics hidden in “opaque” Java code – More difficult to optimize and maintain
Example Data Analysis Task

Find the top 10 most visited pages in each category

<table>
<thead>
<tr>
<th>User</th>
<th>Url</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>cnn.com</td>
<td>8:00</td>
</tr>
<tr>
<td>Amy</td>
<td>bbc.com</td>
<td>10:00</td>
</tr>
<tr>
<td>Amy</td>
<td>flickr.com</td>
<td>10:05</td>
</tr>
<tr>
<td>Fred</td>
<td>cnn.com</td>
<td>12:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Url</th>
<th>Category</th>
<th>PageRank</th>
</tr>
</thead>
<tbody>
<tr>
<td>cnn.com</td>
<td>News</td>
<td>0.9</td>
</tr>
<tr>
<td>bbc.com</td>
<td>News</td>
<td>0.8</td>
</tr>
<tr>
<td>flickr.com</td>
<td>Photos</td>
<td>0.7</td>
</tr>
<tr>
<td>espn.com</td>
<td>Sports</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Data Flow
In Pig Latin

visits = load 'data/visits' as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load 'data/urlInfo' as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into 'data/topUrls';

Pig Latin Notes

• No need to import data into database
 – Pig Latin works directly with files
• Schemas are optional and can be assigned dynamically
 – Load 'data/visits' as (user, url, time);
• Can call user-defined functions in every construct like Load, Store, Group, Filter, Foreach
 – Foreach gCategories generate top(visitCounts,10);
Pig Latin Data Model

• Fully-nestable data model with:
 – Atomic values, tuples, bags (lists), and maps

 yahoo, {finance, email, news}

• More natural to programmers than flat tuples
 – Can flatten nested structures using FLATTEN
• Avoids expensive joins, but more complex to process

Pig Latin Operators: LOAD

• Reads data from file and optionally assigns schema to each record
• Can use custom deserializer

queries = LOAD ‘query_log.txt’ USING myLoad()
AS (userID, queryString, timestamp);
Pig Latin Operators: FOREACH

• Applies processing to each record of a data set
• No dependence between the processing of different records
 – Allows efficient parallel implementation
• GENERATE creates output records for a given input record

expanded_queries = FOREACH queries
 GENERATE userId, expandQuery(queryString);

Pig Latin Operators: FILTER

• Remove records that do not pass filter condition
• Can use user-defined function in filter condition

real_queries = FILTER queries BY userId neq 'bot';
Pig Latin Operators: COGROUP

- Group together records from one or more data sets

```
<table>
<thead>
<tr>
<th>queryString</th>
<th>url</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakers</td>
<td>nba.com</td>
<td>1</td>
</tr>
<tr>
<td>Lakers</td>
<td>espn.com</td>
<td>2</td>
</tr>
<tr>
<td>Kings</td>
<td>nhl.com</td>
<td>1</td>
</tr>
<tr>
<td>Kings</td>
<td>nba.com</td>
<td>2</td>
</tr>
</tbody>
</table>
```

\[
\text{COGROUP results BY queryString, revenue BY queryString}
\]

Pig Latin Operators: GROUP

- Special case of COGROUP, to group single data set by selected fields
- Similar to GROUP BY in SQL, but does not need to apply aggregate function to records in each group

```
grouped_revenue = \text{GROUP revenue BY queryString};
```
Pig Latin Operators: JOIN

• Computes equi-join
 \[\text{join_result} = \text{JOIN results BY queryString, revenue BY queryString;} \]

• Just a syntactic shorthand for COGROUP followed by flattening
 \[\text{temp_var} = \text{COGROUP results BY queryString, revenue BY queryString;} \]
 \[\text{join_result} = \text{FOREACH temp_var GENERATE FLATTEN(results), FLATTEN(revenue);} \]

Other Pig Latin Operators

• UNION: union of two or more bags
• CROSS: cross product of two or more bags
• ORDER: orders a bag by the specified field(s)
• DISTINCT: eliminates duplicate records in bag
• STORE: saves results to a file
• Nested bags within records can be processed by nesting operators within a FOREACH operator
MapReduce in Pig Latin

map_result = FOREACH input GENERATE
 FLATTEN(map(*));
key_groups = GROUP map_result BY $0;
output = FOREACH key_groups GENERATE reduce(*);

