
Robotic Pick-and-Place of Partially Visible and Novel Objects

by

Marcus Gualtieri

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Khoury College of Computer Sciences

of

Northeastern University

in

Boston, Massachusetts

Committee in charge:

Associate Professor Robert Platt, Chair
Assistant Professor Lawson Wong

Assistant Professor Christopher Amato
Associate Professor Kris Hauser
Assistant Professor David Held

Summer 2021

1

Abstract

Robotic Pick-and-Place of Partially Visible and Novel Objects

by

Marcus Gualtieri

Doctor of Philosophy in Computer Science

Northeastern University, Boston, Massachusetts

Associate Professor Robert Platt, Chair

If robots are to be capable of performing tasks in uncontrolled, natural environments,
they must be able to handle objects they have never seen before, i.e., novel objects.
We study the problem of grasping a partially visible, novel object and placing it in
a desired way, e.g., placing a bottle upright onto a coaster. There are two main ap-
proaches to this problem: policy learning, where a direct mapping from observations
to actions is learned, and modular systems, where a perceptual module predicts the
objects’ geometry and a planning module calculates a sequence of grasps and places
valid for the perceived geometry. We have two contributions. The first relates to
policy learning. We develop efficient mechanisms for sampling six degree-of-freedom
gripper poses. Efficient sampling enables the use of established value-based reinforce-
ment learning algorithms for pick-and-place of novel objects. Our second contribu-
tion relates to modular systems. We show that perceptual uncertainty is relevant to
regrasping performance, and we compare different ways of incorporating perceptual
uncertainty into the regrasp planning cost. Overall, we increase the range of objects
robots can pick-and-place reliably without human intervention. This gets us a step
closer to robots that work outside of factories and laboratories, i.e., in uncontrolled
environments.

i

To Lucia and Sophia.

ii

Contents

Contents ii

I Introduction and Background 1

1 Introduction 2
1.1 Robotic Pick-and-Place . 2
1.2 Thesis Contributions and Outline . 6

2 Regrasping Partially Visible and Novel Objects 9
2.1 The Move-Binary-Effect System . 9
2.2 Static Pick-and-Place Actions . 11
2.3 The Problem of Regrasping a Partially Visible and Novel Object . . . 12

3 Approaches to Related Problems 15
3.1 Pick-and-Place in Fully Observed Environments 15
3.2 Pick-and-Place of Partially Visible and Known Objects 16
3.3 Grasping Novel Objects . 16
3.4 Grasping with Object Shape Uncertainty 17
3.5 Pick-and-Place of Novel Objects . 19
3.6 Pick-and-Place with Uncertainty . 21

II Policy Learning 22

4 Grasp Detection for Discretizing Pick Actions 23
4.1 The Descriptor-Based MDP . 24
4.2 Experiments in Simulation . 31
4.3 Experiments on a Real Robot . 36
4.4 Discussion . 38

iii

5 Hierarchical Spatial Attention 40
5.1 Problem Statement . 41
5.2 Approach . 42
5.3 Application Domains . 49
5.4 Discussion . 67

III Modular Architectures 71

6 Regrasp Planning with Uncertain Object Instance Segmentation
and Shape Completion 72
6.1 Problem Statement . 73
6.2 System Overview . 74
6.3 Regrasp Planning Under Uncertainty 77
6.4 Experiments . 85
6.5 Discussion . 90

IV Conclusion 93

7 Discussion 94
7.1 Takeaways . 94
7.2 Opportunities for Future Research . 96

A Reinforcement Learning 98
A.1 Markov Decision Processes . 98
A.2 Policies . 99
A.3 Algorithms . 100
A.4 Beyond Value Learning . 103
A.5 Further Reading . 105

B Additional Data for Chapter 4 106
B.1 Pick Descriptor . 106

C Additional Data for Chapter 6 109
C.1 System Overview . 109
C.2 Regrasp Planning Under Uncertainty 110
C.3 Experiments . 112

Bibliography 115

iv

Acknowledgments

I had a memorable experience as a PhD student at Northeastern, due to unique
opportunities and challenges. I would not have made it without the support from an
extraordinary group of people.

My adviser, Robert Platt, provided suggestions critical to this research, includ-
ing the use of reinforcement learning for pick-and-place and the use of a neural
network to predict probability of grasp success in regrasp planning, which led to the
SP approach. I am grateful for his flexibility, which was useful for both pursuing
my own interests as well as for overcoming the practical challenges induced by a
global pandemic. Lawson Wong, Christopher Amato, Kris Hauser, and David Held
also provided helpful feedback relating to the shape completion project and to the
dissertation.

Many coworkers come to mind. Andreas ten Pas helped me get started by teach-
ing me how to use the Baxter robot and by taking me into his grasp pose detection
work. Andreas’ suggestions are behind every paper of mine that ended up begin
any good. He was there to help, from beginning to end. Abraham Shultz was the
foundation of the scooter project. He drove Andreas and myself back and forth to
the Lowell train station on the days we came to assist, and he acquainted us with the
various dining options near UMass Lowell. Mordechai Rynderman traveled with me
to Houston in the summer of 2015 to implement novel-object grasping on Robonaut
2, and Allison Thackston taught us how to use that robot. Yuchen Xiao provided
feedback on some of my papers, and we had a memorable trip to Brisbane, Aus-
tralia for ICRA 2018. Other coworkers, including Di Sun, Swagatika Panda, Ulrich
Viereck, Matthew Corsaro, Colin Kohler, Dian Wang, Girik Malik, and Ojdrej Biza,
provided helpful discussion and advice.

I thank Hsueh-Cheng Wang, George Konidaris, and Li Yang Ku for hosting or
recommending me to talk at their respective research groups. Communication with
several others, including Kevin Eckenhoff, Benjamin Burchfiel, Dimitris Kanoulas,
Barrett Ames, Jacob Varley, Chen-Lung Lu, John Oberlin, Nakul Gopalan, Jeffrey
Mahler, Michael Laskey, Takeshi Takahashi, Michael Lanighan, Khoshrav Doctor,
Karthik Desingh, Zhen Zeng, Jay Wong, Peter Pastor, Dieter Fox, Stan Birchfield,
Philip Strawser, and Julia Badger, was helpful and memorable.

Most importantly, I thank my parents, Mei-Chun Chen, Shyh-Jye Su, Mary
Gualtieri, and Robert Gualtieri, for their support and patience, and Hui-Wen Su,
without whom, I would have neither started nor finished.

1

Part I

Introduction and Background

Regrasping must be performed whenever a robot’s grasp of an object is
not compatible with the task it must perform.

Tournassoud, Lozano-Pérez, and Mazer in Regrasping

2

Chapter 1

Introduction

1.1 Robotic Pick-and-Place

The problem of robotic pick-and-place is controlling a manipulator to grasp an object
and place it down in a task-specific way [62]. For example, placing a bottle upright
onto a coaster. In this thesis, we are concerned with a couple of issues that arise
with this problem in a realistic setting. First, objects are only partially observed by
the robot’s visual sensors. This is in part due to how the sensor discretizes the world
into pixels and in part due to self occlusion or occlusion by other objects. Partial
visibility makes it difficult to plan robot actions which lead to grasping the object
rigidly and placing the object into its desired configuration. For instance, when a
classical pick-and-place planner was used with a single view of the scene, a plan
was found only 10.0% of the time (versus 95.7% if the geometry is fully observed)
for a bin packing task (Table 6.1 in Chapter 6). One solution is to match a model
of the objects to the perceived sensor data and then execute precomputed grasps
and places, as in [110]. This, however, is not an option if the objects in the scene
are drawn from an infinite or unknown set. This is the second issue considered in
this thesis, called novel objects. Models of the objects are not available in some
applications of practical interest, such as warehousing, exploration, or housekeeping,
where it is impossible to know what objects will be manipulated ahead of time.

1.1.1 Practical applications

Novel objects are encountered in uncontrolled, natural environments, i.e., environ-
ments not highly engineered to enhance the performance of the robot. For example,
uncontrolled environments include households, warehouses, disaster zones, space,
and sea. Since an exact description of these environments cannot be obtained prior

CHAPTER 1. INTRODUCTION 3

to robot activity, the robot must demonstrate the capability to generalize to novel
situations.

A system was developed in our lab for grasping novel household objects for per-
sons with mobility disorders (Figure 1.1) [19]. The operator indicates which object
to grasp using a laser pointer. The robot then retrieves the object or indicates to
the operator that the object is out of reach. Later, the system was extended to place
objects in a location designated with the laser pointer [114]. For this application, it
is impossible to know ahead of time what objects the user would like to manipulate.

Figure 1.1: Mobile grasping system to assist with activities of daily living [19].

Other applications in uncontrolled environments include litter removal [129] and
warehousing, most notably the Amazon picking challenge (APC) [13, 29, 131, 77].
These applications remain, at the time of this writing, research projects rather than
products because the systems have not been demonstrated to be robust to manipu-
lating a vast set of novel objects, especially when the objects are presented in tight
spaces with limited visibility.

1.1.2 Approaches overview

There are four fundamentally different ways to approach the problem of pick-and-
place of partially visible, novel objects: modular architectures, policy learning, belief
space planning, and active sensing. We do not argue which one is best; indeed, it
could be that a combination of these approaches is ultimately adopted. Instead, the
merits and disadvantages of each approach are briefly explained.

CHAPTER 1. INTRODUCTION 4

Modular architectures

A modular or pipelined system is composed of separate state estimation and control
components (Figure 1.2). These components have evolved mostly independently.
On the state estimation side, recent advances in deep learning have enabled accu-
rate processing of image, point, and depth data into object segments (e.g., [28]),
classifications (e.g., [47]), and completed shapes (e.g., [124]). But these perceptual
components were not designed with planning in mind. On the planning side, efficient
algorithms were given for regrasping a single object to get it into a goal pose [109],
and manipulation planning extended this to multiple, movable objects [2]. But all
of these planners assume complete and uniformly correct object models.

State Estimation
(Perception)

Control
(Planning)

Sensor Data Action

Figure 1.2: Modular architecture.

In special cases, such as linear quadratic systems, separately designed perception
and planning components is optimal ([6] p. 200). But this is not the case in general.
For example, consider placing a bottle upright onto a coaster. Suppose the bottom
of the bottle is not visible to the robot’s sensors, e.g., it is either self-occluded or
occluded by another object. In this case, the perceptual component can only guess
the height of the bottle. If the planner assumes the provided height is correct, it could
decide to grasp the bottle near the bottom and position it just above the coaster.
If the bottle is slightly shorter than guessed, the grasp will fail, and if the bottle is
slightly longer than guessed, the place will be in collision with the coaster. Taking
uncertainty into account, the planner would grasp a known part of the bottle and
place it slightly higher than the estimated bottle height, to avoid the possibility of
these failures. On the other hand, the way uncertainty is represented to the planner
has implications on planning efficiency. For example, if the bottle is represented
by a large, non-parametric distribution over shapes, it will take the planner a long
time to consider all possible worlds in order to come up with a solution that is most
likely to succeed. Thus, when designing a pick-and-place solution using a modular
architecture, it is important for the planning component to be aware of the perceptual
uncertainty inevitably present, and it is important for the perceptual component to
represent the uncertainty in a way enabling efficient planning.

CHAPTER 1. INTRODUCTION 5

Policy learning

Another approach is to dispense with separate perception and planning components
and use reinforcement learning (RL) to learn a policy – a function mapping observa-
tions (e.g., sensor data) to actions (e.g., grasps and places) that are likely to succeed
(i.e., yield high sum of future rewards). This avoids the issues associated with sepa-
rately designed perception and control components. Some examples of this approach
applied to robotic manipulation include [55, 54, 20, 22, 88, 23, 115].

Policy
Sensor Data Action

Figure 1.3: Policy architecture.

While it is convenient from an implementation point of view to have a single
algorithm and a single component that learns robotic pick-and-place, this approach
has a few drawbacks. Training is time-consuming, and, at the end, performance is
often suboptimal, even for simple tasks (e.g., for placing mugs upright onto a shelf, a
pipelined approach [67] outperforms a policy learning approach [20]). Furthermore,
these systems are brittle in the sense that small variations to the environment in
which they were trained can result in completely unsuccessful behavior [49].

Belief space planning

Another approach to combining planning and perception has been to plan in belief
space – the space of probability distributions over the current state [37]. While
this is a principled approach to accounting for partial observability, there are still
a couple of important drawbacks. First, many of these methods require a detailed
description of the observation and state transition models of the system, which can
be very difficult to obtain (e.g., [38, 125, 17]). Second, planning takes place in the
space of probability distributions over states, which is continuous and, for practical
problems, high dimensional. For these reasons, this approach has been confined to
problems with few dimensions or other simplifying structure.

CHAPTER 1. INTRODUCTION 6

Active sensing

Another option is to allow the robot to control the position of its sensor in order to
get additional views of the scene. This has been shown to be helpful for increasing
the grasp grasp success rate [40, 21, 25, 76], so we expect it would also be helpful for
pick-and-place. A couple of issues encountered in this scenario include (i) matching
the views together requires precise calibration of the sensor’s pose relative to some
fixed frame and (ii) it may not be possible for the robot to reach a desired viewing
position, e.g., if the objects are tightly packed in a shelf, they cannot be viewed from
behind, and (iii) it could be more time-consuming to move the sensor to get more
views than applying other methods.

1.2 Thesis Contributions and Outline

1.2.1 Contributions

Generally speaking, the contribution is to enable more difficult instances pick-and-
place of partially visible and novel objects than was previously possible. As this study
began, much success had been seen with novel-object grasping, starting with Saxena
et al.’s work in 2008 [95]. At this point, grasps were being picked from dense clutter
at a success rate around 90% [21]. But novel-object pick-and-place is a non-trivial
step up in complexity from novel-object grasping. First, pick-and-place has temporal
dependencies: the way the object is grasped influences how or even if it is possible
to place the object into a goal configuration. For instance, if a bottle is grasped so
the hand is coming in from the bottom, it cannot be placed upright onto a coaster,
due to the hand colliding with the coaster. Second, pick-and-place forces us to think
about sampling gripper poses in a more general, task-independent way. Geometric
heuristics were useful for sampling grasp candidates [85, 86], which were then encoded
and passed into a machine learning tool for success/failure classification. But, when
it comes to placing, any particular set of heuristics for sampling hand poses may
fail, depending what the placement surface is and how the object is grasped. After
Jiang et al. [35, 34], who considered novel-object placing without consideration to
how grasps are generated, we were amongst the first to systematically investigate
pick-and-place of novel objects. Specifically, our contributions are as follows:

• Reduced pick-and-place action sampling complexity. The space of 6-
DoF, continuous, pick-and-place actions is too large to evaluate densely by
uniform sampling. Two ways to reduce sampling complexity include relying

CHAPTER 1. INTRODUCTION 7

on grasp detection to discretize grasp choices (Chapter 4) [20] and learning to
constrain the space of samples (Chapter 5) [22, 23].

• Extended modular systems to account for perceptual uncertainty
for pick-and-place, and compared different representations of uncer-
tainty. We show that, with minimal modifications, existing perceptual compo-
nents for object instance segmentation and shape completion can predict their
own uncertainty. Additionally, we show how this can be used as a planning
cost in existing pick-and-place planners. We compare four different ways of
representing perceptual uncertainty (Chapter 6) [24].

1.2.2 Outline

• Part I. The rest of Part I is background. In Chapter 2, the problem of pick-
and-place and regrasping of partially visible, novel objects is introduced, along
with our assumptions. In Chapter 3, an overview of approaches to related
problems is given.

• Part II. In Part II, two policy learning approaches to the pick-and-place prob-
lem are detailed. In both cases, a function assigning values to every action from
every estimated world state is learned, and then the maximum valued feasible
action from the current state is taken. The key issue that had not previously
been addressed satisfactorily is the size of the action space. If the action space
is infinite and high dimensional, it is not possible to evaluate all actions. In
Chapter 4, grasp detection is used to discretize the choice of pick actions [20].
This limits grasp choices to a manageable set, but it also reveals a problem
with the grasp detector. The grasp detector relies on geometric heuristics to
sample grasp choices, and these heuristics cannot be extended to placing, which
is somewhat task-specific. So in Chapter 5, the system learns to constrain the
space in which grasps and places are sampled through a spatial hierarchy [22,
23].

• Part III. A modular approach to the pick-and-place problem is described in
Chapter 6. With this approach, deep neural networks are used to segment
object instances from sensor data and to predict their complete shapes [24].
After this, classical geometric planning algorithms are applied to plan the pick-
and-place actions. As noted in Section 1.1.2, perceptual uncertainty can be
an issue with this type of approach. This problem is addressed by having
the perceptual modules estimate their own uncertainty and by incorporating
this uncertainty as a planning cost. We compare four different cost functions

CHAPTER 1. INTRODUCTION 8

corresponding to different ways of representing uncertainty in object instance
segmentation and shape completion.

• Part IV. In Chapter 7, limitations of the current approaches are described,
key lessons learned are discussed, and some ideas for future research are given.

Publications completed through the course of this PhD but not included in this
thesis are related to grasping novel objects [21, 84], active sensing for grasping [25],
assistive grasping [19], and a deictic representation for policy learning [88].

9

Chapter 2

Regrasping Partially Visible and
Novel Objects

In this chapter, we describe the problem addressed in this thesis. In short, the
problem is to find a sequence of grasps and places which results in placing an object
into a goal pose. Tournassoud et al. give an efficient solution to this problem
when the environment is fully observed [109]. However, in reality, we are faced with
limitations in sensing, and we do not a priori know the objects’ locations and shapes.
This complicates the problem, as we can no longer guarantee a particular pick-and-
place sequence will move an object to a goal. Instead, we must content ourselves
with the probability a pick-and-place sequence solves the problem.

We start by defining an environment consisting of a robotic manipulator and
partially visible, novel objects. To simplify planning, we aim for actions which either
fix an object in the gripper or place an object stably. We then describe the regrasping
problem, of which pick-and-place is a special case.

2.1 The Move-Binary-Effect System

The problem of regrasping a partially visible, novel object is defined in terms of a
move-binary-effect system (cf. move-effect system [88, 23]). A visual description of
this system is given in Figure 2.1.

Definition 2.1 (Move-binary-effect system). A move-binary-effect system consists
of one or more objects, one or more depth sensors, and a robotic manipulator, each
situated in 3D Euclidean space. Objects are rigid masses O1, . . . , Onobj

⊆ R3, sampled
from an unknown probability distribution. The depth sensors acquire a point cloud
C ∈ Rn×3, consisting of points on object surfaces, each having an unoccluded line to

CHAPTER 2. REGRASPING PARTIALLY VISIBLE, NOVEL OBJECTS 10

a depth sensor. The manipulator is equipped with an effector with status empty or
holding. The action of the robot is to move the effector to a target pose Teff ∈ SE (3),
followed by an effector operation, either open or close. At each step, the robot
acquires a point cloud, observes its effector status, and takes an action.

Figure 2.1: Abstract illustration of a move-binary-effect system.

For example, objects may include a table and several bottles and coasters. Depth
sensors could be a combination of lidar, stereo, and structured-light sensors, carefully
calibrated so point clouds from each sensor are combined into a common reference
frame. The manipulator could be a 6- or 7-degree-of-freedom arm with a combination
of prismatic and revolute joints. The effector could be a 2- or 3-finger gripper or a
vacuum gripper.

We assume the following about the move-binary-effect system:

• The manipulator, effector, and object geometries do not intersect. In particu-
lar, normal forces prevent intersection when two bodies are in contact.

• Objects are rigid masses. This enables use of existing grasp and placement
stability analysis. This analysis is difficult with deformable objects [94].

• Point clouds sample points on object surfaces, i.e., sensors do not give false
or noisy readings. This is to focus on uncertainty in object shape rather than
hardware-specific sensing uncertainty.

• Objects are uniformly dense and the coefficient of friction between objects and
the effector is known. This is to focus on uncertainty in object shape rather
than uncertainty in other object properties.

• If there are no collisions, the manipulator can be moved precisely to a target
configuration. This is to focus on uncertainty in object shape rather than
uncertainty in effector pose.

CHAPTER 2. REGRASPING PARTIALLY VISIBLE, NOVEL OBJECTS 11

On the other hand, we make minimal assumptions about the objects’ shapes.
Objects are randomly sampled from an unknown and possibly infinite distribution.
Sometimes, the objects’ categories are given, where “category” ambiguously describes
the distribution of objects by WordNet words (e.g., “mug” and “bottle”) [69]. In this
thesis, the robot never has the complete geometries of the objects it will manipulate.
This arises in several, practical settings, such as household chores [19, 114] and
warehousing [13, 29, 131, 77]. Thus, solutions which match a database object to
sensor data (e.g., [61, 109, 8, 110]) are not directly applicable to this problem.

2.2 Static Pick-and-Place Actions

Like others before us (e.g., [109, 2, 1, 80, 101, 113]), we avoid dynamic actions, such
as pushing, throwing, or rotating the object in the effector. In particular, we seek
close actions which fix an object rigidly in the gripper and open actions which place
an object at rest. This is to simplify planning: when applying a dynamic action to
an unknown object, the outcome is difficult to model. While Yu et al. study pushing
a single object of unknown shape [127], many pushes are required before outcomes
are predictable, and having multiple unknown objects presents additional challenges.
Besides, we want to focus on pick-and-place of partially visible, novel objects in the
simplest setting possible.

Definition 2.2 (Rigid grasp). Let T eff
O ∈ SE (3) be the pose of an object O ⊆ R3

relative to the effector pose Teff ∈ SE (3). Given a move-binary-effect system (Defi-
nition 2.1), an effector close operation forms a rigid grasp or a stable grasp on an
object O if and only if T eff

O remains constant from the beginning of the close operation
until the beginning of the next effector open operation.

Definition 2.3 (Stable placement). Let TO ∈ SE (3) be the pose of an object O ⊆ R3

relative to a fixed frame, i.e., a reference frame not attached to the robot or any of
the objects. Given a move-binary-effect system (Definition 2.1) where the effector is
holding O, an effector open operation forms a stable placement or a stable place if
and only if TO remains constant from the beginning of the open operation until after
the open operation completes and contact is again made between the robot and O.

In the sequel, it will be useful to have efficiently verifiable sufficient conditions for
rigid grasps and stable placements. When the effector is a parallel-jaw gripper, we
assume an antipodal grasp (Definition 2.4) is sufficient to form a rigid grasp. Murray
et al. provide technical justifications for this assumption ([79] p. 223). When
an object’s supporting surface is a fixed plane, horizontal with respect to gravity,

CHAPTER 2. REGRASPING PARTIALLY VISIBLE, NOVEL OBJECTS 12

Tournassoud et al. give necessary and sufficient conditions for stable placements
(Definition 2.5) [109].

Definition 2.4 (Antipodal grasp, adapted from [79]). A parallel-jaw gripper forms
an antipodal grasp on an object if and only if the line connecting the contact points
lies inside both friction cones.

Definition 2.5 (Stable placement on a horizontal plane, adapted from [109]). An
object is placed stably on a horizontal (with respect to gravity) plane if and only if a
face of the convex hull of the object is in contact with the plane and the ray from the
object’s center of mass in the direction of gravity intersects the interior of the face.

