Parallel Nested Loops
- For each tuple \(s_i \) in \(S \)
 - For each tuple \(t_j \) in \(T \)
 - If \(s_i = t_j \), then add \((s_i, t_j)\) to output
- Create partitions \(S_1, S_2, T_1, \) and \(T_2 \)
- Have processors work on \((S_1, T_1), (S_1, T_2), (S_2, T_1), \) and \((S_2, T_2)\)
 - Can build appropriate local index on chunk if desired
- Nice and easy, but...
 - How to choose chunk sizes for given \(S, T, \) and \#processors?
 - There is data duplication, possibly a lot of it
 - Especially undesirable for highly selective joins with small result

Parallel Partition-Based
- Create \(n \) partitions of \(S \) by hashing each \(S \)-tuple \(s \), e.g., to bucket number \((s \mod n)\)
- Create \(n \) partitions of \(T \) in the same way
- Run join algorithm on each pair of corresponding partitions
- Can create partitions of \(S \) and \(T \) in parallel
- Choose \(n = \) number of processors
- Each processor locally can choose favorite join algorithm
- No data replication, but...
 - Does not work well for skewed data
 - Limited parallelism if range of values is small

More Join Thoughts
- What about non-equi join?
 - Find pairs \((s_i, t_j)\) that satisfy a predicate like inequality, band, or similarity (e.g., when \(s \) and \(t \) are documents)
- Hash-partitioning will not work any more
- Now things are becoming really tricky...
- We will discuss these issues in a future lecture.

Median
- Find the median of a set of integers
- Holistic aggregate function
 - Chunk assigned to a processor might contain mostly smaller or mostly larger values, and the processor does not know this without communicating extensively with the others
- Parallel implementation might not do much better than sequential one
- Efficient \textit{approximation} algorithms exist

Parallel Office Tools
- Parallelize Word, Excel, email client?
- Impossible without rewriting them as multi-threaded applications
 - Seem to naturally have low degree of parallelism
- Leverage economies of scale: \(n \) processors (or cores) support \(n \) desktop users by hosting the service in the Cloud
 - E.g., Google docs

Before exploring parallel algorithms in more depth, how do we know if our parallel algorithm or implementation actually does well or not?
Measures Of Success

- If sequential version takes time t, then parallel version on n processors should take time t/n.
 - Speedup $= \frac{\text{sequentialTime}}{\text{parallelTime}}$
 - Note: job, i.e., work to be done, is fixed
- Response time should stay constant if number of processors increases at same rate as “amount of work”.
 - Scaleup $= \frac{\text{workDoneParallel}}{\text{workDoneSequential}}$
 - Note: time to work on job is fixed

Things to Consider: Amdahl’s Law

- Consider job taking sequential time 1 and consisting of two sequential tasks taking time t_1 and $1-t_1$, respectively.
- Assume we can perfectly parallelize the first task on n processors.
 - Parallel time: $t_1/n + (1 - t_1)$
 - Speedup $= \frac{1}{(1 - t_1)(n-1)/n}$
 - $t_1=0.9, n=2$: speedup $= 1.81$
 - $t_1=0.9, n=10$: speedup $= 5.3$
 - $t_1=0.9, n=100$: speedup $= 9.2$
 - Max. possible speedup for $t_1=0.9$ is $1/(1-0.9) = 10$

Implications of Amdahl’s Law

- Parallelize the tasks that take the longest.
- Sequential steps limit maximum possible speedup.
 - Communication between tasks, e.g., to transmit intermediate results, can inherently limit speedup, no matter how well the tasks themselves can be parallelized.
- If fraction x of the job is inherently sequential, speedup can never exceed $1/x$.
 - No point running this on an excessive number of processors.

Performance Metrics

- Total execution time.
 - Part of both speedup and scaleup.
- Total resources (maybe only of type X) consumed.
- Total amount of money paid.
- Total energy consumed.
- Optimize some combination of the above.
 - E.g., minimize total execution time, subject to a money budget constraint.