• Map() is a UDF, where * indicates that the entire input record is passed to map()
• $0 refers to first field, i.e., the intermediate key here
• Reduce() is another UDF
Implementation

SQL

Pig

Hadoop Map-Reduce

cluster

user

automatic rewrite + optimize

or

or

Pig Compiler

cross-job optimizer

Pig Latin program

output

join

f()

filter

X

Y

user

10/6/2011
Compilation into Map-Reduce

Every group or join operation forms a map-reduce boundary

Other operations pipelined into map and reduce phases

Is Pig a DBMS?

<table>
<thead>
<tr>
<th>DBMS</th>
<th>Pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>workload</td>
<td></td>
</tr>
<tr>
<td>data representation</td>
<td></td>
</tr>
<tr>
<td>programming style</td>
<td></td>
</tr>
<tr>
<td>customizable processing</td>
<td></td>
</tr>
</tbody>
</table>
Now let’s go back to plain Hadoop and look at important program “design patterns”.

MapReduce Design Patterns

• This section is based on the book by Jimmy Lin and Chris Dyer

• Programmer can control program execution only through implementation of mapper, reducer, combiner, and partitioner

• No explicit synchronization primitives

• So how can a programmer control execution and data flow?
Taking Control of MapReduce

- Store and communicate partial results through complex data structures for keys and values
- Run appropriate initialization code at beginning of task and termination code at end of task
- Preserve state in mappers and reducers across multiple input splits and intermediate keys, respectively
- Control sort order of intermediate keys to control processing order at reducers
- Control set of keys assigned to a reducer
- Use “driver” program

(1) Local Aggregation

- Reduce size of intermediate results passed from mappers to reducers
 - Important for scalability: recall Amdahl’s Law
- Various options using combiner function and ability to preserve mapper state across multiple inputs
- Illustrated with word count example
 - Will use document-based version of Map
Word Count Baseline Algorithm

\[
\text{map} \left(\text{docID} \ a, \ \text{doc} \ d \right)
\]
for all term t in doc d do
Emit(term t, count 1)

\[
\text{reduce} \left(\text{term} \ t, \ \text{counts} \ [c_1, c_2, \ldots] \right)
\]
\[
\text{sum} = 0
\]
for all count c in counts do
\[
\text{sum} += c
\]
Emit(term t, count sum);

- Problem: frequent terms are emitted many times with count 1

Tally Counts Per Document

\[
\text{map} \left(\text{docID} \ a, \ \text{doc} \ d \right)
\]
H = new hashMap
for all term t in doc d do
\[
H(t) ++
\]
for all term t in H do
Emit(term t, count H(t))

- Same Reduce function as before
- Limitation: only aggregates counts within document
- Map task usually receives split containing many documents
- Can we aggregate across all documents in the same task?
Tally Counts Across Documents

- Data structure is private member of mapper
- Initialize is called once before all map invocations
 - Configure() in old API
 - Setup() in new API
- Close is called after last document from split has been processed
 - Close() in old API
 - Cleanup() in new API

```java
Class Mapper
  initialize()
  H = new hashMap

  map(docID a, doc d)
  for all term t in doc d do
    H{t} ++

  close()
  for all term t in H do
    Emit(term t, count H{t})
```

Design Pattern for Local Aggregation

- **In-mapper combining**
 - Done by preserving state across map calls in same task
- **Advantages over using combiners**
 - Combiner does not guarantee if, when or how often it is executed
 - Combiner combines data *after* it was generated, in-mapper combining avoids generating it!
- **Drawbacks**
 - Introduces complexity, e.g., result might depend on order of map executions (order-dependent bugs possible!)
 - Higher memory consumption for managing state
 - Might have to write memory-management code to page data to disk
(2) Counting of Combinations

• Needed for computing correlations, associations, confusion matrix (how many times does a classifier confuse \(Y_i \) with \(Y_j \))
• Co-occurrence matrix for a text corpus: how many times do two terms appear near each other
• Compute partial counts for some combinations, then aggregate them
 – At what granularity should Map work?