Limiting ourselves to static pick-and-place actions will make the problem simpler,
as the effects of actions will be easier to model. For the case of a parallel-jaw grip-
per and placements on a horizontal plane, we have efficiently computable sufficient
conditions for static pick-and-place actions.

2.3 The Problem of Regrasping a Partially

Visible and Novel Object

We now define the problem studied in this thesis:

Definition 2.6 (Regrasping a partially visible and novel object). Given a move-
binary-effect system (Definition 2.1), a point cloud C ∈ Rn×3, points on a target
object C̄ ⊆ C, and a goal transform T ∈ SE (3), find a sequence of actions where,
with maximum probability, every close forms a rigid grasp on the target object and
every open forms a stable placement on the target object, and if so, C̄ is transformed
by T .

Unlike regrasping in a fully observed environment, which requires an object to be
placed into a goal pose [109], we maximize the probability the object is placed into
a goal pose. This is because, with partially visible, novel objects, it is impossible to
guarantee a particular sequence of actions will displace the object to its goal, due to
unexpected slippages in the hand and unstable placements.

When only one pick-and-place is allowed, Definition 2.6 reduces to a pick-and-
place problem (Definition 2.7) [62]. We consider regrasping as it is not always possible
to place the object into its goal with a single pick-and-place. Regrasps are necessary
when the set of grasps reachable at the object’s start pose does not intersect the set
of grasps reachable at the object’s goal pose [109]. Besides, with partially visible,

CHAPTER 2. REGRASPING PARTIALLY VISIBLE, NOVEL OBJECTS 13

novel objects, it is possible a plan with regrasps is more likely to succeed than a plan
with just two steps. For example, if the only grasp reachable at both start and goal
poses is likely unstable, it may be preferable to choose a plan with additional steps.

Definition 2.7 (Pick-and-place of a partially visible and novel object). The regrasp-
ing problem (Definition 2.6) constrained to a single close followed by a single open
is a pick-and-place problem of a partially visible, novel object.

2.3.1 Example

Suppose the task is to place a blue block long-end-up at the end of a line, as in
Figure 2.2. At the block’s initial pose, the only collision-free grasps are long-wise
along the block, which are incompatible with the goal placement. Thus, the block
is grasped long-wise, placed at a temporary (i.e., non-goal) location, regrasped, and
then placed at the goal.

Figure 2.2: An example solution to the regrasping problem.

2.3.2 Extensions

The problem of Definition 2.6 is simplified for clarity of exposition. In the sequel,
we encounter practical problems that are slightly more general.

Suppose the target object and goal pose are not given explicitly. For example,
for the task “place a bottle upright onto a coaster”, we only know the target object
belongs to the “bottle” category and the goal pose satisfies the property “upright onto
a coaster”. The task specification is method-dependent: for modular architectures,
separate components segment the object and plan goal placements; for policy-based
methods, the task is specified via a reward function.

We also consider the case of multiple target objects, each with multiple goals,
where any object-goal pair is a solution. This generalization has implications on
system performance: this additional flexibility expands the space of regrasp plans and
thus enables us to better maximize the probability the plan succeeds. For example, if

CHAPTER 2. REGRASPING PARTIALLY VISIBLE, NOVEL OBJECTS 14

the task is to place any bottle upright onto any coaster, we can choose to manipulate
the bottle most visible in the point cloud.

2.3.3 The rearrangement problem

A more general problem is rearrangement planning or manipulation planning, where
goals are specified for a set of target objects [120, 2, 1, 82, 81, 48]. This problem is
more complex than regrasping since, as the robot completes the task, placed objects
become obstacles [120]. The order of object placements is thus significant. For this
thesis, we only consider rearrangement problems where the order of object place-
ments is not important. In this case, the rearrangement problem breaks down into
a sequence of independent regrasping problems. Krontiris and Bekris use pick-and-
place as a component of a rearrangement planner [48].

15

Chapter 3

Approaches to Related Problems

In this chapter, we review approaches to problems related to pick-and-place of par-
tially visible, novel objects. First is pick-and-place with full information. This is
relevant because, as will be seen in Chapter 6, any of these solutions can be used
for the planning component in a modular architecture. Second is pick-and-place of
partially visible, known objects. Relaxing the assumption of full information gets us
closer to the problem of interest. However, these solutions are not directly applicable
to the novel-object case. Third is grasping novel objects and grasping objects with
shape uncertainty. Since grasping is the first step in pick-and-place, ideas in this area
are carefully carried over to pick-and-place (Chapters 4 and 6). Lastly, we review
the most related topics – pick-and-place of novel objects and pick-and-place under
uncertainty – to which we contribute.

3.1 Pick-and-Place in Fully Observed

Environments

The structure of the regrasping problem was first explained by Tournassoud et al.
[109]. There is a discrete search component, for sequencing grasp-place combinations,
and a continuous search component, for connecting grasp-place combinations with
a trajectory (i.e., a motion plan). Alami et al. generalized regrasping to multiple,
movable objects and coined the term manipulation planning [2]. Wilfong showed
this problem is PSPACE-hard [120]. Later, Alami et al. considered different cost
functions for the discrete search phase, including path length and number of grasp
changes [1]. Nielsen and Kavraki described a two-level planner for manipulation
planning that interleaves execution between discrete search and continuous search
levels [80]. This way, if a probabilistically complete motion planner gets stuck, the

CHAPTER 3. APPROACHES TO RELATED PROBLEMS 16

discrete search is able to continue. Stilman et al. considered a subset of manipulation
planning problems called monotone problems, i.e., if a solution exists, it can be found
by moving each object at most once [101]. The complexity of monotone problems,
with the goal specified for one object, was estimated to be O (m!(pe)m), where m is
the number of objects, p is the number of free placements, and e is the time required
for motion planning [101]. Kaelbling and Lozano-Pérez proposed a hierarchical algo-
rithm which integrates symbolic planning (with a hierarchical PDDL-like language)
with low level pick-and-place actions [39]. This enables completion of high level, long
term tasks such as, “Clean an object and put it into the storage room.” Wan et al.
employed a three-level planner, where the high-level planner provides a list of goal
poses for the objects, the middle-level planner is a regrasp planner, and the low-level
planner is a motion planner [113].

In Chapter 6, a regrasp planner like Tournassoud et al.’s is adapted with a cost
function that accounts for perceptual uncertainty. But any of these methods could
be applied in the same way.

3.2 Pick-and-Place of Partially Visible and

Known Objects

Others have considered pick-and-place of imperfectly perceived objects with known
shapes. One approach is to match object models to sensor data, as in Tremblay et al.
[110]. However, model matching fails when there are significant differences between
the perceived object and the model, as with novel objects [67].

3.3 Grasping Novel Objects

In the past decade, much work has been done on novel-object grasping. There are
roughly four classes of approaches. The first class formulates the problem as binary
classification: given a gripper pose, encoded by the point cloud in the vicinity of the
gripper (or point features), label this as a successful grasp or not [95, 53, 21, 87, 65,
84, 59, 78]. These approaches have a grasp candidate sampling step followed by a
classification step. The classification step relies on machine learning to generalize to
novel objects. The second class of approaches aims to reduce computation time by
avoiding the grasp candidate sampling step. Given an image or a point cloud, directly
predict (or regress) gripper poses that are likely to result in a grasp [36, 75, 130].
The third class of approaches views grasping as a sequential, closed-loop problem,
where images are taken and the grasp pose is adjusted as the gripper moves toward

CHAPTER 3. APPROACHES TO RELATED PROBLEMS 17

the objects, and is typically solved with reinforcement learning (RL) [55, 112, 41, 91].
This has the advantage of reactivity: if objects move while the gripper approaches,
the gripper can move to compensate. The fourth class of approaches predicts the
complete shape of an object and then plans grasps using the completed shape [111,
64, 63]. Shape completion is performed using a deep neural network, where the
input and output are 3D voxel grids. Shape completion enables the use of grasp
planning algorithms, which optimize for grasp stability given the input shape. Shape
completion also enables the use of collision checking, to avoid collisions between the
robot and (seen or unseen) object parts.

Since grasping is the first step in pick-and-place, methods for novel-object grasp-
ing inspire methods for novel-object pick-and-place. The third and fourth approach
classes are particularly suitable for pick-and-place planning, as they immediately
extend to acting over long time horizons. In Chapters 4 and 5, RL is applied to
novel-object pick-and-place; in Chapter 6, shape completion is used.

3.4 Grasping with Object Shape Uncertainty

When an object is partially visible, the unobserved shape of the object can be thought
of as being randomly distributed. In this case, the goal is to choose a grasp that
is likely to be stable, no matter what the shape of the object turns out to be.
Two approach classes are: (i) evaluating grasp stability over a Monte Carlo (MC)
sampling of object shapes and (ii) evaluating a probabilistic model of grasp stability.
For approach (i), an explicit distribution over shapes is not required: all that is
needed is a mechanism for sampling shapes. For approach (ii), a simplified model of
the distribution (e.g., a mixture of Gaussians) is fit to prior experience. If the number
of MC samples is large, approach (i) tends to be more computationally expensive
but more accurate than approach (ii) [66].

Christopoulos and Schrater may have been the first to consider grasping under
object shape uncertainty [9]. They considered grasping planar objects, represented
as closed, cubic splines. Probability of grasp success is estimated by evaluating force
closure over a sample of gripper poses (with normally distributed error) and object
shapes (from a given database of objects of the same category as the target object).
Next, Kehoe et al. considered planar grasping with uncertain object shape, but
uncertainty is represented as normally distributed polygonal vertices and center of
mass with given means and variances [44, 43]. As with Christopoulos’s work, MC
sampling is used to estimate the probability of grasp success: the key difference is to
consider a certain class of slip grasps which is more general than static force-closure
analysis.

CHAPTER 3. APPROACHES TO RELATED PROBLEMS 18

Soon afterward, Gaussian process implicit surfaces (GPISs) were proposed as
a representation of object shape uncertainty [11, 12, 66, 51, 58]. GPISs combine
multiple observations of the object’s signed distance function (SDF) into a Gaussian
process – a normal distribution over SDFs. Mahler et al. use GPISs for planar
grasping of uncertain object shapes [66]. They formulate the problem as a non-
convex optimization problem, Equations 3.1 to 3.4, where g is a grasp target, f is
the GPIS, P̃F is an estimation of the probability of force closure (given mean GPIS
shape and Gaussian uncertainty in gripper pose), c1 and c2 are the contact points
(given g and the mean shape), σ2(·) is the variance of the GPIS at a query point,
n1 and n2 are the surface normals at the contact points, v is the closing direction
(given g), and λ, α, β > 0 are given constants. Intuitively, the objective is to find
a grasp maximizing probability of force closure and minimizing uncertainty at the
contact points, and the constraints require grasps to be antipodal on the mean object
shape. This is approximately solved using sequential convex programming with some
number of random start grasps. They compare to baselines that do not account for
the variance in object shape and show that uncertainty in object shape is important.
Additionally, they compare to an MC method which has the best performance but
the highest computational cost. Laskey et al. improve the efficiency of MC sampling
from the GPIS by employing multi-armed bandit techniques to reduce the number
of evaluations for grasps that are unlikely to succeed [51]. Li et al. use GPIS for
closed-loop grasping of 3D objects; in their formulation, only variance at the grasp’s
contact points is considered in order to avoid the computational overhead of MC
sampling [58].

maximize
g∈G

P̃F (g, f)− λ
(
σ2(c1) + σ2(c2)

)
(3.1)

subject to: ‖n1 + n2‖2
2 < α (3.2)

nT1 v > β‖v‖2
2 (3.3)

− nT2 v > β‖v‖2
2 (3.4)

Later, advances in deep learning influenced grasping under shape uncertainty.
Lundell et al. used a deep 3D convolutional neural network (CNN) to predict missing
voxels, i.e., for shape completion. Uncertainty is represented with dropout – an MC
sample is drawn by randomly dropping out nodes in the network [100]. Lundell et al.
concluded that MC sampling improves grasp robustness, especially on novel objects.

In Chapter 6, both MC and probabilistic modeling approaches are extended to
pick-and-place.

CHAPTER 3. APPROACHES TO RELATED PROBLEMS 19

3.5 Pick-and-Place of Novel Objects

A few projects have considered novel-object pick-and-place. Both policy learning and
modular approaches have been explored. All approaches have a machine learning
component enabling generalization to new objects. Our contribution was (a) to
enable efficient action sampling for value based policy learning, (b) to explicitly
maximize the probability of successfully executing a regrasp plan, and (c) to compare
different representations of perceptual uncertainty.

3.5.1 Policy learning approaches

Finn et al. demonstrated a policy learning approach to placing a novel object into
a novel container after just one demonstration [14]. Their system is trained with a
loss function designed to facilitate learning of new tasks with few demonstrations.
However, their system assumes the object is already grasped.

We used deep RL to address 6-DoF pick-and-place of novel objects within a
given category [20, 22, 23]. A neural network estimates a value – the expected sum
of future rewards – for a query grasp or place. The robot moves to the highest-valued,
reachable grasp or place found. To handle the large space of grasps and places, the
action choices can be limited by a grasp detector [20] or hierarchical sampling [22,
23]. By managing the large action space, these methods are efficient at runtime.
However, they require long training times. Details are in Chapters 4 and 5.

Recently, Wang et al. proposed a policy learning system similar to our hierar-
chical sampling approach [115]. They demonstrated building structures with blocks
and showed that it compares favorably to an actor-critic method. Berscheid et al.
demonstrated policy learning of 4-DoF pick-and-place [5]. The most important as-
pect of this work is that the placement goal is specified by an image of the desired
placement. Their system predicts separate values for (i) the grasp, without knowing
the place (ii) the place, without knowing the grasp, and (iii) the grasp-place com-
bination. This enables efficient in-plane sampling of grasp-place combinations, as
grasps or places with low, independent values can be removed from consideration.

3.5.2 Modular architectures

Jiang et al. were one of the earliest teams to use machine learning to address novel-
object pick-and-place [35, 34]. Their approach is similar to many of the early novel-
object grasping approaches in that there is a sampling step followed by a prediction
step. The focus is on localizing placements that are likely to be stable and satisfy
human preference. However, their experiments assume known grasps on the objects.

CHAPTER 3. APPROACHES TO RELATED PROBLEMS 20

Manuelli et al. proposed a modular system for pick-and-place of novel ob-
jects within a given category [67]. Their system, shown in Figure 3.1, is a 4-
component pipeline: (a) object instance segmentation, (b) 3D key point detection, (c)
optimization-based planning for computing object displacement given task-specific
costs and constraints, and (d) a grasp detector and execution of the object dis-
placement. The focus of the project was the (b) and (c) components. Objects are
minimally represented with key points, which are 3D points indicating task-relevant
object parts, e.g., the top, bottom, and handle of a mug. An integral network [102]
is used to localize key points in the RGBD image of an object instance. The pick-
and-place task is specified by costs and constraints on the key points. For example,
a point in the center of a mug’s handle is constrained to be aligned with a peg on the
rack. Their robot reliably placed shoes on a shelf and mugs on a rack. Later, Gao
and Tedrake augmented this line of research with shape completion, which proved
to be useful for avoiding collisions when planning arm motions with the held object
[16]. However, this system does not explicitly consider the probability of successfully
executing a pick-and-place.

Figure 3.1: Diagram of Manuelli et al.’s system, called kPAM, adapted from [67].

Another modular approach was proposed by Mitash et al. [70]. They have (a)
grasp detection (for either a vacuum or a parallel-jaw gripper), (b) regrasp planning
with a single hand-off, and (c) additional views if regrasp planning fails (Figure 3.2).
Objects are conservatively represented by both observed and occluded points. Re-
grasp planning decides the grasp, hand-off, and place. If the object is too large to
be placed into the goal configuration (e.g., the occluded points make the object too
large to fit into a narrow slot) additional views are taken until a plan is found. They
concluded that (i) regrasp planning is important for avoiding errors from unnecessary
views and hand-offs and (ii) including the unobserved region as part of the object
helps avoid collisions when placing. While this system attempts to find robust place-

CHAPTER 3. APPROACHES TO RELATED PROBLEMS 21

ments, it does not consider uncertainty over the entire regrasp sequence and does
not compare different ways of incorporating perceptual uncertainty.

Regrasp
Planning

Additional
Views

Voxel Grid

Voxel Grid

Pick-places Found
Plan?

Yes

No

Figure 3.2: Rough outline of Mitash et al.’s system [70].

To address the limitations Manuelli et al. and Mitash et al.’s systems, we in-
vestigated a modular approach which explicitly reasons about the probability of
successfully executing a regrasp plan, given that perception is uncertain. This sys-
tem perceives the scene using object instance segmentation and shape completion
and incorporates perceptual uncertainty into the regrasp planning cost. Details are
in Chapter 6.

3.6 Pick-and-Place with Uncertainty

Research on pick-and-place with uncertainty has primarily assumed known objects
in unknown poses, e.g., [39, 18, 125]. High-quality policies in these examples exhibit
two types of behavior: (i) taking actions to improve confidence in the observations
and (ii) avoiding actions with uncertain outcomes. A good policy for the case of
uncertain object shapes should also exhibit these behaviors.

22

Part II

Policy Learning

The choice of a point in three-dimensional space may be considered to
be a single-stage process wherein we choose (x, y, z), or a multi-stage
process where we choose first x, then y, and then z.

Richard Bellman in Dynamic Programming

23

Chapter 4

Grasp Detection for Discretizing
Pick Actions

In this chapter, we formulate the problem of pick-and-place of partially visible, novel
objects as a Markov decision process (MDP) and solve it using reinforcement learning
(RL).1 Specifically, the robot learns an action-value function (or Q-function), which
gives, for every observation-action pair, a number indicating the value of the action
for performing the task. For example, if the task is to place a bottle upright onto a
shelf, an action grasping the bottle from the bottom will have a value of 0, since it is
not possible to place the bottle upright with this grasp, and an action grasping the
bottle from the side will receive a value of 1, since this action is useful for completing
the task. The robot learns the Q-function from hundreds of thousands of trial-and-
error experiences in simulation, receiving rewards when a useful action is performed.
After learning the action-value function, the robot’s policy – a function mapping
observations to actions – is to take the highest-valued, kinematically feasible action.

However, there is a critical issue learning a value function for pick-and-place.
Since the action space is continuous, it is necessary to discretize the action choices be-
fore checking their values. Since the action space is high-dimensional, this discretiza-
tion must concentrate on actions that are likely to be useful. While value-learning
approaches like DQN can handle high-dimensional observations, they require a small
number of actions in order for training and execution times to be reasonable [73].

We address this problem by using a grasp detector to produce a discrete sampling
of pick actions which are all likely to be stable grasps. Not all stable grasps, though,
are suitable for the pick-and-place task, as some goal placements are incompatible
with some grasps. (For example, grasps on the bottom of a bottle are not compatible

1See Appendix A for background on MDPs and RL.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 24

with placing the bottle upright.) The Q-function will indicate which of these grasps
are suitable for the task.

Experiments demonstrate that the above approach generalizes well from training
objects to held-out test (i.e., novel) objects and from simulation to the real world.
Moreover, the RL approach consistently outperforms a model-based, shape primitives
baseline which does not use machine learning for generalization. The main takeaway
is that it is possible to automatically learn, from trial and error, a pick-and-place
policy that can handle novel objects heavily occluded by clutter, and that prior
knowledge of grasp detection is helpful to achieve this.

4.1 The Descriptor-Based MDP

In this section, we describe our MDP formulation of the pick-and-place problem.
This MDP represents grasp actions similarly to how they were represented for novel-
object grasping [21, 84]. We then describe how a Q-function is learned for this MDP.
The main point is that grasp actions are discretized with grasp pose detection (GPD)
[21, 84]. This way, the only pick actions available to the robot are those which are
likely to result in stable grasps. After this, it is straightforward to use DQN to learn
the Q-function [73]. We begin by explaining how GPD works.

4.1.1 Grasp pose detection

GPD follows the two steps in Algorithm 4.1 [21, 84]. Step 1 is to randomly sample
gripper poses. The following heuristics are used to improve sample efficiency:

• Randomly sample a point in the cloud C, and set this as the gripper’s position.

• For each sampled point, estimate the surface normal and axes of principle cur-
vature. A method for estimating surface normals is given in [93], and a method
for estimating axes of principle curvature is given in [104, 85]. Set the surface
normal as the gripper’s approach direction (the red arrow in Figure 4.1b), and
set the axis of least curvature as the gripper’s up direction (the green arrow in
Figure 4.1b).

• Move the effector in the approach direction until contact is made with C.

Step 2 is to label these grasp candidates as antipodal or not, given local point
cloud information. In particular, the cloud is transformed into the reference frame
of the gripper, cropped to a predefined cuboid, and projected onto 2D images as

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 25

Algorithm 4.1: Grasp pose detection

Input : A point cloud, C ∈ Rn×3.
Output: A discrete set of gripper poses, G ⊂ SE (3).

1 G← Sample(C) // Sample gripper poses and generate descriptors.

2 G← Classify(G) // Classify candidates as antipodal/not.

shown in Figure 4.1. These images are then fed into a convolutional neural network
(CNN) which predicts the probability the grasp is antipodal (Definition 2.4). The
set of accepted grasps G are those with predicted antipodal probability greater than
a given threshold.

Training data for the grasp classification CNN is generated with either simulated
or real point clouds, where both partial and complete views are available. Using
a partial view of the object, grasp candidates are sampled and their corresponding
descriptors are computed. Using the complete view of the object, the antipodal
conditions in Definition 2.4 are checked to generate ground truth labels.

(a) (b) (c) (d)

Figure 4.1: Descriptor for antipodal classification. (a) The pose of a candidate grasp,
shown as a parallel-jaw gripper in yellow. (b) Images are projections of the points
from these three directions. (c) Top-view height map of the observed points. (d)
Top-view of unit-length surface normals: x, y, and z components correspond to red,
green, blue. In total, 12 height maps are passed into the classification network:
observed points (×1) and surface normals (×3) from 3 directions.

4.1.2 Pick descriptor

Similar to the GPD descriptor of the previous section – used to encode grasps for
antipodal classification – the pick descriptor encodes grasp actions for the RL agent.
Intuitively, the pick descriptor encodes the relative pose between the robot’s gripper
and an object in terms of the observed points in the vicinity of a candidate grasp.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 26

Definition 4.1 (Pick descriptor). Let Trans : SE (3) × Rn×3 → Rn×3 denote the
rigid transformation of a point cloud. Let Crop : R3

>0 × Rn×3 → Rn̄×3, with n̄ ≤ n
and arguments z ∈ R3

>0 and C ∈ Rn×3, denote the function which removes all points
in C besides those in the rectangular volume situated at the origin with length z(1),
width z(2), and height z(3). Let Proj : Rn×3 → Rnx×ny×12 be a function which takes
in a point cloud, estimates a surface normal for each point, and produces 12, nx×ny
images, which are orthographic projections of the point cloud and surface normals
from standard basis directions (Figure 4.2c). Then, given a point cloud C, a gripper
pose T , and volume size z, the pick descriptor is I = Proj (Crop(z,Trans(T−1, C))).2

(a) (b) (c)

Figure 4.2: The pick descriptor. (a) Points are cropped to a fixed rectangular volume
with respect to the gripper’s reference frame. (c) Orthographic projections of the
points around the bottle in (b). The top three images show x, y, and z components
of unit length surface normals, and the bottom three images show height maps. In
total, there are 12, 60× 60 images per descriptor.

