Schema Refinement and Normal Forms

Why Is This Important?

- Many ways to model a given scenario in a database
- How do we find the best one?
- We will discuss objective criteria for evaluating database design quality
 - Formally define desired properties
 - Algorithms for determining if a database has these properties
 - Algorithms for fixing problems

The Evils of Redundancy

- Redundancy is at the root of several problems associated with relational schemas:
 - Redundant storage
 - Insert, delete, update anomalies
- Integrity constraints can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: decomposition
 - Replacing ABCD with, say, AB and BCD, or ACD and ABD.
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Example: Constraints on Entity Set

- Consider a relation obtained from Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- Notation: We will denote this relation schema by listing the attributes: SNLRWH
 - This is really the set of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - ssn is the key: S→SNLRWH
 - rating determines hrly_wages: R→W

Example (Contd.)

- Are the two smaller tables better?
- Problems in single "wide" table due to R→W:
 - Update anomaly: Can we change W in just the first tuple of SNLRWH?
 - Insertion anomaly: What if we want to insert an employee and don’t know the hourly wage for his rating?
 - Deletion anomaly: If we delete all employees with rating 5, do we lose the information about the wage for rating 5.
Reasoning About FDs

- Given some FDs, we can infer additional FDs:
 - ssn → did, did → lot implies ssn → lot
- An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.
 - \(F^+ \) = closure of F; is the set of all FDs that are implied by F.
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - Reflexivity: If \(X \subseteq Y \), then \(Y \rightarrow X \).
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any Z.
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \).
- These are sound (generate only FDs in \(F^+ \)) and complete (generate all FDs in \(F^+ \)) inference rules for FDs.

Reasoning About FDs (Contd.)

- Additional rules (that follow from the AA):
 - Union: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - Decomposition: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
- Example: Contracts(cid, sid, jid, did, pid, qty, value) and:
 - C is the key: \(C \rightarrow CSJDPQV \)
 - Project purchases each part using single contract: \(JP \rightarrow C \)
 - Dept purchases at most one part from a supplier: \(SD \rightarrow P \)
 - \(JP \rightarrow C, C \rightarrow CSJDPQV \) imply \(JP \rightarrow CSJDPQV \)
 - \(SD \rightarrow P \) implies \(SDJ \rightarrow JP \)
 - \(SDJ \rightarrow JP, JP \rightarrow CSJDPQV \) imply \(SDJ \rightarrow CSJDPQV \)

So, What Do We Do Now With FDs?

- Essential for identifying problems in a database design
- Provide a way for “fixing” the problem
- Key concept: normal forms
 - A relation that is in a certain normal form has certain desirable properties

Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed.
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided or minimized.
 - Helps deciding whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with three attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they all have the same B value.

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if, for all \(X \rightarrow A \) in \(F^+ \)
 - \(A \subseteq X \) (called a trivial FD), or
 - X is a superkey for R.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
 - R is free of any redundancy caused by FDs alone.
 - No field of any tuple can be inferred (using only FDs) from the values in the other fields in the relation instance
 - For \(X \rightarrow A \), consider two tuples with the same X value.
 - They should have the same A value. Redundancy?
 - No. Since X is in BCNF, X is a superkey and hence the “two” tuples must be identical.
Problems Prevented By BCNF

- If BCNF is violated by (non-trivial) FD X → A, one of the following holds:
 - X is a subset of some key K.
 - We store (X, A) pairs redundantly.
 - E.g., Reserves(S, B, D, C) with SBD as only key and FD S → C
 - Credit card number of a sailor stored for each reservation
 - X is not a proper subset of any key.
 - Redundant storage of (X, A) pairs as above
 - E.g., Hourly_Emps(S, N, L, R, W, H) with S as only key and FD R → W
 - Have chain S → R → W, hence cannot record the fact that employee S has rating R without knowing the hourly wage for that rating

Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all X → A in F
 - A ∈ X (called a trivial FD), or
 - X is a superkey for R, or
 - A is part of some key for R.