Popular Strategies

- Load balancing.
 - Avoid overloading one processor while other is idle.
 - Careful: if better balancing increases total load, it might not be worth it.
 - Careful: optimizes for response time, but not necessarily other metrics like $\$ paid.
- Static load balancing.
 - Need cost analyzer like in DBMS.
- Dynamic load balancing.
 - Easy: Web search.
 - Hard: join.

Let’s see how MapReduce works.
MapReduce

• Proposed by Google in research paper
• MapReduce implementations like Hadoop differ in details, but main principles are the same

Overview

• MapReduce = programming model and associated implementation for processing large data sets
• Programmer essentially just specifies two (sequential) functions: map and reduce
• Program execution is automatically parallelized on large clusters of commodity PCs
 – MapReduce could be implemented on different architectures, but Google proposed it for clusters

Overview

• Clever abstraction that is a good fit for many real-world problems
• Programmer focuses on algorithm itself
• Runtime system takes care of all messy details
 – Partitioning of input data
 – Scheduling program execution
 – Handling machine failures
 – Managing inter-machine communication

Programming Model

• Transforms set of input key-value pairs to set of output values (notice small modification compared to paper)
• Map: (k1, v1) → list (k2, v2)
• MapReduce library groups all intermediate pairs with same key together
• Reduce: (k2, list (v2)) → list (k3, v3)
 – Usually zero or one output value per group
 – Intermediate values supplied via iterator (to handle lists that do not fit in memory)

Example: Word Count

• Insight: can count each document in parallel, then aggregate counts
• Final aggregation has to happen in Reduce
 – Need count per word, hence use word itself as intermediate key (k2)
 – Intermediate counts are the intermediate values (v2)
• Parallel counting can happen in Map
 – For each document, output set of pairs, each being a word in the document and its frequency of occurrence in the document
 – Alternative: output (word, "1") for each word encountered

Word Count in MapReduce

count number of occurrences of each word in a document collection:

```java
map(String key, String value):
// key: document name // value: document contents
for each word w in value:
EmitIntermediate(w, "1");
```

```java
reduce(String key, Iterator values):
// key: a word // values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));
```

Almost all the coding needed
[need also MapReduce specification object with names of input and output files, and optional tuning parameters]
Execution Overview

- Data is stored in files
 - Files are partitioned into smaller splits, typically 64MB
 - Splits are stored (usually also replicated) on different cluster machines
- Master node controls program execution and keeps track of progress
 - Does not participate in data processing
- Some workers will execute the Map function, let’s call them mappers
- Some workers will execute the Reduce function, let’s call them reducers

Master assigns map and reduce tasks to workers, taking data location into account

- Mapper reads an assigned file split and writes intermediate key-value pairs to local disk
- Mapper informs master about result locations, who in turn informs the reducers
- Reducers pull data from appropriate mapper disk location
- After map phase is completed, reducers sort their data by key
- For each key, Reduce function is executed and output is appended to final output file
- When all reduce tasks are completed, master wakes up user program

Example: Equi-Join

- Given two data sets \(S = \{s_1, s_2, \ldots\} \) and \(T = \{t_1, t_2, \ldots\} \) of integers, find all pairs \((s_i, t_j) \) where \(s_i.A = t_j.A \)
- Can only combine the \(s_i \) and \(t_j \) in Reduce
 - To ensure that the right tuples end up in the same Reduce invocation, use join attribute \(A \) as intermediate key (k2)
 - Intermediate value is actual tuple to be joined
- Map needs to output \((s.A, s) \) for each \(S \)-tuple \(s \) (similar for \(T \)-tuples)
Comments

• Programming model might appear very limited
• But, map and reduce can do anything with their input
 – Could implement a Turing machine inside...
 – ...which could compute anything, but...
 – ...would not result in a good parallel implementation.
• Challenge: find best MapReduce implementation for a given problem

Basic MapReduce Program Design

• Tasks that can be performed independently on a data object, large number of them: Map
• Tasks that require combining of multiple data objects: Reduce
• Sometimes it is easier to start program design with Map, sometimes with Reduce
• Select keys and values such that the right objects end up together in the same Reduce invocation
• Might have to partition a complex task into multiple MapReduce sub-tasks