Compared to the grasp descriptor of the previous section, the cropped volume of
the pick descriptor (specified by z) is larger. This is to capture information relevant
to placing the object, e.g., object orientation in the gripper. For example, from
Figure 4.2c, it is possible to recognize that the bottle is upside-down in the gripper.
Otherwise, the pick descriptor is the same as the GPD descriptor.

4.1.3 Descriptor-based MDP

We formulate the pick-and-place problem as an MDP, which enables us to use stan-
dard RL algorithms, like DQN [73], to learn a pick-and-place policy. Grasp actions

2See Appendix B for implementations of Trans, Crop, and Proj .

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 27

are discretized using GPD and are represented by pick descriptors. Place actions are
given, fixed gripper poses and are represented by 1-hot vectors.

Definition 4.2 (Descriptor-based MDP). Given a move-binary-effect system (Def-
inition 2.1) and a set of goal poses for a target object {T1, T2, . . . } ⊆ SE (3), a
descriptor-based MDP is an MDP where:

• Actions: The set of actions available at the current time step, t, is
{It,1, It,2, . . . , It,Nt} ∪ {1, 2, . . . ,M}, where {It,1, It,2, . . . , It,Nt} is a finite set of
Nt ∈ {0, 1, . . . } pick descriptors (Definition 4.1) returned by GPD given the
current point cloud Ct ∈ Rnt×3, and where {1, 2, . . . ,M} is a set of integers
corresponding to M given, fixed place poses.

• State: The current state is the last k ∈ {0, 1, 2} actions.

• Transitions: Selecting It,i, where i ∈ {1, 2, . . . , Nt}, moves the gripper to the
pose used to generate It,i and closes the gripper. Selecting j ∈ {1, 2, . . . ,M}
moves the gripper to the corresponding place pose and opens the gripper. Then,
objects move according to the dynamics of the move-binary-effect system (Def-
inition 2.1), and the system acquires a point cloud, Ct+1 ∈ Rnt+1×3. The next
set of pick actions, {It+1,1, It+1,2, . . . , It+1,Nt+1}, is returned by GPD given Ct+1.
The next set of place actions, {1, 2, . . . ,M}, is unchanged.

• Reward: The reward is 1 whenever the pose of the target object is a member
of the set {T1, T2, . . . } and 0 otherwise.

The process terminates after tmax actions, after the target object is placed into a goal
pose {T1, T2, . . . }, or after a grasp or place failure, whichever occurs first.

The objective is for the robot to learn a policy maximizing the expected sum
of future rewards. More specifically, we seek a sequence of actions maximizing the
probability of placing the target object into a goal pose.

The transition probabilities of the descriptor-based MDP are not known explicitly.
However, an exact description of the transition probabilities is not used by our learn-
ing algorithm. We assume a computer simulator of the move-binary-effect system.
This way, the robot can learn what actions to take through trial-and-error experience
without having to incur the cost of real-world trial-and-error learning. While it is
not necessary to explicitly know the transition probabilities of the descriptor-based
MDP, we do simulate the move-binary-effect system.

Transitions in the move-binary-effect system and the descriptor-based MDP ap-
pear stochastic to the robot. This is only because the objects are partially observed.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 28

Thus, it would be straightforward to express the pick-and-place problem as a partially
observable Markov decision process (POMDP) (Appendix A), where state includes
the poses and shapes of the objects, and where observations are pick descriptors.
One way to reduce this POMDP to an equivalent MDP is to store all past obser-
vations and actions in the MDP’s state (Appendix A). Storing the past k actions
approximations this reduction. This is the approach taken here.

Encoding grasps as pick descriptors enables efficient learning in two ways. First,
the descriptor only shows the points in the vicinity of the grasp, and thus hopefully
the robot only sees the object it is grasping. This way, the robot does not need to
learn over all combinations of objects present. Second, the object is represented in
the gripper’s reference frame, i.e., in the reference frame of a grasp that is likely to
be stable, rather than in an arbitrary reference frame. This way, the robot does not
need to learn over arbitrary combinations of object poses. These two features enable
efficient learning in the descriptor-based MDP.

4.1.4 Simulator

Deep RL requires such an enormous amount of experience that it is difficult to
learn control policies on real robotic hardware without spending months or years
in training [54, 55]. As a result, learning in simulation is basically a requirement.
Fortunately, pick-and-place constraints allows us to simplify the simulation. Instead
of simulating arbitrary contact interactions, we only simulate the effects of grasp
and place actions. The former is simulated by evaluating standard grasp quality
metrics, such as the antipodal condition (Definition 2.4). The latter is simulated by
evaluating placement stability (Definition 2.5 for horizontal planes) and by checking
whether or not a goal arrangement is satisfied. These are straight-forward to evaluate
in OpenRAVE [10], the simulator used in the experiments for this chapter.

4.1.5 Action-value function

The Q-function is approximated using the CNN architecture depicted in Figure 4.3.
The input includes an action to evaluate along with the current state. The output is
a scalar, real value estimating the value of that state-action pair. This structure is
slightly different than that used in DQN where the network has a number of outputs
equal to the number of actions [73]. Since the descriptor-based MDP has a variable
number of grasp actions, action must be an input to the network.

The action component of the input is comprised of the pick descriptor (a 60 ×
60 × 12 stacked image as in Figure 4.2c) and the place choice (a 43-element one-
hot vector). When the robot takes a grasp action, the pick descriptor is populated

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 29

Figure 4.3: CNN architecture used to encode the Q-function.

and the place vector is set to zero. When the robot takes a place action, the pick
descriptor is set to zero and the place vector is populated.

The state component of the input is also comprised of a pick descriptor and a
place vector. These parameters encode the recent history of actions taken. After
executing a grasp action, the pick descriptor is set to the previous action and the
place vector is set to zero. After executing a place action, the pick descriptor retains
the selected grasp and the place component is set to the just-executed place, thereby
implicitly encoding the resulting pose of the object following the placement.

Each grasp image (in both action and state input branches) is processed by a CNN
similar to LeNet [52], except there are 100 outputs instead of 10. These outputs,
together with the place vector, are then concatenated and passed into two, 60-output
inner product (IP) layers, each followed by rectifier linear units (ReLUs). After this,
there is one more IP layer to produce the scalar output.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 30

4.1.6 Learning algorithm

The algorithm for learning a Q-function for the descriptor-based MDP is shown in
Algorithm 4.2. This is similar to DQN but with a couple of differences. First, Sarsa
is used instead of Q-learning because the large action branching factor makes the
maxa∈AQ(s, a) in Q-learning expensive to evaluate. Second, instead of running a step
of stochastic gradient descent (SGD) after each experience, nEpisodes of experiences
are collected before labeling the experience replay database using the most recent
neural network weights. Every nEpisodes additional experiences, nIterations of SGD
are run using Caffe [33]. For the experiments in this chapter, the learning algorithm
is run only in simulation; although it could be used to fine-tune the network weights
on the actual hardware.

Algorithm 4.2: Sarsa for the descriptor-based MDP

1 for i← 1, . . . , nTrainingRounds do
2 for j ← 1, . . . , nEpisodes do
3 Choose random object(s) from the training set
4 Place object(s) in a random configuration
5 Sense point cloud C and detect grasps G
6 s← 0
7 a← Pick(s, C,G) // Select grasp using ε-greedy.
8 for t← 1, . . . , tmax do
9 Execute a, run simulator forward, and observe (r, s′)

10 if a is a pick then
11 a′ ← Place(s′) // Select place using ε-greedy.

12 else if a is a temporary place then
13 Sense point cloud C and detect grasps G
14 a′ ← Pick(s′, C,G) // Select grasp using ε-greedy.

15 else if a is a goal place then
16 a′ ← null

17 Add (s, a, r, s′, a′) to database
18 if s′ is terminal then break
19 a← a′; s← s′

20 Prune database if it is larger than maxExperiences
21 Label each database entry (s, a) with r + γQ(s′, a′)
22 Run Caffe for nIterations on database

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 31

4.2 Experiments in Simulation

We performed experiments in simulation to evaluate how well this approach performs
on pick-and-place and regrasping problems with novel objects.3 To do so, we obtained
objects belonging to two different categories for experimentation: a set of 73 bottles
and a set of 75 mugs – both in the form of mesh models from 3DNet [122]. Both
object sets were partitioned into a 75%/25% train/test split.

4.2.1 Experimental scenarios

There were three different experimental scenarios: two-step-isolation, two-step-clutter,
and multi-step-isolation. In two-step-isolation, an object was selected at random
from the training set and placed in a random pose in isolation on a tabletop. The
goal condition was a right-side-up placement in a particular position on the table.
In this scenario, the robot was only allowed to execute one grasp action followed
by one place action (hence the “two-step” label). Two-step-clutter was the same
as two-step-isolation except a set of seven objects was selected at random from the
same object category and placed in random poses on a tabletop as if they had been
physically dumped onto the table (Figure 4.4).

Figure 4.4: Example of the two-step-clutter scenario for mugs.

Multi-step-isolation was like two-step-isolation except multiple picks and places
were allowed (i.e., regrasping) for up to 10 actions (i.e., tmax = 10). Also, the goal
condition was more restricted: the object needed to be placed upright, inside of a
box rather than on a tabletop. Because the target pose was in a box, it became
impossible to successfully reach it without grasping the object from the top before
performing the final place (see Figure 4.8, bottom). Because the object could not

3Source code is available at github.com/mgualti/PickAndPlace.

https://github.com/mgualti/PickAndPlace

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 32

always be grasped in the desired way initially, this additional constraint on the goal
state sometimes forced the system to perform a regrasp in order to achieve the desired
pose.

In all scenarios, point clouds were registered composites of two clouds taken
from views above the object and 90◦ apart: a single point cloud performs worse,
presumably because features relevant for determining object pose are unobserved.
In simulation, we assumed picks always succeed, because the grasp detector was
already trained to recognize stable grasps with high probability [21, 84].4 A place
was considered successful only if the bottom of the object was placed within 3 cm of
the table and the vertical axis was within 20◦ of the desired pose.

4.2.2 Algorithm variations

Algorithm 4.2 was parameterized as follows. We used 70 training rounds (nTrain-
ingRounds = 70) for the two-step scenarios and 150 for the multi-step scenario.
We used 1, 000 episodes per training round (nEpisodes = 1, 000). For each training
round we updated the CNN with 5, 000 iterations of SGD with a batch size of 32.
maxExperiences was 25, 000 for the two-step scenarios and 50, 000 for the multi-step
scenario. For each episode, bottles were randomly scaled in height between 10 and
20 cm. Mugs were randomly scaled in height between 6 and 12 cm. We linearly
decreased the exploration factor ε from 100% down to 10% over the first 18 training
rounds.

We compared the performance of Algorithm 4.2 on two different types of pick
descriptors. In the standard variation, we used descriptors of the standard size
(10× 10× 20 cm). In the large-volume (LV) variation, we used descriptors evaluated
over a larger volume (20× 20× 40 cm) but with the same image resolution.

We also compared with two baselines. The first was the random baseline, where
grasp and place actions were chosen uniformly at random. The second was the shape
primitives baseline, where object pose was approximated by segmenting the point
cloud and fitting a cylinder. Although it is generally challenging to fit a shape when
the precise geometry of the object to be grasped is unknown, we hypothesized that
it could be possible to obtain good pick-and-place success rates by fitting a cylinder
and using simple heuristics to decide which end should be up. We implemented this
as follows. First, we segment the scene into k clusters, using k-means (k = 1 for
isolation and k = 7 for clutter). Then we fit a cylinder to the most isolated cluster
using MLESAC [108]. We select the grasp most closely aligned with and nearest to

4It is possible to train grasping from the same reward signal, but this would require longer
simulations. Empirically, this assumption did not lead to many grasp failures on the real robot
(Section 4.3).

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 33

the center of the fitted cylinder. The height of the placement action is determined
based on the length of the fitted cylinder. The grasp up direction is chosen to be
aligned with the cylinder half which contains fewer points. In order to get the shape
primitive baseline to work, we had to remove points on the table plane from the point
cloud. Although our learning methods do not require this and work nearly as well
either way, we removed the table plane in all simulation experiments for consistency.

4.2.3 Results for the two-step scenarios

Figure 4.5 shows learning curves for the two-step-isolation and two-step-clutter con-
tingencies for bottles (left) and mugs (right) averaged over 10 runs. Table 4.1 shows
place success rates when the test objects were used.

Figure 4.5: Average of 10 learning curves for the two-step scenario. The “training
round” on the horizontal axis denotes the number of times Caffe had been called
for a round of 5, 000 SGD iterations. The left plot is for bottles and the right plot
is for mugs. Blue denotes single objects and red denotes clutter. Curves for mean
plus and minus standard deviation are shown in lighter colors. The sharp increase
in performance during the last five rounds in each graph is caused by dropping the
exploration factor ε from 10% to 0% during these rounds.

Several results are worth highlighting. First, our algorithm does very well with
respect to the baselines. The random baseline (last row in Table 4.1) succeeds only
2% of the time – suggesting that the problem is indeed challenging. The shape
primitives baseline (where we localize objects by fitting cylinders) also does relatively
poorly: it succeeds at most only 43% of the time for bottles and only 12% of the

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 34

Trained With / Tested With Bottle in Isolation Bottles in Clutter
Isolation 1.00 0.67
Clutter 0.78 0.87

Isolation LV 0.99 0.47
Clutter LV 0.96 0.80

Shape Primitives Baseline 0.43 0.24
Random Baseline 0.02 0.02

Trained With / Tested With Mug in Isolation Mugs in Clutter
Isolation 0.84 0.60
Clutter 0.74 0.75

Isolation LV 0.91 0.40
Clutter LV 0.67 0.70

Shape Primitives Baseline 0.08 0.12
Random Baseline 0.02 0.02

Table 4.1: Average correct placements over 300 episodes for bottles (top) and mugs
(bottom) using test set, after training.

time for mugs. Second, place success rates are lower when objects are presented in
clutter compared to isolation: 100% success versus 87% success rates for bottles;
84% versus 75% success for mugs. Also, if evaluation is to be in clutter (respectively
isolation), then it helps to train in clutter (respectively isolation) as well: if trained
only in isolation, then clutter success rates for bottles drops from 87% to 67%; clutter
success rates for mugs drops from 75% to 60%. Also, using the LV descriptor can
improve success rates in isolation (an increase of 84% to 91% for mugs), but hurts
when evaluated in clutter: a decrease from 87% to 80% for bottles; a decrease from
75% to 70% for mugs. We suspect this drop in performance reflects the fact that
in clutter, the large receptive field of the LV descriptor encompasses “distracting”
information created by other objects nearby the target object [72].

4.2.4 Results for the multi-step scenario

Training for the multi-step-isolation scenario was the same as in the two-step scenario
except we increased the number of training rounds and the capacity of the experience
replay database because the longer policies took longer to learn. We only performed
this experiment using mugs because GPD did not find many grasps on the tops of
bottles. Figure 4.6 shows the number of successful non-goal and goal placements

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 35

as a function of training round.5 Initially, the system does not make much use of
its ability to perform intermediate placements in order to achieve the desired goal
placement, i.e., to pick up the mug, put it down, and then pick it up a second time
in a different way. This is evidenced by the low values for non-goal placements (the
blue line) prior to round 60. However, after round 60, the system learns the value
of the non-goal placement, thereby enabling it to increase its final placement success
rate to is maximum value (around 90%). Essentially, the agent learns to perform a
non-goal placement when the mug cannot immediately be grasped from the top or if
the orientation of the mug cannot be determined from the sensor perception. After
learning is complete, we obtain an 84% pick-and-place success rate averaged over 300
test set trials.

Figure 4.6: One multi-step realization with mugs in isolation. Red line: number of
successful pick-and-place trials as a function of training round. Blue line: number of
successful non-goal placements executed.

5Non-goal placements were considered successful if the object was 3 cm or less above the table.
Any orientation was allowed. Unsuccessful non-goal placements terminate the episode.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 36

4.3 Experiments on a Real Robot

We evaluated the same three scenarios on a real robot: two-step-isolation, two-step-
clutter, and multi-step-isolation. As before, the two step scenarios were evaluated
for both bottles and mugs, and the multi-step scenario was evaluated for only mugs.
All training was done in simulation, and fixed CNN weights were used on the real
robot.

The experiments were performed by a UR5 robot with 6 DOFs, equipped with
a Robotiq parallel-jaw gripper and a wrist-mounted Structure depth sensor (Fig-
ure 4.8). Two sensor views were always taken from fixed poses, 90◦ apart. The object
set included 7 bottles and 6 mugs, as shown in Figure 4.7. We used only objects
that fit into the gripper, would not shatter when dropped, and had a non-reflective
surface visible to our depth sensor. Some of the lighter bottles were partially filled
so small disturbances (e.g., sticking to fingers) would not cause a failure. Figure 4.8
shows several examples of our two-step scenario for bottles presented in clutter.

Figure 4.7: The seven novel bottles and six novel mugs used to evaluate our approach
in the robot experiments.

Unlike in simulation, the UR5 requires an inverse kinematics (IK) solution and
motion plan for any grasp or place pose it plans to reach to. For grasps, GPD returns
many grasp choices. We sort these by their pick-and-place Q-values in descending
order and select the first reachable grasp. For places, the horizontal position on the
shelf and orientation about the vertical (gravity) axis do not affect object uprightness
or the height of the object. Thus, these variables were chosen to suit reachability.

After testing some trials on the UR5, we found we needed to adjust a couple of
training/simulation parameters. First, we changed the conditions for a successful
place in simulation because, during our initial experiments, we found the policy
sometimes selected placements that caused the objects to fall over. As a result, we
adjusted the maximum place height in simulation from 3 cm to 2 cm and changed
the reward function to fall off exponentially from +1 for altitudes higher than 2 cm.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 37

Figure 4.8: Top. Two-step-clutter scenario for bottles. First three objects are placed
right-side-up and without falling over. Bottom. Multi-step-isolation scenario for a
mug. The mug is initially upside-down, so must be flipped around before it can be
put upright into the box.

Second, we raised the acceptance threshold used by GPD [21, 84].6

Table 4.2 summarizes the results from our robot experiments. We performed 483
pick-and-place trials over five different scenarios. Column one of Table 4.2 shows
results for pick-and-place for a single bottle presented in isolation averaged over all
bottles in the seven-bottle set. Out of 112 trials, 99% of the grasps were successful
and 98% of the placements were successful, resulting in a complete task pick/place
success rate of 97%. Column two shows similar results for the bottles-in-clutter
scenario, and columns three and four include results for the same experiments with
mugs. Finally, column five summarizes results from the multi-step-isolation scenario
for mugs: overall, our method succeeded in placing the mug upright into the box 68%
of the time. The temporary place success is perfect because a temporary placement
only fails if the mug is so high it rolls away after dropped or too low it is pushed
into the table, neither of which ever happened after 72 trials. The final placement
is perfect because it always did get the orientation right (for all 72 trials that got
far enough to reach the final placement), and it is hard for the mug to fall over in
the box. The multi-step scenario has low task success rate because 12 trials failed to
perform the final place after 10 time steps. Perhaps this is due to lower Q-function
values on the real system (due to domain transfer issues), causing the robot to never
become confident enough with its given state information to perform the final place.

Our experimental results are interesting for several reasons beyond demonstrating
that the method can work. First, we noticed consistently lower place performance for
the mug category relative to the bottle category. The reason for this is there is more

6GPD outputs a machine-learned probability of an antipodal grasp. The threshold is the grasp
antipodal probability above which grasps are accepted.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 38

1 Bottle 7 Bottles 1 Mug 6 Mugs Regrasp
Grasp 0.99 0.97 0.96 0.93 0.94

Final Placement 0.98 0.94 0.93 0.87 1.00
Temporary Placement - - - - 1.00

Entire Task 0.97 0.92 0.90 0.80 0.68

n Trials 112 107 96 96 72

Upside Down 0 4 5 10 0
Sideways 0 0 0 2 0
Fell Over 2 2 1 0 0
t > 10 - - - - 12

Table 4.2: Top. Success rates for grasp, temporary place, final place, and entire task.
Bottom. Placement error counts by type. Results are averaged over the number of
trials (middle).

perceptual ambiguity involved in determining the orientation of a mug compared
to that of a bottle. In order to decide which end of a mug is “up”, it is necessary
for the sensor to view into at least one end of the mug. Second, the robot had
trouble completing the multi-step task in a reasonable number of steps with the real
hardware compared with simulation. This may be because fewer grasps are available
on the real robot versus the simulated robot due to collision modeling. Another
unexpected result was our learned policies typically prefer particular types of grasps,
e.g., to grasp bottles near the bottom; e.g., see Figure 4.8 (top). We suspect this is
a result of the link between the location of a selected grasp and the pick descriptor
used to represent state. In order to increase the likelihood that the agent will make
high-reward decisions in the future, it selects a pick descriptor that enables it to
easily determine the pose of the object. In the case of bottles, descriptors near the
base of the bottle best enable it to determine which end is “up”.

4.4 Discussion

To summarize, the problem of sampling 6-DoF gripper poses for grasps for pick-and-
place tasks, with partially visible and novel objects, was addressed by combining
grasp detection with Q-function learning. Grasp detection finds a small, discrete set
of grasps that are likely to be stable, and the learned Q-function indicates which of
these grasps are useful for the task.

CHAPTER 4. GRASP DETECTION FOR DISCRETIZING PICK ACTIONS 39

4.4.1 Limitations

The descriptor-based MDP introduces additional partial observability into the prob-
lem because, instead of seeing the entire point cloud, the robot only sees parts of the
point cloud in the vicinity of a gripper pose. The advantage of this is that learning
is focused on the most task-relevant part of the scene – the robot’s gripper. The
disadvantage is that, to perform some tasks, an arbitrarily long history of pick de-
scriptors is required. For example, if the task is to pack a bin as densely as possible,
the robot must remember all previous placements in order to choose placements that
will make the packing dense. Further, the robot would have trouble making good
long-term packing decisions, because it sees only one unpacked object at a time.

Another limitation is fixed place choices. Tasks such as placing bottles onto coast-
ers, where the coaster can appear in arbitrary positions on the table, require adaptive
place choices. One approach to this is to learn a place detector for discretizing place
choices, analogous to how GPD is used to discretize grasp choices. However, it would
be convenient to not have to rely on task-specific heuristics for sampling grasps and
placements. While very powerful for grasping, we already got into trouble with the
grasp sampling heuristics, where grasps were not found on the tops of bottles, which
happened to be the only grasps useful for the multi-step scenario. This problem is
addressed in the next chapter.

4.4.2 Related work

This chapter is based on findings published in [20]. To our knowledge, this was the
first successful demonstration of policy learning for pick-and-place and regrasping of
novel objects. Previous policy learning methods considered only grasping [54, 112],
placing [14], or the same objects used for training [56, 15, 55, 3]. With later methods,
the problem of selecting high-dimensional pick-and-place actions was addressed by
breaking down gripper pose selection into steps [22, 23, 115].