- Minimality of a key is crucial in third condition above.
- If R is in BCNF, is it automatically in 3NF? What about the other direction?
- If R is in 3NF, some redundancy is possible.
 - 3NF is a compromise, used when BCNF is not achievable (e.g., no “good” decomposition, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations is always possible. (covered soon)

What Does 3NF Achieve?

- Prevents same problems as BCNF, except for FDs where A is part of some key
 - Consider FD X → A where X is no superkey, but A is part of some key
 - E.g., Reserves(S, B, D, C) with only key SBD and FDs S → C and C → S is in 3NF
 - Notice: same example as before, but adding C → S made it 3NF
 - Why? Since C → S and SBD is a key, CBD is also a key. Hence for S → C, C is part of a key.
 - Redundancy problem: for each reservation of sailor S, same (S, C) pair is stored.
 - BCNF did not suffer from this redundancy problem.
 - So, why do we need 3NF? Let’s look at decompositions first.

Footnote About Other Normal Forms

- 1NF: every field contains only atomic values, i.e., no lists or sets
- 2NF: 1NF, and all attributes that are not part of any candidate key are functionally dependent on the whole of every candidate key
 - 3NF implies 2NF
- 4NF: prevents redundancy from multi-valued dependencies (see book)
- 5NF: addresses redundancy based on join dependencies, which generalize multi-valued dependencies (see book)

Decomposition of a Relation Schema

- Suppose relation R contains attributes A1, ..., An. A decomposition of R replaces R by two or more relations such that:
 - Each new relation schema contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of at least one of the new relations.
- Intuition: decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.

Example Decomposition

- Decompositions should be used only when needed.
 - Let SNLRWH have FDs S → SNLRWH and R → W
 - Second FD causes violation of 3NF
 - W values repeatedly associated with R values.
 - Easiest fix: create a relation RW to store these associations and remove W from the main schema:
 - I.e., we decompose SNLRWH into SNLRH and RW
 - Each SNLRWH tuple will now be projected into two tuples, SNLRH and RW, each stored in the corresponding relation
 - Are there any potential problems with this approach?
Problems with Decompositions

- Three potential problems to consider:
 - Some queries become more expensive.
 - E.g., how much did sailor Joe earn? (salary = W*H)
 - Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation.
 - Fortunately, not the case in the SNLRWH example.
 - Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not the case in the SNLRWH example.

Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions

- Decomposition of R into X and Y is lossless-join w.r.t. F if, for every instance r that satisfies F:
 - $\pi_x(r) \cong \pi_y(r) = R$
 - It is always true that $R \subseteq \pi_x(r) \cong \pi_y(r)$
 - In general, the other direction does not hold.
 - If it does, the decomposition is lossless-join.
- Definition extended to decomposition into three or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless. Why?

More on Lossless Join

- The decomposition of R into X and Y is lossless-join w.r.t. F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \rightarrow Y$
- Special case:
 - For FD $U \rightarrow V$, the decomposition of R into UV and $R-V$ is lossless-join.

Dependency-Preserving Decomposition

- Consider CSIDPOV, C is key, $JP \rightarrow C$ and $SD \rightarrow P$.
 - BCNF decomposition: CSIDQV and SDP
 - Problem: Checking $JP \rightarrow C$ now requires a join.
- Dependency-preserving decomposition (intuition):
 - Can enforce all FDs by examining a single relation instance on each insertion or modification of a tuple (do not need to join multiple relation instances)
- Formal definition requires notion of a projection of a set of FDs F over R:
 - If R is decomposed into X and Y, the projection of F onto X (denoted F_X) is the set of all FDs $U \rightarrow V$ in F^+ (closure of F) such that U and V both are in X.

