Relational Algebra
Chapter 4, Part A

Why Is This Important?
- Once we have the data in a database, we want to access it.
- Relational algebra supports expressive queries by composing fairly simple operators.
- Only few operators needed
- We need to know the operators for the schema refinement discussion.

Relational Query Languages
- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for optimization.
- Query Languages ≠ programming languages
 - QLs not expected to be “Turing complete”.
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages
- Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for implementation:
 - Relational Algebra: More operational, very useful for representing execution plans.
 - Relational Calculus: Lets users describe WHAT they want, rather than HOW to compute it. (Non-operational, declarative.)

Preliminaries
- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed
 - But query will run regardless of instance.
 - The schema for the result of a given query is also fixed
 - Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL.

Example Instances
- "Sailors" and "Reserves" relations for our examples.
- We’ll use positional or named field notation, assume that names of fields in query results are ‘inherited’ from names of fields in query input relations.
Relational Algebra

- Basic operations:
 - **Selection** (\(\sigma \)): Selects a subset of rows from relation.
 - **Projection** (\(\pi \)): Deletes columns from relation.
 - **Cross-product** (\(\times \)): Allows us to combine two relations.
 - **Set-difference** (\(-\)): Tuples in reln. 1, but not in reln. 2.
 - **Union** (\(\cup\)): Tuples in reln. 1 and in reln. 2.

- Additional operations:
 - Intersection, Join, Division, Renaming: Not essential, but (very) useful.
 - Since each operation returns a relation, operations can be composed (Algebra is “closed”)

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates. (Why?)
 - Note: real systems typically do not eliminate duplicates unless the user explicitly asks for it. (Why not?)

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be union-compatible:
 - Same number of fields.
 - ‘Corresponding’ fields have the same type.
- What is the schema of result?

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names ‘inherited’ if possible.
 - Conflict: Both S1 and R1 have a field called sid.

- Renaming operator (C is the output):
 \(\rho(C(l \rightarrow sid_1, 5 \rightarrow sid_2), S1 \times R1) \)

Joins

- **Condition Join**: \(R \bowtie_{S} S \bowtie_{C} (R \times S) \)

 \[
 \begin{array}{c|c|c|c|c|c}
 (sid) & sname & rating & age & (sid) & bid & day \\
 \hline
 22 & dustin & 7 & 45.0 & 22 & 101 & 10/10/96 \\
 22 & dustin & 7 & 45.0 & 22 & 103 & 11/12/96 \\
 31 & lubber & 8 & 55.5 & 22 & 101 & 10/10/96 \\
 31 & lubber & 8 & 55.5 & 22 & 103 & 11/12/96 \\
 58 & rusty & 10 & 35.0 & 22 & 101 & 10/10/96 \\
 58 & rusty & 10 & 35.0 & 22 & 103 & 11/12/96 \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c|c|c}
 (sid) & sname & rating & age & (sid) & bid & day \\
 \hline
 22 & dustin & 7 & 45.0 & 58 & 103 & 11/12/96 \\
 31 & lubber & 8 & 55.5 & 58 & 103 & 11/12/96 \\
 \hline
 \end{array}
 \]

- Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute it more efficiently.
- Sometimes called a theta-join.
Joins

- **Equi-Join**: A special case of condition join where the condition c contains only equalities.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>45.0</td>
<td>101</td>
<td>10/10/96</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
<td></td>
</tr>
</tbody>
</table>

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.

- **Natural Join**: Equijoin on all common fields.