The action representation of the descriptor-based MDP is considered a deictic
representation because the actions are described with respect to the effector’s refer-
ence frame [88]. Platt et al. later explained how this representation results in faster,
more generalizable learning [88].

Harada et al. successfully demonstrated picking fruit using shape primitives [26].
In particular, they used cylinder fitting to pick bananas from a cluttered bin.

40

Chapter 5

Hierarchical Spatial Attention

In Chapter 4, grasp pose detection (GPD) limits the grasp choices for pick-and-place,
enabling more efficient policy learning. However, this does not immediately extend
to limiting place choices, as it relies on grasp-specific heuristics. In this chapter, we
describe a unified approach to limiting both grasp and place choices by learning to
focus on areas containing actions relevant to the task. For instance, if the task is
to place bottles upright onto coasters, the robot learns to focus on a bottle during
the grasping stage and on a coaster during the placement stage. This is inspired by
biological visual attention.

Visual attention has long been suggested to improve efficiency of policy learning.
Focused perceptions can ignore irrelevant details, and generalization is improved by
the elimination of the many irrelevant combinations of object arrangements [119].
Additionally, as we later show, attention can result in a substantial reduction to
the number of actions that need considered. Indeed, when selecting position, the
number of action choices can become logarithmic rather than linear in the volume
of the robot’s workspace. But there is a catch. Visual attention adds two new
challenges: (i) the burden of learning where to attend and (ii) partial observability
caused by the narrowed focus.

We address challenge (i) – efficiently learning where to attend – by constraining
the system to a spatial hierarchy of attention. This means the robot must first see a
large part of the scene in low detail, select a position within that observation, and see
the next observation in more detail at the position previously selected, and so on for
a fixed number of gazes. We address challenge (ii) – partial observability induced by
the narrowed focus – by identifying attention with a type of state abstraction which
preserves the ability to learn optimal policies with efficient reinforcement learning
(RL) algorithms. With attention, we solve more difficult instances of pick-and-place
of partially visible, novel objects than was previously possible with value learning

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 41

methods.

5.1 Problem Statement

The problem is learning to control a move-effect system (Figure 5.1, left). This is
similar to the move-binary-effect system of Chapter 2 but without the arm:

Definition 5.1 (Move-effect system). A move-effect system is a discrete time system
consisting of a robot, equipped with a depth sensor and an effector, and rigid objects
of various shapes and configurations. The robot perceives a history of point clouds
C1, . . . , Ck, where Ci ∈ Rnc×3 is acquired by the depth sensor; an effector status,
h ∈ {1, . . . , nh}; and a reward r ∈ R. The robot’s action is move-effect(Te , o),
where Te ∈ W is the pose of the effector, W ⊆ SE (3) is the robot’s workspace,
and o ∈ {1, . . . , no} is a preprogrammed controller for the effector. For each stage
t = 1, . . . , tmax , the robot receives a new perception and takes an action.

The reward is instrumented by the system engineer to indicate progress toward
completion of some desired task. The robot initially has no knowledge of the system’s
state transition dynamics. The objective is, by experiencing a sequence of episodes,
for the robot to learn a policy – a mapping from observations to actions – which
maximizes the expected sum of per-episode rewards.

Figure 5.1: Left. The move-effect system. The robot has an effector which can be
moved to pose Te to perform operation o. Right. The sense-move-effect system adds
a virtual, mobile sensor which observes points in a rectangular volume at pose Ts
with size z.

For example, suppose the effector is a 2-fingered gripper, o ∈ {open, close}, h ∈
{empty , holding}, the objects are bottles and coasters, and the task is to place all

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 42

the bottles on the coasters. The reward could be 1 for placing a bottle on a coaster,
−1 for removing a placed bottle, and 0 otherwise.

5.2 Approach

Our approach has two parts. The first part is to reformulate the problem as a Markov
decision process (MDP) with abstract states and actions. With this reformulation,
the resulting state representation is substantially reduced, and it becomes possible for
the robot to learn to restrict attention to task-relevant parts of the scene. The second
part is to add constraints to the actions so the effector pose is decided sequentially.
After these improvements, the problem is amenable to solution via standard RL
algorithms like DQN. (Appendix A has more on MDPs and RL.)

5.2.1 Sense-move-effect MDP

The sense-move-effect system adds a controllable, virtual sensor which perceives a
portion of the point cloud from a parameterizable perspective (Figure 5.1, right).

Definition 5.2 (Sense-move-effect system). A sense-move-effect system is a move-
effect system where the robot’s actions are augmented with sense(Ts, z) (where Ts ∈
W and z ∈ R3

>0) and the point cloud observations C1, . . . , Ck are replaced with a
history of k images, I1, . . . , Ik (where I ∈ Rnch×nx×ny). The sense action has the
effect of adding I = Proj (Crop(Trans(T−1

s , Ck), z)) to the history.1

The sense action makes it possible for the robot to get either a compact overview
of the scene or to attend to a small part of the scene in detail. Since the resolution of
the images is fixed, large values of z correspond to seeing more objects in less detail,
and small values of z correspond to seeing less objects in more detail.

The robot’s memory need not include the last k images – it can include any
previous k images selected according to a predetermined strategy. Because the en-
vironment only changes after move-effect actions, we keep the latest image, Ik, and
the last k−1 images that appeared just before move-effect actions. Figure 5.2 shows
an example in the bottles on coasters domain.

1Proj : Rnc×3 → Rnch×nx×ny is nch orthographic projections of points onto nch , nx×ny images.
Each image plane is positioned at the origin with a different orientation. Image values are the point
to plane distance, ambiguities resolved with the nearest distance. Crop : Rnc×3 → Rnc′×3 returns
the nc′ ≤ nc points of C which lie inside a rectangular volume situated at the origin with length,
width, height z. Trans(T−1

s , C) expresses C (initially expressed w.r.t. the world frame) w.r.t. Ts.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 43

(a) (b) (c) (d)

Figure 5.2: Scene and observed images for k = 2 and nch = 1. (a) Scene’s initial
appearance. (b) sense image (large z) just before move-effect(Te, close). (c) Scene’s
current appearance. (d) Current sense image, focused on the coaster (small z). The
robot remembers how the object was grasped (b) as it is adjusting the pose of the
effector for the placement (d).

In order to apply standard RL algorithms to the problem of learning to control
a sense-move-effect system, we define the sense-move-effect MDP. (See Appendix A
for more on MDPs and standard RL algorithms.)

Definition 5.3 (Sense-move-effect MDP). Given a sense-move-effect system, a re-
ward function, and transition dynamics, a sense-move-effect MDP is a finite horizon
MDP where states are sense-move-effect system observations and actions are sense-
move-effect system actions.

The reward function and transition details are task and domain specific, respectively,
examples of which are given in Section 5.3.

5.2.2 Hierarchical spatial attention

The observation is now similar to that of DQN – a short history of images plus the
effector status – and can be used by a Q-network to approximate Q-values. However,
the action space remains large due to the 6-DoF choice for Ts or Te and the 3-DoF
choice for z. Additionally, it may take a long time for the robot to learn which sense
actions result in useful observations. To remedy both issues, we design constraints
to the sense-move-effect actions.

Definition 5.4 (Hierarchical spatial attention). Given a sense-move-effect system,
L ∈ N>0, T 1

s ∈ W , and the list of pairs [(z1, d1), . . . , (zL, dL)], (where zi ∈ R3
>0

and di ∈ R6), hierarchical spatial attention (HSA) constrains the robot to take L

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 44

sense(Ts, z) actions, with z = zi for i = 1, . . . , L, prior to each move-effect action.
Furthermore, the first sensor pose in this sequence must be T 1

s ; the sensor poses T i+1
s ,

for i = 1, . . . , L − 1, must be offset no more than di from T is ; and effector pose Te
must be offset no more than dL of TLs .2

The process is thus divided into tmax overt stages, where, for each stage, L sense
actions are followed by 1 move-effect action (Figure 5.3). The constraints should be
set such that the observation size zi and offset di decrease as i increases, so the point
cloud under observation decreases in size, and the volume within which the effector
pose can be selected is also decreasing. These constraints are called hierarchical
spatial attention because the robot is forced to learn to attend to a small part of the
scene (e.g., Figure 5.4).

Figure 5.3: Initially, the state is empty. Then, L sense actions are taken, at each
point the latest image is state. After this, the robot takes 1 move-effect action. Then,
the process repeats, but with the last image before move-effect saved to memory.

To see how HSA can improve action sample efficiency, consider the problem of
selecting position in a 3D volume. Let α be the largest volume allowed per sam-
ple. With naive sampling, the required number of samples ns is proportional to the
workspace volume v0 = d1(1)d1(2)d1(3), i.e., ns = dv0/αe. But with HSA, we select
position sequentially, by say, halving the volume size in each direction at each step,
i.e., di+1 = 0.5di. In this case 8L samples are needed, i.e., a sample for each octant
at each step. The volume represented by each sample at step i, for i = 1, . . . , L, is
vi = v0/8

i. To get vL ≤ α, i.e., to get the volume represented by samples used for
selecting effector position to be no more than α, L = dlog8(v0/α)e. Thus, with HSA,
the sample complexity becomes logarithmic, rather than linear, in v0.

5.2.3 Lookahead sense-move-effect

So far we have not specified how action parameters Ts, Te, and z are encoded. For
standard sense-move-effect, these are 6 floating point numbers representing the pose

2Concretely, di = [x, y, z, θ, φ, ρ] indicates a position offset of ±x/2, ±y/2, and ±z/2 and a
rotation offset of ±θ/2, ±φ/2, and ±ρ/2.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 45

Figure 5.4: HSA applied to grasping in the bottles on coasters domain (Section 5.3.3).
There are 4 levels (i.e. L = 4). The sensor’s volume size z is 36× 36× 23.75 cm for
level 1, 10.5× 10.5× 47.5 cm for levels 2 and 3, and 9× 9× 47.5 cm for level 4. As
indicated by blue squares, d constrains position in the range of ±18× 18× 6.875 cm
for level 1, ±4.5 cm3 for level 2, and ±1.125 cm3 for level 3. Orientation is selected
for level 4 in the range of ±90◦ about the hand approach axis. Red crosses indicate
the x, y position selected by the robot, and the red circle indicates the angle selected
by the robot. Positions are sampled uniformly on a 6×6×6 grid and 60 orientations
are uniformly sampled. Pixel values normalized and height selection not shown for
improved visualization.

T and 3 floating point numbers representing the volume size z. Alternatively, the
pair (T, z) could be encoded as the sense image that would be seen if the sensor were
to move to pose T with zoom z. This is as if the action was “looking ahead” at the
pose the sensor or effector would move to if this action were selected.

In particular, the lookahead sense-move-effect MDP has actions sense(Ts, zs) and
move-effect(Te, ze, o), the difference being the additional parameter ze ∈ R3

>0 for
move-effect . The action samples are encoded as the height map that would be
generated by sense(T, z). Because action has this rich encoding, state is just the
effector status and a history of k actions.

The HSA constraints for the lookahead variant have the same parameterization –
an initial pose T 1

s and a list of pairs [(z1, d1), . . . , (zL, dL)]. The semantics are slightly
different. zi for i = 1, . . . , L−1 is the zs parameter for the ith sense, and zL is the ze
parameter. The di for i = 1, . . . , L− 1 specify the offset of the sense action samples
relative to the last pose decided, T is . dL specifies the offset of Te relative to TLs .

5.2.4 Relation to other approaches in the literature

We show that DQN [73] is a 1-level standard HSA and that deictic image mapping
[88] is a 1-level lookahead HSA. The problem with 1-level approaches is that the

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 46

number of actions scales exponentially with the dimension of the action space.

DQN

Consider a sense-move-effect MDP with HSA constraints L = 1, T 1
s centered in the

robot’s workspace, and z1 and d1 large enough to capture the entire workspace. The
only free action parameters for this system are the effector pose, which is sampled
uniformly and spaced appropriately for the task, and the effector operation. In this
case, the observations and actions are similar to that of DQN [73], and the DQN
algorithm can be applied to the resulting MDP.

However, this approach is problematic in robotics because the required number
of action samples is large, and the image resolution would need to be high in order
to capture the required details of the scene. For example, a pick-and-place task
where effector poses are in SE (3), the robot workspace is 1 m3, the required position
precision is 1 mm, and the required orientation resolution is 1◦ per Euler angle
requires on the order of 1017 actions. Adding more levels (i.e. L > 1) alleviates this
problem.

Deictic Image Mapping

With L = 1, T 1
s centered in the robot’s workspace, z1 the deictic marker size (e.g.,

the size of the largest object to be manipulated), and d1 large enough to capture
the entire workspace, HSA applied to the lookahead sense-move-effect MDP is the
deictic image mapping representation [88]. Similar to the case with DQN, if the
space of effector poses is large, and precise positioning is needed, many actions need
to be sampled. In fact, the computational burden with the deictic image mapping
representation is even larger than that of DQN due to the need to create images for
each action. Yet, the deictic representation has significant advantages over DQN in
terms of efficient learning due to its small observations [88].

HSA generalizes and improves both DQN and deictic image mapping by over-
coming the burden for the agent to select from many actions in a single time step.
Instead, the agent sequentially refines its choice of effector pose over a sequence of L
decisions. We compare these approaches experimentally in Sections 5.3.1 and 5.3.2.

5.2.5 Implementation methods

To implement HSA for a sense-move-effect MDP, it is necessary to select values for
HSA parameters and a training algorithm. Here are rough guidelines for making
both choices for standard HSA.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 47

HSA parameter values

Ideal values for T 1
s , L, and [(z1, d1), . . . (zL, dL)] depend on the position and size

of the robot’s workspace, the desired effector precision, and available computing
resources. In our implementations, we have separate levels for selecting position and
orientation, with position selecting levels occurring first. The procedure for deciding
position selecting levels is as follows. First, the position component of the initial
sensor pose T 1

s is set to the center of the robot’s workspace. Second, the number of
action samples ns depends on computing resources, e.g., the number of Q-values that
can be evaluated in parallel. If ns = n3, where n is the number of position samples
spaced evenly along an axis, then n is set to the largest integer such that ns samples
can be evaluated efficiently. Third, the number of levels L is the minimum number
of times the workspace needs divided to achieve the desired effector precision. If
p ∈ R3

>0 is the desired effector precision and w ∈ R3
>0 is the size of the workspace,

L = maxi=1,...,3dlogn(w(i)/p(i))e. Fourth, sampling regions di for i = 1, . . . , L should
be large enough so that, if patches size di are centered on samples in level i− 1, the
entire region is covered: di = w/ni−1. Lastly, observation sizes zi for i = 1, . . . , L
should be equal to di or the size of the largest object to be manipulated, whichever
is largest. The latter condition is necessary if the entire object must be visible to
determine the appropriate action. For example, when grasping bottles to be placed
upright, either the top or bottom of the bottle must be visible to determine bottle
orientation in the hand. Deciding orientation selecting levels is simpler: add 1 level
per Euler angle, each with the desired angular effector precision. We used roll-pitch-
roll ordering, where roll is about the hand approach axis and pitch is about the axis
connecting the fingers.

Training algorithm

Algorithm 5.1 is a variant of DQN [73] that follows the HSA constraints. For con-
creteness, this implementation stores experiences for Q-learning; modification for
other temporal difference (TD) update rules, such as Sarsa [92] or Monte Carlo
(MC) [103], is straight-forward. For simplicity of exposition, we also restrict to the
case where image history consists of the current image I and the image Ih before the
last grasp, effector status is binary empty or holding , and the effector operation is
binary open or close.

Initially, the Q-function gets random weights, the experience replay database is
empty, and the probability of taking random actions ε = 1 (line 1). The environment
is initialized to a scene unique to each episode (line 2). For each time step, the effector
status is observed (line 5), and Ih is the previously observed image if the effector is

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 48

Algorithm 5.1: Train standard HSA.

Input: nEpisodes , tmax , T1, ns, L, [(z1, d1), . . . , (zL, dL)], maxExperiences ,
trainEvery

1 Initialize Q, D, ε
2 for i← 1, ..., nEpisodes do
3 env ← InitializeEnvironment(i)
4 for t← 1, . . . , tmax do
5 h = GetEffectorStatus(env)
6 Ih = null
7 if t > 1 ∧ h = holding then
8 Ih ← I

9 for l← 1, . . . , L do
10 I ← sense(Tl, zl)
11 o′ ← (h, Ih, I)
12 Tl+1 ← GetPose(Q, o′, Tl, dl, ns, ε)
13 a′ ← T−1

l Tl+1

14 if t > 1 ∨ l > 1 then
15 D ← D ∪ {(o, a, o′, r)}
16 o← o′; a← a′; r ← 0

17 op ← GetEffectorOperator(h)
18 overtAct ← move-effect(TL+1, op)
19 r ← Transition(env, overtAct)

20 D ← D ∪ {(o, a,null, r)}
21 if i mod trainEvery = 0 then
22 D ← PruneExperiences(D,maxExperiences)
23 Q← UpdateQFunction(D,Q)

24 ε← Decrement-ε(|D|)

holding something (lines 6-8). Then, for each HSA level, a sense action is taken (line
10), the pose of the next sense action is determined either randomly or according
to Q (line 12), and the experience is saved (line 15). Actions are encoded relative
to the previous sense pose (line 13). Next, the robot moves the effector to TL+1 and
performs an operation op, after which a reward is observed (lines 17 - 19). Finally,
after trainEvery episodes, the Q function is updated with the current experiences
(lines 21 - 23), and ε is set inversely proportional to the number of experiences (line

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 49

24).

5.3 Application Domains

In this section we compare the HSA approach in four application domains of increas-
ing complexity. The complexity increases in terms of the size of the action space and
in terms of the diversity of object poses and geometries. We analyze simpler domains
because the results are more interpretable and learning is faster (Table 5.1). More
complex domains are included to demonstrate the practicality of the approach. All
training is in simulation, and the last two domains include test results for a psychical
robotic system.3

Tabular Pegs on Disks Upright Pegs on Disks Bottles on Coasters 6-Dof Pick-and-Place
Time (hours) 0.23 1.29 8.12 96.54

Table 5.1: Average simulation time for the four domains. Times are averaged over
10 or more simulations on 4 different workstations, each equipped with an Intel Core
i7 processor and an NVIDIA GTX 1080 graphics card.

5.3.1 Tabular pegs on disks

Here we analyze the HSA approach applied to a simple, tabular domain, where the
number of states and actions is finite. The domain consists of two types of objects –
pegs and disks – which are situated on a 3D grid (Figure 5.5). The robot can move
its effector to a location on the grid and open/close its gripper. The goal is for the
robot to place all the pegs onto disks.

As this domain has finite state and action spaces, standard RL algorithms are
guaranteed to converge to an optimal solution [118, 31]. However, the number of
state-action pairs is too large for practical implementation unless some abstraction
is applied. The main question addressed here is if convergence guarantees are main-
tained with the HSA abstraction.

Ground MDP

Tabular pegs on disks is first described without the sense-move-effect abstraction.

3Source code is available at github.com/mgualti/Seq6DofManip (for pegs on disks and bottles
on coasters) and github.com/mgualti/DeepRLManip (for 6-DoF pick-and-place).

https://github.com/mgualti/Seq6DofManip
https://github.com/mgualti/DeepRLManip

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 50

Figure 5.5: Tabular pegs on disks with an 8× 8× 8 grid, 1 peg (red triangle), and 1
disk (blue circle).

• State. A set of pegs P = {p1, . . . , pn}, a set of disks D = {d1, . . . , dn}, and the
current time t ∈ {1, . . . , tmax}. A peg (respectively disk) is a location (x, y, z) ∈
{1, . . . ,m}3 except peg locations are augmented with a special in-hand location h.
Pegs (respectively disks) cannot occupy the same location at the same time, but
one peg and one disk can occupy the same location at the same time.

• Action. move-effect(x, y, z), which moves the effector to (x, y, z) ∈ {1, . . . ,m}3

and opens/closes. It opens if a peg is located at h and closes otherwise.

• Transition. t increments by 1. If no peg is at h and a peg p is at the action
location, then the peg is grasped (p = h). If a peg is located at h and the action
location a does not contain a peg, the peg is placed (p = a). Otherwise, the state
remains unchanged.

• Reward. 1 if a peg is placed on an unoccupied disk, -1 if a placed peg is removed,
and 0 otherwise.

Initially, pegs and disks are at distinct locations, and no peg is in the effector. The
time horizon is tmax = 2n, where there is just enough time to grasp and place each
peg. This MDP satisfies the Markov property because the next state is completely
determined from the current state and action. The number of possible states is shown

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 51

in Equation 5.1, and the number of actions is |A| = m3. It is not practical to learn
the optimal policy by enumerating all state-action pairs for this MDP: for example,
if m = 16 and n = 3, the state-action value lookup table size is on the order of 1024.

|S| =
(
m3 + 1

n

)(
m3

n

)
tmax (5.1)

Sense-move-effect MDP

We apply the sense-move-effect abstraction (Section 5.2.1) and the standard HSA
constraints (Section 5.2.2) to the tabular pegs on disks problem. The process is
illustrated in Figure 5.6. At level 1, the sensor perceives the m3 grid as 8 cells, each
summarizing the contents of an octant in the underlying grid. The robot then selects
one of these cells to attend to. At levels 2, . . . , L − 1, the sensor perceives 8 cells
revealing more detail of the octant selected in the previous level. At level L, the
sensor perceives 8 cells in the underlying grid, and the location of the underlying
action is determined by the cell selected here. Without loss of generality, assume the
grid size m of the ground MDP is a power of 2 and the number of levels L is log2(m).

• State. The current level l ∈ {1, . . . , L}, the overt time step t ∈ {1, . . . , tmax}, a
bit h ∈ {0, 1} indicating if a peg is held, and the tuple G = (Gp, Gd, Ge) where
each Gi ∈ {0, 1}8. Gp indicates the presence of unplaced pegs, Gd unoccupied
disks, and Ge empty space.

• Action. The action is a ∈ {1, . . . , 8}, a location in the observed grids.

• Transition. For levels l = 1, . . . , L − 1, the robot selects a cell in G which
corresponds to some partition of space in the underlying grid. The sensor perceives
this part of the underlying grid and generates the observation at level l+1. For level
L, the L selections determine the location of the underlying move-effect action, l
is reset to 1, and otherwise the transition is the same as in the ground MDP.

• Reward. The reward is 0 for levels 1, . . . , L − 1. Otherwise, the reward is the
same as for the ground MDP.

The above process is no longer Markov because a history of states and actions
could be used to better predict the next state. For instance, for a sufficiently long
random walk, the exact location of all pegs and disks could be determined from the
history of observations, and the underlying grid could be reconstructed.

On the other hand, this abstraction substantially reduces the number of states
(Equation 5.2) and actions (|A| = 8). The only nonconstant term (besides tmax) is

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 52

(a) Level 1 (l = 1). (b) Level 2 (l = 2). (c) Level 3 (l = 3).