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency-preserving if $(F_X \cup F_Y)^+ = F^+$
 - I.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F^+.
- Important to consider F^+, not F, in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?
- Dependency preserving does not imply lossless join:
 - ABC, $A \rightarrow B$, decomposed into AB and BC.
 - And vice-versa. (Example?)
Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R → Y and XY.
- Repeated application of this idea will give us a collection of relations that are in BCNF.
- Lossless join decomposition and guaranteed to terminate.
- E.g., CSJDQV, key C, JP → C, SD → P, J → S
- To deal with SD → P, decompose into SDP and CSJDQV.
- To deal with J → S, decompose CSJDQV into JS and CJDQV.
- In general, several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations.

Minimal Cover for a Set of FDs
- Minimal cover G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
 - Intuitively, every FD in G is needed, and “as small as possible” in order to get the same closure as F.
- E.g., A → B, ABCD → E, EF → GH, ACDF → EG has the following minimal cover:
 - A → B, ACDF → E, EF → GH

Finding The Minimal Cover
- F = {A → B, ABCD → E, EF → GH, ACDF → EG}
- Decomposition to have single attribute on right side
 - A → B, ABCD → E, EF → GH, ACDF → E, ACDF → G
- Check if any attribute on left side can be deleted without changing closure
 - A → B, ABCD → E, EF → GH, ACDF → E, ACDF → G
- Delete FDs that are implied by others
 - A → B, ACDF → E, EF → GH, ACDF → E, ACDF → G
- ACDF → G from ACDF → E, EF → G

Decomposition into BCNF
- Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R → Y and XY.
- Repeated application of this idea will give us a collection of relations that are in BCNF.
- Lossless join decomposition and guaranteed to terminate.
- E.g., CSJDQV, key C, JP → C, SD → P, J → S
- To deal with SD → P, decompose into SDP and CSJDQV.
- To deal with J → S, decompose CSJDQV into JS and CJDQV.
- In general, several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations.

Dependency-Preserving Decomposition into 3NF
- Using minimal cover F of given FD set, we can now achieve a lossless-join, dependency-preserving decomposition into 3NF.
 1. Lossless-join decomposition until all smaller relations are in 3NF
 2. For each FD X → A in F that is not preserved, add relation XA
- Result is lossless-join (X is superkey of XA) and dependency-preserving (obviously), but is it still in 3NF?
 - All relations after step 1 are in 3NF, but what about XA?
 - X → A is not a problem for 3NF because X is a superkey of XA
 - What if another FD on XA is a problem for 3NF?
 - Any FD on XA can only contain attributes from X → A
 - Right hand side of FDs over XA contains X, left must be X (otherwise X → A would not have been minimal cover)
 - Right hand side does not contain X, A must be a subset of X, i.e., is a subset of a key
 - Why is X a key? It is a superkey, but is minimal?
 - Not X, if X is a key, then X → A would not have been in the minimal cover and X → A would have been there
- Why not use the same algorithm for lossless-join, dependency-preserving decomposition into BCNF?
Update on DB Design Process

- Create ER diagram
- Translate ER diagram into set of relations
- Check relations for redundancy problems (not in 3NF, BCNF)
- Perform decomposition to fix problems
- Update ER diagram

Refining Entity Sets

- Consider Hourly_Emps(ssn, name, lot, rating, hourly_wages, hours_worked)
 - FDs: S→SNLRWH and R→W
- Assume designer created entity set Hourly_Emps as above
 - Redundancy problem with R→W
 - Could not discover it in ER diagram (only shows primary key constraints)
- To fix redundancy problem, create new entity set Wage_Table(rating, hourly_wages)
 - Add relationship to connect Hourly_Emps(S, N, L, H) and Wage_Table(R, W)
- Similar for refining of relationship sets (see book)

Identifying Entity Attributes

- 1st diagram translated
 - Workers(S,N,L,D,S)
 - Departments(D,M,B)
 - Lots associated with workers.
- Suppose all workers in a dept are assigned the same lot: did→lot
 - Redundancy!
- Fixed by:
 - Workers2(S,N,D,S)
 - Dept_Lots(D,L)
 - Departments(D,M,B)
- Can fine-tune this:
 - Workers3(S,N,L,H)
 - Departments(D,M,B,L)

Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.