Division

- Not supported as a primitive operator, but useful for expressing queries like:
 - Find sailors who have reserved all boats.
 - Let A have 2 fields, x and y; B have only field y:
 - $A/B = \{ (x) \mid \forall (y) \in B : (x, y) \in A \}$
 - A/B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple in A.
 - Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.
- In general, x and y can be any lists of attributes
 - y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A/B

<table>
<thead>
<tr>
<th>sno</th>
<th>pno</th>
<th>A/B1</th>
<th>A/B2</th>
<th>A/B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>p1</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
</tr>
<tr>
<td>s1</td>
<td>p2</td>
<td>s2</td>
<td>s2</td>
<td>s2</td>
</tr>
<tr>
<td>s1</td>
<td>p3</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
</tr>
<tr>
<td>s1</td>
<td>p4</td>
<td>s2</td>
<td>s2</td>
<td>s2</td>
</tr>
<tr>
<td>s2</td>
<td>p1</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
</tr>
<tr>
<td>s2</td>
<td>p2</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
</tr>
<tr>
<td>s3</td>
<td>p3</td>
<td>s3</td>
<td>s3</td>
<td>s3</td>
</tr>
<tr>
<td>s4</td>
<td>p1</td>
<td>s4</td>
<td>s4</td>
<td>s4</td>
</tr>
<tr>
<td>s4</td>
<td>p2</td>
<td>s4</td>
<td>s4</td>
<td>s4</td>
</tr>
</tbody>
</table>

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - Also true of joins, but joins are so common that systems implement joins specially.
 - Idea: For A/B, compute all x values that are not ‘disqualified’ by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

Find names of sailors who’ve reserved boat #103

- Solution 1: $\pi_{sname}(\sigma_{bid=103} \text{Reserves} \Join \text{Sailors})$
- Solution 2: $\rho(\text{Temp1}, \sigma_{bid=103} \text{Reserves})$
 - $\rho(\text{Temp2}, \sigma_{bid=103} \text{Reserves} \Join \text{Sailors})$
 - $\pi_{sname}(\text{Temp2})$
- Solution 3: $\pi_{sname}(\sigma_{bid=103} \text{Reserves} \Join \text{Sailors})$

Find names of sailors who’ve reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
 - $\pi_{sname}(\sigma_{color='red'} \text{Boats} \Join \text{Reserves} \Join \text{Sailors})$
- A more efficient solution:
 - $\pi_{sname}(\sigma_{sid='red'} \text{Boats} \Join \text{Reserves} \Join \text{Sailors})$
- A query optimizer can find this, given the first solution.
Find sailors who’ve reserved a red or a green boat

- Can identify all red or green boats, then find sailors who’ve reserved one of these boats:
 \[\rho(\text{Tempboats}(\sigma_{\text{color}=\text{red}} \lor \text{color}=\text{green})\text{Boats})) \]
 \[\pi_{\text{name}}(\text{Tempboats} \bowtie \text{Reserves} \bowtie \text{Sailors}) \]
- Can also define Tempboats using union. (How?)
- What happens if \(\lor \) is replaced by \(\land \) in this query?

Find sailors who’ve reserved a red and a green boat

- Previous approach won’t work
 - Must identify sailors who’ve reserved red boats, sailors who’ve reserved green boats, then find the intersection (note that sid is a key for Sailors):
 \[\rho(\text{Tempred}_{\text{sid}} (\sigma_{\text{color}=\text{red}}\text{Boats}) \bowtie \text{Reserves})) \]
 \[\rho(\text{Tempgreen}_{\text{sid}} (\sigma_{\text{color}=\text{green}}\text{Boats}) \bowtie \text{Reserves})) \]
 \[\pi_{\text{name}}(\text{Tempred}_{\text{sid}} \bowtie \text{Tempgreen}_{\text{sid}} \bowtie \text{Sailors}) \]

Find the names of sailors who’ve reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:
 \[\rho(\text{Tempsids}_{\text{sid}} \bowtie \text{Reserves} \bowtie \text{Boats})) \]
 \[\pi_{\text{name}}(\text{Tempsids} \bowtie \text{Sailors}) \]
- To find sailors who’ve reserved all ‘Interlake’ boats:
 \[\ldots / \pi_{\text{bid}} (\sigma_{\text{bname}=\text{Interlake}}\text{Boats}) \]

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational
 - Useful as internal representation for query evaluation plans.
- Several ways of expressing a given query
 - A query optimizer should choose the most efficient version.