Figure 5.6: HSA applied to the grid in Figure 5.5 (m = 8 and n = 1). The observed
volume appears yellow, and the octant selected by the robot appears green. Top.
Robot selects the peg and is holding it afterward. Bottom. Robot selects the disk.

logarithmic in m. Referring to the earlier example with m = 16 and n = 3, the
state-action lookup table size is on the order of 109.

|S| ≤ 225 log2(m)tmax (5.2)

Theoretical Results

We classify the sense-move-effect MDP with HSA constraints according to the state
abstraction ordering defined in Li et al. [57]. In particular, we show Q∗-irrelevance,
which is sufficient for the convergence of a number of RL algorithms, including Q-
learning, to a policy optimal in the ground MDP.

Definition 5.5 (Q∗-irrelevance abstraction [57]). Given an MDP M = (S,A, P,R, γ),
any states s1, s2 ∈ S, and an arbitrary but fixed weighting function w(s), a Q∗-

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 53

irrelevance abstraction φQ∗ is such that for any action a, φQ∗(s1) = φQ∗(s2) implies
Q∗(s1, a) = Q∗(s2, a).

φQ∗ is a mapping from ground states to abstract states and defines the abstract
MDP.4

Theorem 5.1 (Convergence of Q-learning under Q∗-irrelevance [57]). Assume that
each state-action pair is visited infinitely often and the step-size parameters decay
appropriately. Q-learning with abstraction φQ∗ converges to the optimal state-action
value function in the ground MDP. Therefore, the resulting optimal abstract policy
is also optimal in the ground MDP.

Because Li et al. do not consider action abstractions, we redefine the ground
MDP to have the same actions as the sense-move-effect MDP. Additionally, to keep
the ground MDP Markov, we add the current level l and the current point of focus
v ∈ {1, . . . ,m}3, to the state. This does not essentially change the tabular pegs on
disks domain but merely allows us to rigorously make the following connection.

Denote states of the ground MDP by s and states of the sense-move-effect MDP
by s̄. Actions are denoted a. Let φSME : S → S̄ be the observation function.

Theorem 5.2 (φSME is Q∗-irrelevant). The sense-move-effect abstraction, φSME , is
a Q∗-irrelevance abstraction.

Proof. We show that Q∗(s, a) is uniquely determined by s̄ and a. This proves the
theorem as all states satisfying s = φSME (s̄) must then have the same Q∗-value.

• The reward achievable immediately after the current overt stage depends only on
h (which is in s̄), whether or not it is possible to select a peg or a disk (which is
determined by Gp and Gd, respectively), and whether or not it is possible to avoid
selecting a placed peg (which is determined by Gp, Gd, and Ge).

• Due to tmax = 2n and the fact that all pegs are initially unplaced, the sum of
rewards after the current stage, following an optimal policy, depends only on (a)
whether or not a peg will be held after the current stage and (b) the amount of
time left. (a) is determined by h, Gp, Gd, and Ge, each in s̄. (b) is tmax − t, where
tmax is fixed and t is in s.

4Although the definition is for infinite-horizon problems (due to γ), our finite-horizon problem
readily converts to an infinite-horizon problem by adding an absorbing state that is reached after
tmax overt stages. The weight w(s) is the probability the underlying state is s given its abstract
state φ(s) is observed. Any fixed policy, e.g. ε-greedy with fixed ε, induces a valid w(s) and satisfies
the definition.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 54

Since the sum of future rewards, when following an optimal policy, is uniquely de-
termined by s̄ and a, Q∗(s, a) is uniquely determined by s̄ and a.

Simulation results

In these experiments, there were n = 3 objects, and the grid size was m = 16.
Besides deictic image mapping (where L = 1), the number of levels was L = 4. A
comparison with no abstraction (i.e., HSA with L = 1) was not possible because
the system quickly ran out of memory (Equation 5.1). The learning algorithm was
Sarsa [92], and actions were taken greedily with respect to the current Q-estimate.
An optimistic initialization of action-values and random tie-breaking were relied on
for exploration.

The proof to Theorem 5.2 suggests the observability of unplaced pegs, unoccupied
disks, and empty space are all important for learning the optimal policy. Note that
it is important to distinguish unplaced pegs from placed pegs and unoccupied disks
from occupied disks. Figure 5.7 shows learning curves for the HSA agent with the
sense-move-effect MDP versus an agent showing pegs/disks irregardless of whether
or not they are placed/occupied.

Figure 5.7: Learning curves (mean ±σ over 30 realizations) for the tabular pegs on
disks domain. Left. Standard HSA (blue) versus standard HSA with a faulty sensor
(red). Curves averaged over 1, 000-epsisode segments for improved visualization.
Right. Standard HSA (blue), lookahead HSA (red), and deictic image mapping
(yellow). x-axis (episode number) is in log scale.

Lookahead HSA (Section 5.2.3) and deictic image mapping variants (Section 5.2.4)
result in an even smaller state-action space than standard HSA. In the tabular do-

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 55

main, this means faster convergence (Figure 5.7). Although the deictic representation
seems superior in these results, it has a serious drawback. The action-selection time
scales linearly with m3 because there is one action for each cell in the underlying
grid. The lookahead variant captures the best of both worlds – small representation
and fast execution. Thus, in the tabular domain, lookahead appears to be the satis-
factory middle ground between the two approaches. However, for domains requiring
Q-function approximation, we found the time needed to generate action images be-
comes more significant, and the advantage of lookahead in terms of episodes to train
diminishes.

5.3.2 Upright pegs on disks

In this domain, pegs and disks are modeled as tall and flat cylinders, respectively,
where the cylinder axis is always vertical (Figure 5.8, left). Unlike the tabular do-
main, object size and position are sampled from a continuous space. Grasp and place
success are checked with a set of simple conditions appropriate for upright cylinders.5

The reward is 1 for grasping an unplaced peg, -1 for grasping a placed peg, 1 for
placing a peg on an unoccupied disk, and 0 otherwise.

Observations consist of 1 or 2 images (k = 2, nch = 1, nx = ny = 64); the current
HSA level, l ∈ {1, 2, 3}; and the effector status, h ∈ {empty , holding}. Each HSA
level selects (x, y, z) position (Figure 5.8, right). Gripper orientation is not critical
for this problem.

Network architecture and training algorithm

The Q-function consists of 6 convolutional neural networks (CNNs), 1 for each level
and effector status, with identical architecture (Table 5.2). This architecture results
in faster execution time compared with our previous version [22]. The loss is the
squared difference between predicted and actual Q-value target, averaged over a
mini-batch. The Q-value target is the reward received at the end of the current
overt stage.6 For CNN optimization, Adam [45] is used with a base learning rate of
0.0001, weight decay of 0.0001, and mini-batch size of 64.

5Grasp conditions: gripper is collision-free and the top-center of exactly one cylinder is in the
gripper’s closing region. Place conditions: entire cylinder is above an unoccupied disk and the
cylinder bottom is at most 1 cm below or 2 cm above the disk surface.

6With standard MC and γ = 1, the action-value target would be the sum of rewards received
after the current time step [103]. Since, for this problem, no positively rewarding grasp precludes
a positively rewarding place, ignoring rewards after the current overt stage is acceptable.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 56

Figure 5.8: Left. Example upright pegs on disks scene. Right. Level 1, 2, and 3
images for grasping the orange peg. Red cross denotes the (x, y) position selected by
the robot and the blue rectangle denotes the allowed (x, y) offset. zx = zy = 36 cm2

for level 1 and 9 cm2 for levels 2 and 3. dx = dy = 36 cm2 for level 1, 9 cm2 for level
2, and 2.25 cm2 for level 3. Pixel values normalized and height selection not shown
for improved visualization.

Layer Kernel Size Stride Output Size
Conv-1 7× 7 2 32× 32× 32
Conv-2 7× 7 2 16× 16× 64
Conv-3 7× 7 2 8× 8× 32
Conv-4 7× 7 2 4× 4× 32
Conv-5 7× 7 1 4× 4× 4

Table 5.2: CNN architecture for the upright pegs on disks domain. Each layer besides
Conv-4 and Conv-5 has a rectified linear unit (ReLU) activation.

Simulation results

We tested standard HSA with 1, 2, and 3 levels. The number of actions (CNN
outputs) per level was adjusted so that each case had the same 5.625 mm precision
in positioning of the effector: 1 level had 49 outputs, 2 levels had 43 outputs and 46

outputs, and 3 levels each had 43 outputs. Note that with 1 level this is the DQN
(i.e. no-hierarchy) approach. Exploration was ε-greedy with ε = 0.04.

Results are shown in Figure 5.8, left. The 1 level case trains faster in terms of
episodes because learning is over fewer time steps. The 2 levels case initially learns
faster for the same reason. The 1 and 2 level cases converge to higher values because,
with 3 levels, there is a higher chance of taking a random action during an overt stage.
This is because more levels imply more time steps over which a random action could
be selected with probability ε. What is important is that, in the last 5, 000 episodes
when ε = 0, all scenarios have similar performance. However, HSA trains faster

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 57

than DQN in terms of wall clock time (1.29 versus 2.55 hours) because fewer actions
need evaluated (192 versus 262, 144). This advantage becomes more staggering as
the dimensionality of the action space increases, as in following sections.

Figure 5.9: Left. Standard HSA with varying number of levels. (Blue) L = 3, (red)
L = 2, and (yellow) L = 1. Right. Standard HSA (blue) versus lookahead HSA
(red). Curves are mean ±σ over 10 realizations then averaged over 1, 000 episode
segments.

In another experiment, we tested the sensitivity of standard HSA to the choice
of z and d parameters. As explained in Section 5.2.5, these parameters are selected
based on task geometry. If z (respectively d) is too small, parts of the workspace
will not be perceivable (respectively reachable). On the other hand, if z is too large,
the scene will not be visible in detail (because the perceived images are of fixed
resolution), and if d is too large, the samples at the last level will not be dense,
resulting in low effector precision. Results for different values of z and d are shown
in Table 5.3. The “Ideal” values are those selected according to the principles in
Section 5.2.5 and correspond to the 3-levels case in Figure 5.8, left. As expected,
performance is much worse when selecting z and d without consideration to task
geometry.

We also compared standard HSA to lookahead HSA, both with 3 levels. We
did not compare to the deictic image mapping approach (i.e., lookahead HSA with
1 level) because computation of all 49 images was prohibitively expensive. Results
are shown in Figure 5.8, right. In contrast to the tabular results, both scenarios
perform similarly. We hypothesize that the advantage of lookahead HSA is lost due
to the equivariance property of CNNs. Since execution time for standard HSA is less

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 58

Small Ideal Large
Level-1, zxy = 36.0 36.0 36.0
Level-1, dxy = 36.0 36.0 36.0
Level-2, zxy = 6.00 9.00 12.00
Level-2, dxy = 6.00 9.00 12.00
Level-3, zxy = 6.00 9.00 12.00
Level-3, dxy = 1.50 2.25 3.00
µ Return 2.69 3.91 2.83
σ Return 1.32 0.01 1.75

Table 5.3: Varying standard HSA parameters zxy and dxy (in cm). “Ideal” values
were selected according to Section 5.2.5. “Small” (respectively “Large”) values are
smaller (respectively larger) than ideal. Last two rows are average and standard
deviation over sum of rewards per episode, after 10 different training sessions and
1, 000 episodes per session.

than half that of lookahead (1.29 versus 3.67 hours), from now on we only consider
standard HSA.

5.3.3 Bottles on coasters

The main question addressed here is if HSA can be applied to a practical problem
and implemented on a physical robotic system. The bottles on coasters domain is
similar to the pegs on disks domain, but now objects have complex shapes and are
required to be placed upright. The reward is 1 for grasping an unplaced object more
than 4 cm from the bottom (as placing with bottom grasps is kinematically infeasible
with the physical system), −1 for grasping a placed bottle, 1 for placing a bottle,
and 0 otherwise.7

Observations are similar to those for the upright pegs on disks domain except now
the image resolution is nx = ny = 48 and the overt time step is input to grasp net-
works (but not the place networks). HSA has three levels selecting (x, y, z) position
and one level selecting orientation about the gripper approach axis (Figure 5.4).

To achieve the target precision in effector pose (3.75 mm position and 6◦ orien-
tation for grasping), DQN (or 1-level HSA) would need to evaluate over 53 million

7Grasp conditions: gripper closing region intersects exactly one object and the antipodal con-
dition (Definition 2.4) with 30◦ friction cone. Place conditions: bottle is upright, center of mass
(x, y) position at least 2 cm inside an unoccupied coaster, and bottom within ±2 cm of coaster
surface.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 59

actions. Evaluation was prohibitively expensive with our computing hardware. HSA
only needs 404 actions; although we use 708 to achieve redundancy, with little loss
in computation time as the evaluation is done in parallel.

Network architecture and training algorithm

The network architecture is shown in Table 5.4. There is one network for each HSA
level and effector status. The loss is the mean squared difference between predicted
and actual sum of future rewards. For optimization, Adam [45] is used with a base
learning rate of 0.0001, weight decay of 0, and mini-batch size of 64.

Layer Kernel Size Stride Output Size
Conv-1 8× 8 2 24× 24× 64
Conv-2 4× 4 2 12× 12× 64
Conv-3 3× 3 2 6× 6× 64

Conv-4 / IP-1 2× 2 / - 1 / - 63/norient

Table 5.4: CNN architecture for the bottles on coasters domain. Each layer besides
the last has a ReLU activation. The last layer is a convolution layer for levels 1-3
(selecting position) and an inner product (IP) layer for level 4 (selecting orientation).
norient = 60 for grasp networks and norient = 3 for place networks.

Simulation results

70 bottles from 3DNet [122] were scaled uniformly at random from 10 to 20 cm in
height. Bottles were placed upright with probability 1/3 and on their sides with
probability 2/3. Episodes were initialized with two bottles and two coasters not in
contact. Learning curves are shown in Figure 5.10. Performance is lower than that
of the upright pegs on disks domain, reflective of the additional problem complexity.

To test robustness of the system to background noise, we ran the same experi-
ment with the addition of distractor objects. These distractors are three rectangular
blocks, with side lengths 1 to 4 cm, scattered randomly in the scene (e.g., Figure 5.11,
left). Learning performance is only slightly lower (Figure 5.11, right). However, if
clutter is present at test time, it is important to train the system with clutter. The
robot trained without clutter places an average of 1.24 bottles in the cluttered en-
vironment (versus 1.55 if trained with clutter). The distractors are visible at some
levels (e.g., level 1), so the robot does need to learn to avoid them.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 60

Figure 5.10: Number of bottles grasped (blue) and placed (red). Curves are mean
±σ over 10 realizations then averaged over 1, 000 episode segments. Standard HSA
with L = 4.

Figure 5.11: Left. Scene with clutter. Right. Learning curves comparing average
sum of rewards when distractors are not present (blue) and present (red).

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 61

Top-n sampling

Before considering experiments on a physical robotic system, we address an impor-
tant assumption of the move-effect system of Section 5.1. The assumption is the
effector can move to any pose Te in the robot’s workspace. Motion planning algo-
rithms make this a reasonable assumption for the most part; nonetheless, a pose can
still be unreachable due to obstacles, no inverse kinematics (IK) solution, or motion
planning failure.

To address this issue, multiple, high-valued actions are sampled from the policy
learned in simulation. In particular, for each level l of an overt stage, we take the
top-n samples according to Equation 5.3, where Ql is the Q-value estimate at level l,
Qmax is the maximum possible Q-value, Qmin is the minimum possible Q-value, and
p0 = 1. For the bottles on coasters domain, Qmax = 4 if at most two objects can be
placed, and Qmin = 0, since, in the worst case, nothing is placed at the end. During
test time, the resulting n, Te samples are checked for IK and motion plan solution
in descending order of pL value.

pl = pl−1
Ql −Qmin

Qmax −Qmin

, l = 1, . . . , L (5.3)

Improved chances of finding a reachable gripper pose is just one benefit of top-n
sampling. We also observe improved performance. Sampling top-n pl values is an
ensemble method where each level votes on the value of the final overt action (cf.
[4]). Since different CNNs vote on the value of n actions, a mistaken value of one
action at one level is not catastrophic, as it is for the greedy (top-1) policy.

Real robot results

We tested the bottles on coasters task with the system depicted in Figure 5.12, left.
The system consists of a UR5 arm, a Robotiq 85 parallel-jaw gripper, and a Structure
depth sensor. The test objects (Figure 5.12, right) were not observed during training.
Scenes were initialized as follows. Two coasters were randomly selected and placed
in arbitrary positions in the back half of the robot’s workspace (as too close resulted
in unreachable places). Two bottles were randomly selected and placed upright with
probability 1/3 and on the side with probability 2/3. The objects were not placed
in contact with each other. Top-n sampling with n = 200 was used.

Results are summarized in Table 5.5, and a successful sequence is depicted in
Figure 5.13. A grasp was considered successful if a bottle was lifted to the “home”
configuration; a place was considered successful if a bottle was placed upright on an
unoccupied coaster and remained there after the gripper withdrew. Failures were:

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 62

Figure 5.12: Left. Test setup for bottles on coasters task: a UR5 arm, Robotiq 85
gripper, Structure depth sensor (mounted out of view above the table and looking
down), 2 bottles, and 2 coasters. Right. Test objects used in UR5 experiments.

grasped a placed object (×3), placed too close to the edge of a coaster and fell over
(×3), placed upside-down (×2), object slip in hand after grasp caused a place failure
(×1), and object fell out of hand after grasp (×1).

Figure 5.13: Successful trial – all bottles placed in four overt stages.

5.3.4 6-DoF pick-and-place

Here we ask if HSA can be applied to 6-DoF action spaces. With an action space
of this size, naive sampling is out of the question. The HSA constraints are similar
those for the bottles on coasters domain except we add two additional levels for
orientation (Figure 5.14).

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 63

Grasp Place
Attempts 60 59

Success Rate 0.98 0.90
Number of Objects 1.97± 0.18 1.67± 0.48

Table 5.5: Performance for UR5 experiments placing two bottles on two coasters
averaged over 30 episodes with ±σ. Task success rate with tmax = 4 was 0.67.

(a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4. (e) Level 5. (f) Level 6.

Figure 5.14: Example sequence for grasping a bottle: (a) coarse position, (b) fine
position, (c) orientation about gripper’s approach, (d) orientation about gripper’s
closing direction, (e) orientation about gripper’s approach, and (f) final position.
Crosses denote the position selected for the next action, and lines denote the orienta-
tion selected for the next action (where the center is 0 and edges ±π). For all images
besides (d), the gripper approaches the image plane with the fingers on the left and
right sides. For (d), the gripper approaches the image plane from the left with the
fingers on the top and bottom sides. Orientation is selected about the in-plane axis.

We test HSA on three different 6-DoF pick-and-place tasks: placing a block on
top of another block, placing a mug upright onto a table, and placing a bottle onto a
coaster (Figure 5.15). Since the orientation of mugs is often ambiguous from a single
top-view, point clouds are obtained from two depth sensors, situated on either side of
the robot’s workspace, 45◦ above the table. Each observation in the HSA hierarchy
includes projections from three directions, as in Figure 5.16. Observations include
more 3D information compared to the bottles on coasters domain.

Ideally, the reward function should simply describe the set of goal states, e.g., +1
when the object is placed correctly and 0 otherwise. However, successful 6-DoF pick-
and-places are rare at the beginning of learning when actions are random. To make
the reward signal more informative, we assign a reward in [0, 1] for a successful grasp
and an additional reward in [0, 1] for a successful place. For both grasping and placing
there are required conditions and partial credit conditions. All required conditions
must be met for the reward to be nonzero; otherwise the reward is proportional to
the number of partial credit conditions met. For example, when placing bottles,

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 64

(a) Blocks task. (b) Mugs task. (c) Bottles task.

Figure 5.15: 6-DoF pick-and-place tasks: (a) place a block on top of another block,
(b) place a mug upright onto the table, and (c) place a bottle upright onto a coaster.
The blue gripper shows the grasp, and the red gripper shows the place. Scenes are
cluttered with objects of the same category.

(a) I1(1). (b) I1(2). (c) I1(3). (d) I2(1). (e) I2(2). (f) I2(3).

Figure 5.16: Images observed when placing a bottle onto a coaster with k = 2,
nch = 3, and nx = ny = 60. (a-c). Projections of the point cloud along z, y, and
x directions just before the last move-effect(close) was called. (d-f). Projections of
the current point cloud along z, y, and x directions. The red cross indicates the next
position the robot intends to move to in order to place the bottle onto a coaster.

the required conditions include: (a) the bottle is within 30◦ of upright, (b) above a
coaster, (c) no more than 4 cm above the coaster, and (d) not in collision or not in
collision if moved up 2 cm. The partial credit conditions include: (a) within 15◦ of
upright, (b) no more than 2 cm above the coaster, and (d) not in collision. Similar
reward functions were developed for both grasping and placing stages for the other
tasks.

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 65

Network architecture and training algorithm

The network architecture used to approximate theQ-function is shown in Figure 5.17.
Unlike the CNNs in Tables 5.2 and 5.4, action is an input and there are several IP
layers. The advantage of this architecture is that the action sampling strategy need
not be fixed. For instance, actions can be sampled more densely at test time than
during training, when performance is more important than speed. Disadvantages of
this architecture include it (a) evaluates slower and (b) has higher loss values versus
those in Tables 5.2 and 5.4.

Figure 5.17: CNN architecture for 6-DoF experiments. A different set of weights is
trained for each level and for each overt stage.

As with the bottles on coasters domain, the training algorithm was gradient MC,
where the loss of a mini-batch is the average squared difference between predicted
and actual sum of future rewards [103].

n-trial sampling

Instead of the top-n sampling that was used for bottles on coasters, the 6-DoF pick-
and-place experiments relied on n-trial sampling. HSA is run in n independent trials,
where the samples are different for each trial, and the trial that ends with the highest
valued action is selected. This is analogous to how Monte Carlo tree search is used
on-line to improve policies [106]. The benefits of n-trial sampling are similar to top-

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 66

n sampling: a reachable gripper pose is more likely to be found and performance
improves.

Simulation results

Learning curves for the three 6-DoF tasks are shown in Figure 5.18. In terms of
task difficulty, placing blocks appears easiest, followed by placing bottles on coasters,
followed by placing mugs on the table. This ordering is consistent with the ambiguity
of the object pose given a partial point cloud: blocks have three planes of symmetry,
bottles have two orthogonal planes of symmetry, and mugs have at most one plane
of symmetry (an upright plane dividing the handle). We also notice there is a high
variance between training realizations placing bottles on coasters. This may be due
to the difficulty of finding the first several successful placements: the space of goal
placements is small compared to the blocks scenario (where the desired orientation
is less specific) or the mugs scenario (where anywhere on the table is acceptable).

(a) Blocks. (b) Mugs. (c) Bottles.

Figure 5.18: Learning curves for 6-DoF pick-and-place. Grasp and place rewards
shown in different colors – episode return is the sum of the two. Rewards are aver-
ages over all of the episodes in a training round. Each training round consisted of
2, 000 episodes followed by 3, 000 iterations of stochastic gradient descent. Maximum
possible reward for a grasp/place is 1. Each plot includes learning curves for five
independent runs.

Recall that grasp pose detection (GPD) relies on heuristics for sampling grasp
poses (Chapter 4 and [84]). We ask if HSA can do better, as the sampling strategy
is learned rather than hand-coded. We compared the grasp performance of HSA
versus GPD with blocks, bottles, and mugs. The result is summarized in Table 5.6.
HSA with top-10 sampling outperforms GPD except on bottles. This makes sense
as GPD’s heuristics enable finding many grasp samples on cylindrical objects [84].

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 67

Blocks A Blocks A∧CF Mugs A Mugs A∧CF Bottles A Bottles A∧CF
GPD 0.95 0.51 0.77 0.52 0.98 0.71

1-Trial 0.86 0.82 0.65 0.58 0.83 0.81
10-Trial 0.99 0.98 0.85 0.80 0.94 0.93

Table 5.6: Grasp success rates averaged over 1, 000 independent trials. Performance
is shown with the antipodal condition (Definition 2.4) only (A) and with both an-
tipodal and collision-free conditions (A∧CF). GPD used 500 grasp samples and the
highest-scoring grasp for evaluation. Both GPD and HSA were trained with 3DNet
objects in the named category.

Real robot results

We tested 6-DoF pick-and-place on the same three tasks using a UR5 robot, Robotiq
85 gripper, and wrist-mounted Structure depth sensor. n-trial sampling with n = 100
was used. The test objects used in the experiments are shown in Figure 5.19, and
successful executions for each task are shown in Figure 5.20.

Figure 5.19: Left. Blocks test set. 10/15 blocks were randomly selected for each
episode. Center. Mugs test set. 5/6 mugs were randomly selected for each episode.
Right. Bottles test set. 3/7 bottles were randomly selected for each episode. All 3
coasters were present in each episode.

Results are shown in Table 5.7. Performance for the 6-DoF bottles task is worse
than that for the upright bottle on coasters domain (64% versus 90% place success
rate). We think this is due to (i) the lossier CNN architecture and (ii) the image
changes significantly after an out-of-plane rotation, so predicting the value of a level-
4 action is difficult. Nonetheless, we demonstrate the feasibility of learning 6-DoF
pick-and-place, with variable place choices, using value-based RL.

5.4 Discussion

The sense-move-effect abstraction, when coupled with HSA, is an effective way to
simultaneously handle (a) high-resolution, 3D observations and (b) high-dimensional,

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 68

(a) Blocks task. (b) Mugs task. (c) Bottles task.

Figure 5.20: Example 6-DoF grasps (top) and placements (bottom). Notice for the
mugs example (b), the grasp is diagonal to the mug axis, and the robot compensates
for this by placing diagonally with respect to the table surface.

Blocks Mugs Bottles
Grasp 0.96 0.86 0.89
Place 0.67 0.89 0.64
Task 0.64 0.76 0.57

n Grasps 50 51 53
n Places 48 44 47

Table 5.7: Top. Grasp, place, and task success rates for the three 6-DoF tasks with
tmax = 2 (i.e., pick-and-place). Bottom. Number of grasp and place attempts.

continuous action spaces. These two issues are intrinsic to the problem of pick-and-
place of partially visible, novel objects. More specifically:

• Compared to a flat representation, e.g., DQN or deictic image mapping, HSA
has exponentially fewer actions that need evaluated (Section 5.2.2, hierarchical
spatial attention, and Section 5.3.1, tabular pegs on disks).

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 69

• HSA generalizes DQN, and lookahead HSA generalizes deictic image mapping
(Section 5.2.4, relation to other approaches in the literature).

• The partial observability induced by HSA does not necessarily preclude learning
an optimal policy (Section 5.3.1, tabular pegs on disks).

• HSA may take longer to learn than DQN in terms of the number of episodes
to convergence, but HSA executes faster (Section 5.3.2, upright pegs on disks).

• HSA can be applied to 4-DoF and 6-DoF pick-and-place, where the action
space is too large for naive sampling; although, additional research is needed
to improve value prediction for out-of-plane rotations (Section 5.3.3, bottles on
coasters, and Section 5.3.4, 6-DoF pick-and-place).

5.4.1 Limitations

A concern with all deep RL methods is that modeling and optimization errors in-
duced by the use of function approximation prevent the robot from learning an
optimal policy. This is true for even simple problems, such as the upright pegs on
disks problem. Also, Q-functions do not readily transfer to different tasks or changes
in the environment. For example, even small changes to the task, such as the inclu-
sion of distractor objects, requires complete retraining of the system for maximum
performance. For these reasons, we turn our investigation to modular approaches.

5.4.2 Related work

This chapter is based on the findings first published in [20, 23]. We were inspired by
previous work in RL for robotic manipulation and attention models.

Reinforcement learning for robotic manipulation

Like several others, we apply RL to the problem of robotic manipulation [46, 55,
41, 91, 20, 3]. RL is appealing for robotic control for several reasons. First, several
algorithms (e.g., [117, 92]) do not require a complete model of the environment.
This is of particular relevance to robotics, where the environment is dynamic and
difficult to describe exactly. Additionally, observations are often encoded as camera
or depth sensor images. Deep Q-Networks (DQN) demonstrated an agent learning
difficult tasks (Atari games) where observations were image sequences and actions
were discrete [73]. An alternative to DQN that can handle continuous action spaces
are actor-critic methods like DDPG [60]. Finally, RL – which has its roots in optimal

CHAPTER 5. HIERARCHICAL SPATIAL ATTENTION 70

control – provides tools for the analysis of learning optimal behavior (e.g. [118, 31,
57]), which we refer to in the tabular pegs on disks domain in Section 5.3.1.

Models of visual attention

Following the early work of Whitehead and Ballard [119], we distinguish overt actions
(which directly affect change to the environment) from perceptual actions (which
retrieve information). Similar to their agent model, our abstract robot has a virtual
sensor which can be used to focus attention on task-relevant parts of the scene. The
present work updates their methodology to address more realistic problems, and we
extend their analysis by describing a situation where an optimal policy can be learned
even in the presence of “perceptual aliasing” (i.e., partial observability).

Attention mechanisms have also been used with artificial neural networks to iden-
tify an object of interest in a 2D image [99, 50, 72, 32]. Our situation is more complex
in that we identify 6-DoF poses of the robot’s hand. Improved grasp performance
has been observed by active control of the robot’s sensor [25, 76]. These methods
attempt to identify the best sensor placement for grasp success. In contrast, our
robot learns to control a virtual sensor for the purpose of reducing the complexity of
action selection and learning.

Work contemporary with ours considered attention for grasping [123]. In addition
to controlling a 6-DoF gripper pose, their system also decides joint angles for a 3-
fingered gripper. Their system learns parameters analogous to our manually specified
HSA parameters z, d, and L. Instead of a value-based algorithm like DQN, their
system uses policy gradient. Their results provide further evidence that attention is
a useful prior for high-DoF manipulation.

71

Part III

Modular Architectures

Each mental agent by itself can only do some simple thing that needs
no mind or thought at all. Yet when we join these agents in societies
– in certain very special ways – this leads to true intelligence.

Marvin Minksy in The Society of Mind

72

Chapter 6

Regrasp Planning with Uncertain
Object Instance Segmentation and
Shape Completion

In this chapter, we explore a modular approach to regrasping partially visible, novel
objects. A modular system has separate perception and planning components. Per-
ception takes in sensor data and produces models of the objects. Planning calculates
a sequence of grasps and places displacing a model to a goal pose, assuming the per-
ceived model is correct. Communities specializing in perception (e.g., [90, 89, 128,
126]) and planning (e.g., [109, 2, 1, 80, 48, 113]) advance their respective components,
and, in the end, the components are combined into a working system.

Specifically, consider the case where sensor data is a point cloud and where object
models are completed point clouds, i.e., occlusion-free point clouds. The goal of
perception is to predict the objects’ shapes in occluded regions: a difficult task given
that objects are partially visible and novel. The goal of planning is to determine a
sequence of grasps and places that will geometrically transform a point cloud to a
goal pose.

While this basic modular, shape completion approach has been demonstrated to
be effective [111, 64, 16], it ignores the uncertainty inherently present in the perceived
object models. With novel objects, geometries in unobserved areas are just guesses.
For example, if a bottle is lying on its side with the bottom occluded by another
object, the length of the bottle cannot be determined exactly, as there may be many
bottles with similar shapes but different lengths. If the planner is unaware of this
uncertainty, it could calculate grasps on the supposed bottom of the bottle, which
could result in a grasp failure. Thus, it is important for perception to communicate to
planning its uncertainty and for planning to efficiently incorporate this uncertainty.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 73

This example suggests additional integration between perception and planning is
needed for reliable manipulation.

In this chapter we take the following approach: (a) use perception to predict the
complete geometry of the objects as well as segmentation and shape completion un-
certainty and (b) incorporate perceptual uncertainty into the regrasp planning cost.
The cost function guides the planner toward plans that are likely to be executed suc-
cessfully. We compare six different cost functions, four of which explicitly model the
probability of successfully executing a regrasp plan, including grasp quality (GQ),
Monte-Carlo (MC) sampling, uncertainty at contact points (CU), and success predic-
tion (SP). With only small modifications to existing planners, we efficiently account
for perceptual uncertainty.

We tested this approach with bin packing and bottle arrangement tasks in both
simulation and the real world. Results show perception is indeed a significant source
of error and shape completion is critical to regrasp planning. Also, the SP method
consistently outperforms three other methods (no cost, step cost, and GQ) which do
not account for perceptual uncertainty in terms of avoiding grasp failures. Further-
more, the SP cost evaluates faster than the MC cost.

6.1 Problem Statement

Consider the problem of planning robot motions to place a partially visible object
of unknown shape into a goal pose. In particular, we consider this problem in the
context of the following system:1

Definition 6.1 (Move-open-close system). A move-open-close system consists of
one or more objects, a robotic manipulator, and one or more depth sensors, each
situated in 3D Euclidean space. Objects are rigid masses O1, . . . , Onobj

⊆ R3, sampled
randomly from a fixed, unknown probability distribution. The manipulator is equipped
with a parallel-jaw gripper with status empty or holding. The action of the robot is
to move the gripper to a target pose Te ∈ SE (3), followed by either gripper open or
close. At each step, the robot acquires a point cloud C ∈ Rn×3, observes its gripper
status, and takes an action.

As in Chapter 2, to simplify planning, we avoid dynamic actions (e.g., push-
ing). In particular, close actions should fix an object rigidly in the gripper, and
open actions should place an object at rest. Specifically, we aim for actions which
result in either an antipodal grasp (Definition 2.4) or a stable, horizontal placement
(Definition 2.5). We now state the problem as follows:

1This is a move-binary-effect system (Definition 2.1) with a parallel-jaw gripper as the effector.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 74

Definition 6.2 (Regrasping under perceptual uncertainty). Given a move-open-
close system, a point cloud for each object {C̄i ∈ Rn̄i×3}nobj

i=1 with corresponding seg-
mentation uncertainties {Ui ∈ Rni}nobj

i=1 and shape completion uncertainties {Ūi ∈
Rn̄i}nobj

i=1 , and a set of goal poses for each object {{Tij ∈ SE (3)}ngoal

j=i }
nobj

i=1 , find a
sequence of antipodal grasps and stable, horizontal placements maximizing the prob-
ability of displacing an object to a goal pose.

The segmentation uncertainty Ui ∈ Rni estimates the probability each point
belongs to the ith object segment. The shape completion uncertainty Ūi ∈ Rn̄i

estimates the probability each point is within a threshold distance of the true object
shape. Intuitively, actions should account for uncertainty in perception, as grasping
and placing on uncertain object parts is likely to result in unpredictable movements
of the object. In this chapter, we obtain these uncertainty estimates with BoNet
[126] and point completion network (PCN) [128], as explained in Section 6.2.1.

6.2 System Overview

Consider a modular, perception-planning pipeline for displacing partially visible,
novel objects, where the regrasp planner addresses the problem of regrasing under
perceptual uncertainty (Definition 6.2). Such a system is summarized in Figure 6.1.
For each perception-action cycle, the environment produces a point cloud, the ge-
ometry of the scene is estimated, a partial plan for displacing an object is found,
and the first pick-and-place of the plan is executed. We re-sense and re-plan af-
ter the first pick-and-place, similar to model predictive control [74]. In this section,
each component is briefly described. Regrasping under segmentation and completion
uncertainty – the main contribution of this chapter – is detailed in Section 6.3.

Instance
Segmentation

(BoNet)

Shape
Completion

(PCN)

Arrangement
Planner

(Task-Specific)

Regrasp
Planner
(Alg. 1)

Motion
Planner

(Lin.+Traj.+RRT*)

Environment
(Def. 1)

Figure 6.1: Diagram of our system architecture. Green represents the environment,
blue the perceptual modules, and red the planning modules. Dashed arrows are
followed up to a number of times if no plan is found.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 75

6.2.1 Perception

The purpose of the perceptual modules is to reconstruct the geometry of the scene so
we can apply geometric planning algorithms. Additionally, they must quantify their
own uncertainty so plans unlikely to succeed can be avoided. For both instance seg-
mentation and shape completion, we have chosen point clouds as the input/output
representation of objects. A point representation consumes less memory than un-
compressed voxel grids, enables efficient planning, and, from our previous experience,
exhibits good simulation-to-real domain transfer [20, 22, 23].

Object instance segmentation

The input to the segmentation module is a point cloud with n points, C ∈ Rn×3. The
output is a point cloud for each object, {Ci ∈ Rni×3}nobj

i=1 with
∑nobj

i=1 ni ≤ n (points
with a Ui value below a threshold are not assigned a segment), and segmentation
uncertainties {Ui ∈ Rni}nobj

i=1 . Although any object instance segmentation method
with this interface can be used in the proposed architecture, our implementation uses
BoNet [126]. BoNet produces an n×K matrix, where K is a predefined maximum
number of objects, and each row is a point’s probability distribution over object ID.
Ui is the max of the ith row, which is interpreted as the estimated probability each
point is correctly segmented. Architectural details of BoNet are in Appendix C.

Shape completion

The input to the shape completion module is the point cloud of the ith object segment
Ci ∈ Rni×3, and the output is a point cloud C̄i ∈ Rn̄i×3 that is a dense sampling of
points on all object faces, including faces not visible to the sensor. We also require
a completion uncertainty estimate for each point, Ūi ∈ Rn̄i . Although any shape
completion method with this interface can be used in the proposed architecture, our
implementation uses a modified version of PCN [128]. PCN consists of an encoder
(two PointNet layers [90]) and a decoder (three fully connected, inner product layers)
(details in Appendix C). We augmented the original version of PCN with a second
decoder for uncertainty estimates. In particular, the uncertainty decoder is trained
using a binary cross-entropy loss to predict the probability each point is within
Euclidean distance β ∈ R>0 of the nearest ground truth point. So the uncertainty
values should be interpreted as the estimated probability each completed point is
accurate. Example completions are shown in Figure 6.2b.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 76

(a) Observed cloud. (b) Complete cloud. (c) Ground truth.

Figure 6.2: Shape completions with PCN. Yellow represents high Ū values (near
1) and blue represents low Ū values (near 0.5). Additional examples are shown in
Appendix C.

6.2.2 Planning

We use a three-level planner, similar to Wan et al. [113]. The output action at
each level has a different level of abstraction: the arrangement planner produces
object displacements, the regrasp planner produces a pick-and-place sequence, and
the motion planner produces an arm trajectory.

Arrangement planner

The purpose of the arrangement planner is to determine a set of goal poses for the
objects that satisfies a given task. An example arrangement planner for the task of
placing a bottle upright onto a coaster samples goal poses for the bottle as follows:
align the longest axis with gravity, center the widest end just over the coaster, and
apply random rotations about gravity. While this is in general a difficult problem, as
there is uncertainty in the objects’ shapes and locations, we do not dwell on it here.
Instead, we implement an arrangement planner specific to each task and assume the
output goal set satisfies the task.

The input to the arrangement planner is a list of completed clouds, C̄1, . . . , C̄nobj
,

and the output is a set of triples {(T, c, i)j}
ngoal

j=1 , where T is a goal pose for the ith
object and c is an associated goal cost. Each object can have zero or more goals

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 77

associated with it. Compared to having one goal for one object (e.g. [109]), it is
better if the arrangement planner produces multiple goals for multiple objects, since
the minimum regrasp planning cost can only stay the same or decrease as additional
goals are considered. The goal cost c specifies preference between different goals. For
example, for bin packing, c could be equal to the height of the pile in the bin. The
same interface is implemented by each task-specific arrangement planner.

Regrasp planner

The regrasp planner takes in the triples from the arrangement planner and produces
a sequence of picks and places, i.e., effector poses, that displaces one object. If a
regrasp plan is not found, more goals can be requested from the arrangement planner
(as indicated by dashed lines in Figure 6.1). The main contribution of this chapter
concerns the regrasp planning cost, which is detailed in Section 6.3.

Motion planner

The motion planner finds a continuous motion between picks and places. Any off-
the-shelf motion planner will do. We use a three-level planner that first attempts a
linear motion, then Trajopt [96], and then RRT* with timeout [42]. If no motion
plan is found, the regrasp planner can be resumed from where it left off, but marking
the infeasible section so the same solution is not found again.

6.3 Regrasp Planning Under Uncertainty

The problem of regrasp planning under uncertainty is: given a set of completed
objects with corresponding perceptual uncertainty and given a set of goal poses
for each object, find a sequence of antipodal grasps and stable places maximizing
the probability of displacing an object to a goal pose. Regrasps are needed due to
kinematic constraints: the grasps at the object’s current pose may all be in collision
or out of reach at the object’s goal poses. In this case, a number of temporary places
(i.e., non-goal places) are needed. Our regrasp planner (Algorithm 6.1) extends
Tournassoud et al.’s [109] to handle multiple goals for multiple objects, arbitrary
additive costs, and discrete grasp/place sampling. Related planners (e.g, [2, 1, 80,
48]) could also have been adapted to the purpose: the main point is to incorporate
segmentation and shape completion uncertainty into the cost.

A key part of Algorithm 6.1 is the regrasp graph, RG. An example regrasp graph
is shown in Figure 6.3. The nodes of the regrasp graph are grasp-place combinations.
Edges are between nodes sharing either a grasp or a place: when the object is

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 78

Algorithm 6.1: Regrasp planner: run for each object.

Input : Number of sampling iterations N , completed cloud C̄, segmentation
uncertainty U , shape completion uncertainty Ū , goal poses and costs
{(T, c)j}

ngoal

j=1 , and costLowerBound .
Output: A list of gripper poses, plan, alternating between grasp and place

poses.
1 RG ← []
2 for i← 1, . . . , N do
3 G, gc ← SampleGrasps(C̄, U, Ū)
4 P, pc ← SampleTemporaryPlaces(C̄, U, Ū)

5 RG ← UpdateRegraspGraph(RG , {(T, c)j}
ngoal

j=1 , G, gc, P, pc)

6 plan, cost ← A∗(RG)
7 if cost ≤ costLowerBound then break

8 return plan

grasped, a change in place is allowed, and when the object is placed, a change in
grasp is allowed. The regrasp graph is organized into a matrix where rows refer to
grasps and columns refer to places. At any point in time, either a row change is
allowed to change the grasp, keeping the place fixed, or a column change is allowed
to change place, keeping the grasp fixed [109]. To Tournassoud et al.’s regrasp graph
we add costs: matrix values are the sum of the corresponding grasp and place costs if
the grasp-place combination is feasible (i.e., there is a collision-free inverse kinematics
(IK) solution) and infinity otherwise.

Algorithm 6.1 works as follows. For N steps, additional grasps (G with costs gc)
and temporary places (P with costs pc) are randomly sampled. Given the shape
completion C̄, grasp samples are constrained to satisfy the geometric antipodal con-
ditions (Definition 2.4), and place samples are constrained to satisfy the stability
conditions (Definition 2.5). Grasp and place costs are computed using the percep-
tual uncertainty estimates U and Ū from Section 6.2.1. (More on how these costs
are computed is in the next section.) The function UpdateRegraspGraph adds a
row for each sampled grasp and a column for each sampled place to RG. Then, it
checks IK and collisions for the new grasp-place combinations and sets RG values for
infeasible combinations to infinity. Finally, A* with a consistent heuristic finds an
optimal pick-and-place sequence, given the current samples [27]. In the next section
we define the cost function used by A* and give different ways of calculating grasp
and place costs. Algorithm 6.1 is run in parallel for each object that has at least one
goal pose.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 79

Figure 6.3: An example regrasp graph with three grasps, G = {G1, G2, G3} and three
places, P = {P1, P2, P3}. The cost of arriving at a reachable grasp-place combination
is the sum of the grasp and the place costs, gci + pcj. The cost of arriving at an
unreachable grasp-place combination is infinity. Edges allow changing row (grasp)
or column (place) but not both. In this example, the lowest cost solution for moving
the object from P1 to P3 (assuming positive costs) is to use G2 to move the object
to P2, regrasp the object using G3, and then place the object at P3.

6.3.1 Maximize probability of regrasp plan execution
success

The aim is to choose a regrasp plan that maximizes the joint probability each grasp
is antipodal and each temporary place is stable, i.e., maximize Equation 6.1, where
Gi is the event the ith grasp is antipodal, Pi is the event the ith place is stable, and
m is total number of picks or places. We assume each Gi and Pi is independent,
which gives the right side of Equation 6.1:

Pr(G1, P1, . . . , Pm/2) = Pr(G1) · · ·Pr(Pm/2). (6.1)

Taking the log and abbreviating Pr(Gi) as gi and Pr(Pi) as pi yields Equation 6.2:

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 80

log
[
Pr(G1, . . . , Pm/2)

]
=

m/2∑
i=1

log(gi) +

m/2∑
i=1

log(pi). (6.2)

Negating Equation 6.2 results in a non-negative, additive cost: the form required
by A*. The cost of taking a grasp/place action corresponds to an edge cost in the
regrasp graph.

Our final cost function is Equation 6.3, which adds two additional terms: the
plan length m ∈ N and the task cost c ∈ R associated with the goal placement
(from the arrangement planner, Section 6.2.2). w1, . . . , w4 ∈ R>0 are given trade-off
parameters. To complete the description, we next look at different ways of estimating
gi and pi.

J = w1m− w2

m/2∑
i=1

log(gi)− w3

m/2∑
i=1

log(pi) + w4c (6.3)

6.3.2 Probability grasps are antipodal and places are stable

In this section, we introduce four different ways (including GQ, MC, CU, and SP)
to estimate the probability the ith grasp in the regrasp plan is antipodal, gi, and
three different ways (including MC, CU, and SP) to estimate the probability the ith
placement in the regrasp plan is stable, pi .

Grasp quality (GQ)

One way to estimate gi is via a measure of “robustness” of the grasp to small per-
turbations in the nominal shape completion. For antipodal grasps, Murray et al.
suggest choosing grasps where the line between contacts is inside and maximally
distant from the edges of both friction cones ([79] p. 233). This way, a grasp will
satisfy the geometric antipodal conditions under small perturbations to the object’s
shape.

We place this idea into our probabilistic framework. For both contact points
j = 1, 2, let θj ∈ [0, π] be the angle between the object’s surface normal and the
line connecting both contact points. In light of the definition of an antipodal grasp
(Definition 2.4 in Chapter 2), if θj exceeds half the (given) angle of the friction cone
θmax , for either contact, the grasp will not be antipodal. θj is unknown because the
object’s shape is unknown.

Given an object’s shape completion, let nj be an estimate the object’s surface
normal at the jth contact point, and let bj be an estimate of the unit-length ray

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 81

extending in the direction of the line connecting both contact points in the direction
of the finger making contact. We assume θj is distributed according to a truncated
normal distribution with mode µj = arccos(bj ·nj) and given scale σ (Figure 6.4, left).
The probability bj lies in the friction cone is then Pr(θj ≤ θmax) = F (θmax ;µj, σ, 0, π),
where F is the cumulative density function of the truncated normal distribution
(Figure 6.4, right). We make the simplifying assumption that this probability is
independent between contacts, giving Equation 6.4.

gi =
2∏
j=1

F (θmax ;µj, σ, 0, π) (6.4)

Figure 6.4: Left. Relationship between the surface normals n1 and n2 (black) at
the contact points, the line b1 and b2 (blue) connecting the contact points, and the
angles µ1 and µ2 (magenta) not to exceed θmax . These quantities are estimates as they
depend on the (uncertain) shape completion. Right. Truncated normal probability
density functions with µ = 0◦ (blue), 6◦ (red), and 12◦ (yellow), and σ = 0.10.
Pr(θ ≤ θmax) is the area under each curve up to the vertical line at θmax = 12◦.
Notice that Pr(θ ≤ θmax) can never be 1 (so every grasp has a non-zero cost) and
reduces as µ increases.

The effect of the GQ estimator is to choose grasps that are as centered as possible
in both friction cones, given the estimated object shape. The scale parameter σ makes
the trade-off between regrasp plan length and centering of grasps: small σ prefers
centered grasps over short plans and large σ prefers short plans over centered grasps.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 82

Monte Carlo (MC)

Another approach is to estimate gi and pi via segmentation and completion samples,
as was done for grasping under shape uncertainty [44, 66, 51, 64]. The idea is to
randomly generate multiple segmentations then completions and set gi (or pi) equal
to the average grasp (place) antipodal (stability).

Let Pr(C̄i|C), for i = 1, . . . , nobj , be the probability the shape completion is C̄i ∈
Rn̄i×3 given the input point cloud is C ∈ Rn×3. We use the point-wise uncertainty
estimates Ui and Ūi from Section 6.2.1 to sample from the probability distribution
Pr(·|C) as follows.

To sample a shape: (a) sample a segmentation point-wise using the segmentation
mask and (b) compute the shape completion given this segmentation. To sample a
segmentation (a), the object ID for each point is independently sampled from the
probability distributions given by the segmentation matrix. (To reduce noise, we only
sample points whose U -value is below a threshold.) To sample a shape completion
(b), assume the ith point’s offset from the nominal point is i.i.d. ∼ N (0, σ2

i). Since Ūi
is the estimated probability the point is offset no more than β, the standard deviation
of the point’s offset, σi, is derived from the Gaussian cumulative distribution function
Φ as in Equation 6.5 to 6.6 (where the full derivation is shown in Appendix C). Then,
for each point in the completion, (b.1) sample a direction uniformly at random and
(b.2) sample an offset along this direction from a normal distribution with 0 mean and
standard deviation given by Equation 6.6. Example samples applying this method
to a scene with six objects are shown in Figure 6.5.

Ūi = 1− 2Φ(−β; 0, σ2
i) (6.5)

σi =
β√

2 erf−1(Ūi)
(6.6)

gi is estimated as #antipodal/M and pi is estimated as #stable/M where M is
the number of shape samples and #antipodal is the number of shapes for which the
ith grasp is antipodal and #stable is the number of shapes for which the ith place
is stable.

Contact uncertainty (CU)

Computing gi and pi with MC is computationally expensive if M is large. This
motivates considering uncertainty only at contact points. For instance, placing an
object on its unseen, predicted geometry could likely be unstable, so we penalize

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 83

Figure 6.5: Four Monte Carlo point cloud segmentation-completion samples for a
scene with six objects. Each color represents a different object segment. Since the
green bottle on the bottom-right has little variation between samples, grasps and
places for this object will be preferred.

grasps/places on uncertain object parts. The same idea is behind penalizing high-
variance grasp contacts [66, 58].

Formally, suppose we estimate Pr(Vi), where Vi is the event the ith point in the
completed cloud is segmented correctly. Suppose we also estimate Pr(V̄i|Vi), where V̄i
is the event the ith point in the completed cloud is within Euclidean distance β of a
ground truth point, given the point is segmented correctly. Here, we assume whether
a grasp (place) is antipodal (stable) depends only on Vi and V̄i for each predicted
contact point (where contacts are explained in Figure 6.6). Assuming independence
between contacts, gi and pi are estimated via Equation 6.7 and 6.8.

gi = Pr(V̄l|Vl)Pr(Vl) Pr(V̄r|Vr) Pr(Vr) (6.7)

pi =
3∏
i=1

Pr(V̄ti |Vti) Pr(Vti) (6.8)

The uncertainty values from PCN (Ūi in Section 6.2.1) estimate Pr(V̄i|Vi) – the
probability ith point in the completed cloud is within Euclidean distance β of a
ground truth point given the point is segmented correctly. Estimating Pr(Vi) – the
probability the ith point in the shape completion is segmented correctly – from
the uncertainty values from BoNet (Ui in Section 6.2.1) is less straight-forward.
This is because there is no one-to-one correspondence between segmented points and
completed points. (In fact, there are usually more completed points than segmented
points.) We assign the nearest point in the segmented cloud to each point in the
completed cloud, i.e., use Ui as an estimate of Vj where the ith point in the segmented
cloud is nearest to the jth point in the completed cloud.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 84

Figure 6.6: Left. For an antipodal grasp (shown in red), there are at least two contact
points, l and r. Right. For a stable placement on a flat surface, there are at least
three contact points, t1, t2, and t3. Colors represent estimates of Pr(V̄i|Vi) Pr(Vi),
where yellow represent higher probabilities.

Success prediction (SP)

gi and pi can also be directly estimated with a neural network. Here, we encode
grasps as the points from the shape completion, C̄, inside the gripper’s closing region
with respect to the gripper’s reference frame (Figure 6.7), as in [59]. For places, the
completed cloud, C̄, is transformed to the place pose and translated with the bottom-
center of the cloud at the origin (Figure 6.8).

Figure 6.7: The SP grasp descriptor is the completed points in the gripper’s closing
region with respect to the gripper’s reference frame. Liang et al. also employ this
idea for ranking grasps [59].

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 85

Figure 6.8: The SP place descriptor is the completed points with respect to the
target place’s orientation and with the bottom-center at the origin.

Training data is generated in simulation as follows. Antipodal grasps are sam-
pled from the shape completion. Then, training labels are generated by testing the
antipodal condition for the same grasps on the ground truth point cloud. Similarly,
stable places are sampled from the shape completion, and training labels are gener-
ated by testing the stability conditions for the same places on the ground truth point
cloud.

For network architecture, we use PCN [128] with a single output with sigmoid
activation, trained with the binary cross-entropy loss. (A diagram of PCN is in
Appendix C.) We train with 1 million examples in mini-batches of 32 using Adam
[45] with base learning rate 0.0005. Grasps are trained for 100 epochs, and places
are trained for 50 epochs.

6.4 Experiments

We ran experiments in simulation and the real world to compare the different ways
in Section 6.3.2 for accounting for object shape uncertainty in regrasp planning.
The hypothesis is that a cost using perceptual uncertainty estimates will choose
regrasp plans that are executed successfully more often on average compared to
common methods which do not. GQ is considered a baseline as it does not use
perceptual uncertainty estimates: it only aims for robustness to small perturbations
in object shape. We also compare to two other baselines: no cost, which takes
the first regrasp plan found, and step cost, which includes the step cost term only
(w1 = 1 in Equation 6.3). The step cost appears almost exclusively in the regrasping
literature, e.g., [109, 2, 1, 113].

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 86

6.4.1 Setup

The experimental environment is illustrated in Figure 6.9, left. We evaluate the
proposed system on the following tasks:

1. Canonical placement. Place any 1 of 5 objects into a goal pose. The ar-
rangement planner is an oracle which consistently gives the same goal pose for
an object. The purpose is to analyze regrasp performance independent from
arrangement planner errors.

2. Bin packing. Place 6 objects into a box minimizing packing height. This is
known as the 3D irregular-shaped open dimension problem [116].

3. Bottle arrangement. Place 2 bottles upright onto 2 coasters (from our prior
work [22, 23]).

Figure 6.9: Left. Environment includes a UR5 arm, a Robotiq 85 gripper, and a
Structure depth sensor. Right. 34 same-category novel objects used for real-world
packing experiments.

6.4.2 Simulation experiments

The environment is simulated by OpenRAVE [10] using 3DNet objects [122]. Objects
are partitioned into Train and Test sets of the same category (boat, bottle, box,

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 87

car, dinosaur, mug, and wine glass) and the Test-2 set for novel categories (airplane,
bowl, and stapler). A depth sensor, situated above the objects, captures a point cloud
which is then passed into BoNet for segmentation. Grasps succeed if (a) exactly 1
object intersects the hand closing region, (b) the antipodal condition (Definition 2.4)
with 24◦ friction cone is met, and (c) the robot is collision-free. Places are stable if
the conditions of Definition 2.5 are met.

Evaluation

We evaluate place execution success rate – the proportion of regrasp plans where
an object is moved to a goal (i.e., no grasp failures) – and temporary place stability
rate – the proportion of temporary places that are stable. These metrics are fast to
compute and indicate how well the regrasp plans succeed in placing objects. It is also
important to consider plan length – the number of grasps and places – and regrasp
planning time – the amount of time spent by the regrasp planner – as these affect
how long it takes to complete the task. We use a 1-sided, same-variance, unpaired
t-test to decide if one method significantly outperforms another. (If p ≤ 0.05, the
difference is considered to be significant.) Green cells in the tables indicate significant
improvements over the best-performing baseline.

Perception ablation study

We quantify the potential benefit of accounting for uncertainty for the bin packing
task. We evaluate performance with ground truth perception (GT Seg. & Comp.),
imperfect completion (GT Seg.), imperfect segmentation and completion (Percep.),
and without shape completion (GT Seg. & No Comp.) “Imperfect” means the
objects’ segmentation/completion is estimated from the observed point cloud. Step
and task costs are used, i.e., w1 = w4 = 1 and w2 = w3 = 0 in Equation 6.3, where
the task cost, c, is the estimated final packing height in centimeters.

GT Seg. & Comp. GT Seg. (Train) GT Seg. (Test) Percep. (Train) Percep. (Test) GT Seg. & No Comp.
Place Execution Success 0.929 ± 0.008 0.767 ± 0.013 0.747 ± 0.013 0.718 ± 0.014 0.710 ± 0.014 0.508 ± 0.046
Regrasp Plan Found 0.957 ± 0.006 0.882 ± 0.009 0.939 ± 0.007 0.879 ± 0.009 0.941 ± 0.007 0.100 ± 0.009
Temporary Place Stable 1.000 ± 0.000 0.769 ± 0.122 1.000 ± 0.000 0.828 ± 0.071 0.826 ± 0.081 0.500 ± 0.500
Regrasp planning time (s) 35.62 ± 1.103 38.46 ± 1.115 38.68 ± 1.141 35.76 ± 1.059 35.05 ± 1.077 15.86 ± 1.482

Table 6.1: Perception ablation study for bin packing. Showing average ± standard
error over 200 episodes.

Results (shown in Table 6.1) are as expected. A clear drop in performance is
observed as perception becomes imperfect (down 18% for imperfect completion and

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 88

another 4% for imperfect segmentation). Thus, a large source of error is due to per-
ception, so there is space for improvement by accounting for perceptual uncertainty.
Without shape completion, regrasp planning is crippled (regrasp plan found rate
drops from 94.1% for Percep. Test to just 10.0%). This is because insufficient grasp
and place samples are found to displace objects. Perception ablation studies for bin
packing Test-2 and bottle arrangement show similar trends (Appendix C).

Regrasp cost comparison

We test the hypothesis that a method estimating perceptual uncertainty (either MC,
CU, or SP from Section 6.3.2) selects regrasp plans that execute successfully more
often on average than the baselines (no cost, step cost, and GQ).

Results for the canonical task are shown in Table 6.2. In this case, MC, CU,
and SP methods have significantly higher temporary place stability rates than no
cost (which happened to do better than step cost and GQ). There is no doubt SP
outperforms GQ for place execution success rate (p = 9.7 × 10−9). On the other
hand, no cost has the shortest regrasp planning time, and step cost has the shortest
regrasp plans on average. This is expected, as no cost optimizes for planning time
and step cost optimizes for plan length.

No Cost Step Cost GQ MC CU SP
Place Execution Success 0.727 ± 0.010 0.777 ± 0.009 0.856 ± 0.008 0.852 ± 0.008 0.830 ± 0.008 0.913 ± 0.006
Temporary Place Stable 0.785 ± 0.015 0.623 ± 0.067 0.700 ± 0.031 0.852 ± 0.022 0.885 ± 0.029 0.967 ± 0.012
Plan Length 3.061 ± 0.029 2.079 ± 0.009 2.273 ± 0.016 2.286 ± 0.016 2.157 ± 0.013 2.239 ± 0.015
Regrasp planning time (s) 2.462 ± 0.061 6.413 ± 0.353 62.19 ± 0.326 117.6 ± 0.724 54.88 ± 0.366 61.54 ± 0.900

Table 6.2: Cost comparison for the canonical task. Showing average ± standard
error over 2, 000 episodes. The left three columns (Step Cost, No Cost, and GQ)
are baselines. The right three columns (MC, CU, and SP) are uncertainty-aware
costs. A cell is highlighted green iff the corresponding value is significantly higher
(i.e. p ≤ 0.05) than the highest baseline value. While planning time is less for no
cost and plan length is shorter for step cost, SP has higher place execution success
and temporary place stable rates.

Results for bin packing are shown in Table 6.3. SP again performs best in terms
of place execution success and temporary place stability. However, for bin packing,
we do not see a significant improvement for place stability over the step cost, but
this is because regrasps are rare with the step cost, obscuring the significance of the
results. We again note that no cost has the shortest regrasp planning time and step
cost has the shortest regrasp plans on average.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 89

No Cost Step Cost GQ MC CU SP
Place Execution Success 0.651 ± 0.013 0.725 ± 0.012 0.748 ± 0.012 0.756 ± 0.012 0.712 ± 0.013 0.779 ± 0.012
Temporary Place Stable 0.784 ± 0.024 0.857 ± 0.097 0.845 ± 0.030 0.904 ± 0.028 0.848 ± 0.054 0.959 ± 0.018
Plan Length 2.665 ± 0.031 2.038 ± 0.008 2.293 ± 0.021 2.222 ± 0.019 2.105 ± 0.013 2.233 ± 0.019
Regrasp planning time (s) 4.904 ± 0.230 7.201 ± 0.393 84.56 ± 0.827 90.10 ± 0.892 72.00 ± 0.835 86.61 ± 1.040

Table 6.3: Cost comparison for the bin packing task. Showing average ± standard
error over 230 episodes. The left three columns (Step Cost, No Cost, and GQ) are
baselines. The right three columns (MC, CU, and SP) are uncertainty-aware costs.
A cell is highlighted green iff the corresponding value is significantly higher (i.e.
p ≤ 0.05) than the highest baseline value. As with the canonical task, planning time
is less for no cost and plan length is shorter for step cost, but SP has higher place
execution success. The Temporary Place Stable rate comparison is less meaningful
since the standard error for the best-performing baseline, Step Cost, is high.

For both packing and canonical tasks, SP significantly outperforms all baselines
in terms of place execution success, which supports the hypothesis. (This is also true
for test objects from novel categories: see Appendix C).

6.4.3 Real world experiments

We seek to (a) verify the importance of uncertainty seen in simulation results and (b)
see if the perceptual components, trained with simulated data, work well with real
sensor data. For these experiments, same-category novel objects are used (Figure 6.9,
right).

To answer part (a), a regrasp cost comparison for bin packing is shown in Ta-
ble 6.4. Both MC and SP methods significantly outperform the step cost (which
outperforms GQ). Example packing and regrasp sequences are shown in Figure 6.10.
To answer part (b), no domain transfer was needed for bin packing. For bottles,
BoNet (but not PCN) overfit to simulation data. This problem was mitigated by
adding simulated sensor noise.

Step Cost GQ MC SP
Place Success Rate 0.839 ± 0.027 0.833 ± 0.028 0.911 ± 0.021 0.917 ± 0.021
Grasp Success Rate 0.883 ± 0.023 0.866 ± 0.024 0.947 ± 0.016 0.933 ± 0.017
Grasp Attempts 196 201 207 210
Number of Regrasps 17 21 27 30

Table 6.4: Packing performance on the real robot. Showing average ± standard error
over 30 episodes, each with 6 objects.

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 90

We also compare bottle arrangement performance to our previous method, which
uses RL to learn a pick-and-place policy [23]. Many of the same bottles as before are
included, but 4/15 of them are more challenging. Two of the bottles are difficult to
distinguish orientation (size of tops near size of bottoms), and two are near the 8.5 cm
gripper width. Results are shown in Table 6.5. With the proposed method, all places
are correct. Only the grasp success rate is lower than before, but all 3 grasp failures
are with the wider bottles. Overall, we conclude the modular approach performs
better (80% vs. 67% task success rate).2

Shape Completion HSA [23]
Number of Objects Placed 1.800 ± 0.074 1.667 ± 0.088
Task Success Rate 0.800 ± 0.074 0.667 ± 0.088
Grasp Success Rate 0.948 ± 0.029 0.983 ± 0.017
Place Success Rate 1.000 ± 0.000 0.900 ± 0.040

Table 6.5: Bottles performance for the proposed method versus [23]. Showing average
± standard error over 30 episodes.

Figure 6.10: Top. Example packing sequence. Bottom. Example situation requir-
ing a regrasp. Since the box is initially right-side-up, and the goal is to place it
bottom-side-up, a regrasp is needed to flip the box over.

6.5 Discussion

Object instance segmentation and shape completion enable use of existing planning
algorithms for pick-and-place of sensed objects. However, perceptual errors are still a

2Source code, additional results, and a video of some of the real robot experiments are available
at https://github.com/mgualti/GeomPickPlace.

https://github.com/mgualti/GeomPickPlace

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 91

major source of failure. To compensate for this, we compare different planning costs
modeling probability of successfully executing a regrasp plan. Results show the
SP cost, which uses separate networks to predict grasp/place success, consistently
performs nearly as well as or outperforms all other costs. We attribute this to: (a)
unlike baseline and GQ costs, SP can detect when perception is uncertain based
on the distribution of perceived points; (b) unlike the CU cost, which considers
uncertainty only at contact points, SP considers uncertainty at many points; and (c)
unlike the MC cost, which requires sampling and evaluating multiple shapes, SP is
computationally cheaper. On the other hand, when shape completion is accurate,
e.g., when trained with one category like bottles, the step cost is a reasonable choice
as planning and execution is faster than SP.

6.5.1 Limitations

We note some limitations with this approach. First, the regrasp planner is much
slower with a more sophisticated cost function than the step cost. This is because the
step cost can exit the sampling loop when a two step plan is found, which occurs often
in our experiments, while the other costs have no easy stopping criterion. Second,
segmentation and completion accuracy is much lower with novel-object categories
(cf. Appendix C). Third, integrating additional views to decrease uncertainty is an
important aspect not considered.

6.5.2 Related Work

This chapter is based on material first published in [24].

Deep shape completion for robotic manipulation

Varley et al. may have been the first to use a deep neural network to predict an
object’s 3D shape for the purpose of planning grasps [111]. Their network is a 3D
CNN with a 3D occupancy grid input/output. The output occupancy grid is post-
processed into a mesh model of the object, which is used by GraspIt! [68] to plan
grasps. As they predicted, “This ability to infer occluded geometries can be applied
to a multitude of robotic tasks.” Instead of relying on a deep network, Mitash
et al. relied on integrating multiple views of an object to complete its shape for
regrasping [70]. They demonstrated inserting an object into a small opening in the
table. Uncertainty was handled conservatively by assuming the entire unobserved
region was part of the object (and thus would be too large for the slot until more

CHAPTER 6. REGRASP PLANNING WITH UNCERTAIN PERCEPTION 92

views were integrated). We appear to be amongst the first to investigate deep shape
completion for pick-and-place and regrasping.

Grasping under uncertainty

Many of the cost functions here were inspired by grasp planning under uncertainty.
Mahler et al. compared a probabilistic model (based on the variance of the GPIS
at contact points, analogous to the CU method) to an MC approach [66]. The MC
approach did better but has higher computational cost. Lundell et al. represented
objects as voxels, used a deep network to complete objects, and performed MC
sampling using dropout [64]. Uncertainty was more important for novel objects than
for training objects. The SP cost was inspired by our prior work with GPD [21, 84]
and Liang et al.’s PointNetGPD [59], which builds off of GPD by taking in point
clouds as input instead of depth images.

93

Part IV

Conclusion

...the Scientist, like the Pilgrim, must wend a straight and narrow path
between the Pitfalls of Oversimplification and the Morass of Overcom-
plication.

Richard Bellman in Dynamic Programming

94

Chapter 7

Discussion

We studied the pick-and-place problem where objects are partially visible and where
objects’ shapes are not given. Two fundamentally different approaches were taken,
including policy learning and modular, perception-planning architectures. While
each approach required different innovations for effective pick-and-place of partially
visible, novel objects, they both required innovations to efficient sampling of 6-DoF
effector poses for candidate grasp and place actions. In this chapter we begin by
discussing this common challenge. Afterward, takeaways specific to each approach
and research opportunities extending from this work are discussed.

7.1 Takeaways

7.1.1 Sampling 6-DoF effector poses

Both policy learning and modular approaches repeat the following algorithmic steps:

1. Sample effector poses in the robot’s workspace, a subset of SE (3).

2. Rank poses by probability of grasp or placement stability and task relevance.

3. Find a motion plan moving the effector to the highest-ranking, reachable pose.

In our implementations, Steps 2 and 3 heavily relied on existing machine learning and
motion planning technology, respectively. However, an existing technology could not
be immediately adapted for implementing Step 1. In Chapters 4 to 6, we explored
different ways to implement Step 1:

CHAPTER 7. DISCUSSION 95

• Local geometry heuristics. In Chapter 4, we showed how GPD heuristics
for sampling grasp poses [21, 84] are used to limit the grasp choices for pick-
and-place. Similar heuristics could be developed for sampling place poses, e.g.,
align the hand to a horizontal plane.

• Spatial attention. In Chapter 5, we showed how learning to sequentially
focus attention enables dense sampling of candidate effector poses.

• Shape completion. In Chapter 6, we showed how shape completion enables
efficient sampling of grasps and placements which are stable given the estimated
object’s shape.

While the feasibility of each sampling mechanism was shown for a range of tasks,
examples demonstrating a lack of generalizability can be found. For local geometry
heuristics, grasps on the tops of bottles or near the edges of mugs were not found
due to limitations in GPD’s sampling heuristics. For spatial attention, the system
had to be retrained for each new task, even when the modifications to the task were
fairly minor, e.g., adding distractor objects. For shape completion, the grasp and
placement samples were useful if the predicted shape was reasonably accurate, which
was not the case for novel-object categories. It may be there is no best approach for
every task and situation, so efficient effector pose sampling will likely remain a key
issue for pick-and-place for some time.

7.1.2 Abstraction in policy learning

An important takeaway for pick-and-place policy learning is that abstraction is es-
sential. In the context of reinforcement learning, an abstraction is a function map-
ping high-dimensional states or actions to a lower dimensional space. This mapping
can alias states/actions, meaning many states/actions map to the same abstract
state/action (i.e., the abstraction is not invertible). Aliasing can prevent the system
from learning an optimal policy. On the other hand, without abstraction, the space
of observations and actions is simply too large for efficient learning.

In Chapter 4, actions were the point cloud in the vicinity of effector pose sam-
ples, and observations were a history of actions. This is in contrast to the “ground
MDP”: 6-DoF effector poses for actions and a history of full-scene point clouds for
observations. In Chapter 5, observations were again restricted to regions of space
targeted for manipulation, and virtual sense actions enabled efficient sampling of
effector poses. As many types of abstraction are possible, and it is not at all clear
which are most appropriate for any given task, abstractions will likely remain a rich
source of creativity for some time to come.

CHAPTER 7. DISCUSSION 96

7.1.3 Uncertainty in planning

In Chapter 6, we showed perceptual uncertainty is relevant to regrasping perfor-
mance. This is hardly surprising, as there are entire books dedicated to the impor-
tance of uncertainty in robotics [107]. What is not clear is how to efficiently represent
and algorithmically account for uncertainty. We explored different approaches, and
we found that using separate neural networks to predict probability of grasp and
place stability works well in practice. But there are other options, including belief
space planning [38, 125], or better implementations of Monte Carlo sampling [64],
which may also be appropriate.

7.2 Opportunities for Future Research

7.2.1 Active sensing

No system proposed in this thesis plans additional views of the scene. Intuitively,
integrating additional views should decrease perceptual uncertainty, as more of the
objects will become visible, and thus result in improved performance. While active
sensing has been investigated for grasping [25, 76], surprisingly few have systemati-
cally investigated this problem for pick-and-place [70].

7.2.2 Rearrangement

If the progression of robotic manipulation for novel objects mimics that of fully
observed objects, we will see grasping, regrasping, and then rearrangement. Rear-
rangement planning is the problem of moving the objects into a goal arrangement,
i.e., a set of goal poses for each object. As rearrangement is still very difficult for
fully observed settings [120, 48], not much has been done to address this problem
for partially observed, novel objects. Tasks in Chapters 5 and 6 involved rearrang-
ing a scene, but there we assumed the order of the arrangement was not significant
in terms of collision-free arm motions. This, in general, is not the case, as placed
objects become obstacles. Indeed, for the partially observed setting we have the
new problem of how placed objects affect the visibility of the scene. Again, policy
learning approaches immediately suggest themselves for solving this problem, but
learning over long time horizons takes even longer.

CHAPTER 7. DISCUSSION 97

7.2.3 Pushing

Of course, static pick-and-place actions are not the only useful actions. Some rear-
rangement tasks are more time consuming than necessary when we are constrained
to static pick-and-place. For example, if the target object is in the middle of a bunch
of other objects, it would be more efficient to push some of the objects out of the
way before grasping the target object. However, predicting the effects of pushing
for partially visible, unknown objects is challenging (e.g., see [127] for an example
of pushing a single, unknown object). Finding a unified framework for novel-object
pick-and-place and pushing is an interesting challenge for the future.

98

Appendix A

Reinforcement Learning

This chapter provides a brief introduction to reinforcement learning. A more com-
plete treatment can be found in Sutton and Barto’s book [103]. This gives the
necessary background for understanding the models and algorithms used in Part II.

A.1 Markov Decision Processes

Reinforcement learning (RL) is a set of techniques for solving Markov decision pro-
cesses, particularly when the transition and reward functions are unknown:1

Definition A.1 (Markov decision process (MDP)). A Markov decision process is
a 4-tuple, M = 〈S,A, T , R〉, consisting of a set of states S, a set of actions A, a
transition function T : S × A × S – where T (s, a, s′) = Pr(s′|a, s) is the probability
the next state is s′ ∈ S given the current action is a ∈ A and the current state is
s ∈ S – and a reward function R : S × A× S → R.

The MDP is a mathematical model of the robot’s environment. At each time step
t ∈ {1, 2, . . . , tmax}, the robot (agent) observes the current state, takes an action,
and receives a reward. (See Figure A.1 for an example.) Throughout this chapter,
we assume S and A are finite and R and t are bounded. A consequence of assuming
a finite number of time steps is that the state variable must include a component
indicating the current time step. This is because, for a finite-horizon MDP, process
termination is itself considered a state, and the transition probabilities must include
the probability of transitioning to this state.

A policy π : S → A is a function mapping states to actions. Given an MDP M
and a start state s1 ∈ S, the objective of RL is to find a policy π∗ maximizing the

1Dynamic programming treats the case of known transition and reward functions.

APPENDIX A. REINFORCEMENT LEARNING 99

0.5
1.00.5

0.0

1.0
0.0

0.6
0.0

0.4
1.0

1.0
0.0

Figure A.1: An MDP with S = {s1, s2, s3} and A = {a1, a2}. Transition probabilities
are shown above the arrows in blue, and rewards are shown below the arrows in red.
Evidently, the optimal action is a1.

expected sum of future rewards, i.e., Equation A.1, where st is the tth state visited
and at is the tth action taken. The expectation is taken with respect to T .

π∗ = argmax
π

E

[
tmax∑
t=1

R(st, π(st), st+1)

]
(A.1)

A.2 Policies

Instead of searching the space of policies, it can be more efficient to incrementally
learn an action-value function. An action-value function is the expected sum of
future rewards given the current state st, action at, and policy π (Equation A.2).
The optimal action-value function satisfies the Bellman equation (Equation A.3), and
the objective (Equation A.1) is restated in terms of the optimal action-value function
(Equation A.4). A policy which takes an action maximizing the action-value function
is called a greedy policy.2

2There are multiple greedy policies when the argmax is ambiguous; however, q∗ is unique.

APPENDIX A. REINFORCEMENT LEARNING 100

qπ(st, at) =
tmax∑
i=t

E [R(si, ai, si+1)] (A.2)

q∗(st, at) = E
{
R(st, at, st+1) + max

a∈A
[q∗(st+1, a)]

}
(A.3)

π∗(st, at) = argmax
a∈A

q∗(st, a) (A.4)

Because the agent does not know the transition and reward functions ahead,
the action-value function must be estimated. An estimated action-value function
is denoted Q : S × A → R and is called the Q-function. The greedy policy with
respect to Q is problematic as the agent avoids actions with underestimated value.
The trade-off between receiving high expected sum of future rewards, with respect
to Q, and improving the accuracy of Q is called exploration versus exploitation.

To facilitate exploration, sometimes stochastic policies are used. The simplest
and most common of these is ε-greedy (Equation A.5, where, abusing notation, π
is a probability distribution). In some implementations, the parameter ε ∈ [0, 1] is
decremented as learning progresses, so the ε-greedy policy becomes more like the
greedy policy.

π(a|s) =

{
1− ε+ ε

|A| if a = argmaxa′ Q(s, a′)
ε
|A| otherwise

(A.5)

A.3 Algorithms

With finite state and action spaces, algorithms exist for computing q∗ to arbitrary
precision. When state or action spaces are continuous, approximate methods must be
used instead. Approximate methods resemble the exact algorithms, but a different
data structure is used to represent the Q-function.

A.3.1 Exact algorithms

There are three similar algorithms for iteratively improving an action-value function
from experience. The first is Q-learning (Algorithm A.1) [117]. With an appropriate
schedule for decreasing α, and if all states continue to be visited, Q-learning con-
verges to q∗ as the number of iterations goes to infinity [118]. Interestingly, this is
independent of the policy used by Q-learning. The second algorithm is Sarsa (Algo-
rithm A.2) [92]. Sarsa uses the next action chosen by the policy instead of the action

APPENDIX A. REINFORCEMENT LEARNING 101

maximizing Q for the Q-function update. (Compare line 7 in Algorithm A.1 to line
8 in Algorithm A.2.) Sarsa converges to q∗ under the same conditions as Q-learning
and with the additional condition that the policy used for training converges in the
limit to the greedy policy [97]. The third algorithm is based on Monte Carlo sampling
of sums of future rewards (Algorithm A.3). The disadvantage of this algorithm is
that the Q-function is not updated until the end of the episode. This is problematic
only for long time horizons. It is not known if the MC algorithm always converges
[103].

Algorithm A.1: Q-learning

Input : N, tmax ∈ N, α, ε ∈ [0, 1]
1 Q(s, a)← 0,∀s ∈ S,∀a ∈ A // Initialize Q-function.
2 for i← 1, . . . , N do
3 s ∼ I // Sample initial state.

4 for t← 1, . . . , tmax do
5 a ∼ π(·|s, ε) // Sample action using ε-greedy.
6 Take a and observe s′ and r = R(s, a, s′)
7 Q(s, a)← (1− α)Q(s, a) + α [r + maxa′ Q(s′, a′)]
8 ε← Decrement-ε(i, t); α← Decrement-α(i, t)
9 s← s′; a← a′

Algorithm A.2: Sarsa

Input : N, tmax ∈ N, α, ε ∈ [0, 1]
1 Q(s, a)← 0,∀s ∈ S,∀a ∈ A // Initialize Q-function.
2 for i← 1, . . . , N do
3 s ∼ I // Sample initial state.

4 a ∼ π(·|s, ε) // Sample action using ε-greedy.
5 for t← 1, . . . , tmax do
6 Take a and observe s′ and r = R(s, a, s′)
7 a′ ∼ π(·|s, ε) // Sample next action using ε-greedy.
8 Q(s, a)← (1− α)Q(s, a) + α [r +Q(s′, a′)]
9 ε← Decrement-ε(i, t); α← Decrement-α(i, t)

10 s← s′; a← a′

Algorithms A.1 and A.2 are called 1-step Q-learning and Sarsa, respectively,
because the update rule (lines 7 and 8, respectively) include the reward for exactly

APPENDIX A. REINFORCEMENT LEARNING 102

Algorithm A.3: Monte Carlo

Input : N, tmax ∈ N, α, ε ∈ [0, 1]
1 Q(s, a)← 0,∀s ∈ S,∀a ∈ A // Initialize Q-function.
2 C(s, a)← 0,∀s ∈ S,∀a ∈ A // Initialize counts.

3 U(s, a)← 0,∀s ∈ S,∀a ∈ A // Initialize sums.

4 for i← 1, . . . , N do
5 s ∼ I // Sample initial state.

6 for t← 1, . . . , tmax do
7 a ∼ π(·|s, ε) // Sample action using ε-greedy.
8 Take a and observe s′ and r = R(s, a, s′)
9 st ← s; at ← a; rt ← r // Store experience.

10 s← s′

11 g ← 0 // Sum of future rewards.

12 for t← tmax , . . . , 1 do
13 g ← g + rt
14 C(st, at)← C(st, at) + 1
15 U(st, at)← U(st, at) + g
16 Q(st, at)← U(st, at)/C(st, at)

17 ε← Decrement-ε(i)

1 time step. n-step Q-learning and Sarsa are obtained by incorporating the last n
rewards into the update rule. For example, the n-step update for Sarsa is given in
Equation A.6, where rt is the most recently observed reward, rt−1 is the previously
observed reward, and so on. n-step versions with n > 1 often outperform the original
algorithms [103], especially when there is no reward for a fixed number of steps [23].

Q(s, a)← (1− α)Q(s, a) + α [rt−n+1 + · · ·+ rt−1 + rt +Q(s′, a′)] (A.6)

A.3.2 Approximate algorithms

A popular method for approximating an optimal value function, even when the state
space is high-dimensional and continuous, is deep Q-learning [73]. The method is
shown in Algorithm A.4. There are three differences from standard Q-learning. First,
the Q-function, now denoted Q(s, a; θ), is implemented as a deep neural network
and is parameterized by a vector θ. Second, experiences are stored in a database
D, and updates are performed using random batches from the database. Third, the

APPENDIX A. REINFORCEMENT LEARNING 103

Q-function parameters (weights) are updated with gradient descent, using the loss
function Equation A.7, where the expectation is taken with respect to a distribution
over the experience database (uniform by default) and θ̂ is an outdated copy of θ.
It is straight-forward to implement a Sarsa version of DQN using the loss function
Equation A.8.

L(θi) = E
[(
r + max

a′
Q(s, a′; θ̂)−Q(s, a; θ)

)2
]

(A.7)

L(θi) = E
[(
r +Q(s, a′; θ̂)−Q(s, a; θ)

)2
]

(A.8)

A.4 Beyond Value Learning

A problem with DQN is it requires a discrete, small set of action choices.3 An
alternative without this issue is to search in policy space. Algorithms of this type
include REINFORCE [121], DDPG [60], and A3C [71]. Since these are not used in
this thesis, we will not cover them further.

Another important issue that arises in robotics is partial observability. The def-
inition of an MDP makes it clear that the transition function is purely a function
of the current state, the current action, and the next state. In reality, it is easy to
represent the state in a way that violates this assumption. For instance, consider
a robot which can move its point cloud sensor. If the object to be manipulated is
occluded from the current view, the probability the manipulation action will suc-
ceed could change if past views are considered. In this case, the above algorithms
would not find an “optimal” policy in the sense that a better policy could be found
if the robot remembered past observations. In this case the environment is actually
a POMDP:

Definition A.2 (Partially observable Markov decision process (POMDP)). A par-
tially observable Markov decision process is a 6-tuple, P = 〈S,A, T , R,Ω, O〉, where
〈S,A, T , R〉 is an MDP, Ω is a set of observations, and O : A × S × Ω → R is
O(a, s′, o) = Pr(o|a, s′), i.e., the probability the observation is o given the state after
taking action a is s′.

In this case, the robot does not observe the state directly, but instead gets an
observation, which stochastically depends only on the action and next state. This

3Otherwise, it would not be possible to evaluate maxa when evaluating the policy or the loss.

APPENDIX A. REINFORCEMENT LEARNING 104

Algorithm A.4: Deep Q-learning

Input : K,M,N, tmax ∈ N, ε ∈ [0, 1]
1 D ← {} // Initialize replay database to empty.

2 θ ∼ Θ // Randomly sample weights of Q.

3 θ̂ ← θ // Copy θ to target weights.

4 k ← 0 // Reset counter for θ̂.
5 for i← 1, . . . , N do
6 s ∼ I // Sample initial state.

7 for t← 1, . . . , tmax do
8 a ∼ π(·|s, ε) // Sample action using ε-greedy.
9 Take a and observe s′ and r = R(s, a, s′)

10 D ← D ∪ {(s, a, s′, r)} // Store transition in database.

11 D ← PruneDatabase(D) // Remove an experience if full.

12 L← 0
13 for j ← 1, . . . ,M do
14 (ŝ, â, ŝ′, r̂) ∼ D // Sample an experience from database.

15 L← 1
M

(
r̂ + maxâ′ Q(ŝ, â′; θ̂)−Q(ŝ, â; θ)

)2

16 Perform a gradient descent step on L w.r.t. θ
17 k ← k + 1
18 if k ≥ K then
19 k ← 0

20 θ̂ ← θ // Update target weights.

21 ε← Decrement-ε(i, t)
22 s← s′; a← a′

is useful because the robot no longer needs to have a Markov representation of the
state, which is often difficult to obtain.

A POMDP can be reduced to an MDP by representing state with the entire his-
tory of observations and actions up to the current time step t, i.e., ŝ in Equation A.9
([6] pp. 187-188). With this reduction, all of the above methods are applicable.
However, the dimension of the state space is now linear in tmax , making the prob-
lem PSPACE-hard [83]. For this reason, in practice, often only the last k � tmax

observations and actions are stored as an approximation to the Markov state.

ŝ = (o1, o2, . . . , ot, a1, a2, . . . , at−1) (A.9)

APPENDIX A. REINFORCEMENT LEARNING 105

A.5 Further Reading

Most of the notation used here is due to Sutton and Barto [103]. Bertsekas gives
an overview of dynamic programming for finite horizon [6] and infinite horizon [7]
problems. DQN was preceded by TD-Gammon, a high-performing backgammon
player using a neural network representation of the Q-function [105]. When TD-
Gammon was applied to other problems, such as Atari games, learning was unstable
[73]. DQN was aimed at resolving this issue [73]. Many improvements have been
made to DQN, several of which were combined in [30]. Smallwood and Sondik give
exact solution methods for small POMDPs [98], and a brief introduction to POMDPs
is given by Kaelbling et al. [37]. Kober et al. survey RL applied to robotics [46].

106

Appendix B

Additional Data for Chapter 4

This appendix contains additional implementation details for Chapter 4.

B.1 Pick Descriptor

From Section 4.1.2, we saw that the pick descriptor is an nx × ny × 12 image I
formed as I = Proj (Crop(z,Trans(T−1, C))). Here we provide implementations for
the functions Trans , Crop, and Proj .

The function Trans takes in a rigid transformation T ∈ SE (3) represented by (i)
a rotation matrix, i.e., an orthogonal matrix R with det(R) = 1, and (ii) an offset
d ∈ R3. Trans also takes in a point cloud C represented by an 3 × n matrix. The
ith point of the point cloud C is denoted C(1 : 3, i) and is a column vector.

Algorithm B.1: Trans

Input : Rotation matrix R ∈ SO(3), offset d ∈ R3, point cloud C ∈ R3×n

Output: Point cloud C̄ ∈ R3×n

1 C̄ ← 0
2 for i← 1, . . . , n do
3 C̄(1 : 3, i)← RC(1 : 3, i) + d

4 return C̄

The function Crop takes in the size of an axis-aligned, rectangular cuboid centered
at the origin with length d(1), width d(2), and height d(3). Crop also takes in a point
cloud C, represented by an 3 × n matrix. The output is another point cloud with
only the points of C contained within the rectangular cuboid specified by d.

APPENDIX B. ADDITIONAL DATA FOR CHAPTER 4 107

Algorithm B.2: Crop

Input : d ∈ R3
>0, C ∈ R3×n

Output: C̄ ∈ R3×n̄

1 C̄ ← 0
2 n̄← 0
3 for i← 1, . . . , n do
4 [x, y, z]T ← C(1 : 3, i)
5 if x ≥ −0.5d(1) ∧ x ≤ 0.5d(1) ∧ y ≥ −0.5d(2) ∧ y ≤ 0.5d(2) ∧ z ≥

−0.5d(3) ∧ z ≤ 0.5d(3) then
6 n̄← n̄+ 1
7 C̄(1 : 3, n̄)← C(1 : 3, i)

8 return C̄(1 : 3, 1 : n̄)

The function Proj takes a rectangular cuboid size d ∈ R3
>0 and a point cloud

C ∈ R3×n. The result is 12, nx×ny images. The first 3 images are height maps, and
the last 9 images include surface normal information. We assume we have a function
EstimateSurfaceNormals which produces a 3× n matrix N , where the ith column
is a surface normal estimate for the ith point in C. A function for estimating surface
normals is described in [93].

APPENDIX B. ADDITIONAL DATA FOR CHAPTER 4 108

Algorithm B.3: Proj

Input : d ∈ R3
>0, C ∈ R3×n

Output: I ∈ Rnx×ny×12

1 I ← 0
2 N ← EstimateSurfaceNormals(C)
3 for i← 1, . . . , n do
4 j ← b(C(1, i) + 0.5d(1))nx−1

d(1)
c

5 k ← b(C(2, i) + 0.5d(2))ny−1

d(2)
c

6 v ← 1− (C(3, i) + 0.5d(3))/d(3)
7 if v > I(j, k, 1) then
8 I(j, k, 1)← v
9 I(j, k, 4 : 6)← N(1 : 3, i)

10 j ← b(C(1, i) + 0.5d(1))nx−1
d(1)
c

11 k ← b(C(3, i) + 0.5d(3))ny−1

d(3)
c

12 v ← 1− (C(2, i) + 0.5d(2))/d(2)
13 if v > I(j, k, 2) then
14 I(j, k, 2)← v
15 I(j, k, 7 : 9)← N(1 : 3, i)

16 j ← b(C(2, i) + 0.5d(2))nx−1
d(2)
c

17 k ← b(C(3, i) + 0.5d(3))ny−1

d(3)
c

18 v ← 1− (C(1, i) + 0.5d(1))/d(1)
19 if v > I(j, k, 3) then
20 I(j, k, 3)← v
21 I(j, k, 10 : 12)← N(1 : 3, i)

22 return I

109

Appendix C

Additional Data for Chapter 6

This appendix contains implementation details and additional experimental results
for the modular approach of Chapter 6.

C.1 System Overview

This section provides details on our implementation of BoNet [126] and point com-
pletion network (PCN) [128].

C.1.1 BoNet

We use BoNet (Figure C.1) to segment a point cloud and provide segmentation
uncertainty estimates. The first output of BoNet is pmask. This is an n×K matrix
where the value at row i and column j predicts the probability point i belongs to
object j and K is a predefined maximum number of objects. The second output is
bbvert. This is a 3 × 2 × K tensor predicting the (x, y, z) positions of two corners
of K axis-aligned bounding boxes. We do not use this output at test time. The
third output is bbscores. This predicts the probability each bounding box contains
an object as there may be more bounding boxes than objects present in the scene.
The authors of BoNet estimate the segmentation mask by element-wise multiplying
bbscores to each row of pmask. The argmax of mask along each row yields the
segmentation {Ci}

nobj

i=1 and the max of mask along each row yields the uncertainty
vectors {Ui}

nobj

i=1 .

APPENDIX C. ADDITIONAL DATA FOR CHAPTER 6 110

BoNet

1

2

3

pmask

bbvert

bbscores

PointNet++

Figure C.1: BoNet [126] takes in a point cloud C, internally uses a PointNet++ [89]
“backbone”, and outputs pmask, bbvert, and bbscores.

C.1.2 Point completion network

PCN consists of an encoder (two PointNet layers [90]) and a decoder (three fully
connected, inner product layers) (Figure C.2).1 We augmented the original version
of PCN with a second decoder for uncertainty estimates. This “uncertainty decoder”
has the same architecture as the point decoder except the output size is n̄×1 instead
of n̄×3. The uncertainty decoder is trained after the other parameters of the network
have been trained and fixed. The uncertainty decoder is trained using the binary
cross-entropy loss where labels indicate if each point is within Euclidean distance
β ∈ R>0 from the nearest ground truth point. Additional completion examples with
uncertainty values are shown in Figure C.3b.

C.2 Regrasp Planning Under Uncertainty

This section contains additional details about the regrasp planning cost.

1The “detailed output” layers were omitted in our implementation, and the Chamfer distance
(CD) loss was used to train the shape completion branch. (See [128].)

APPENDIX C. ADDITIONAL DATA FOR CHAPTER 6 111

PCN
3

Encoder

Point
Decoder

Uncertainty
Decoder 1

Figure C.2: Summary of PCN [128]. The input is a partial point cloud, C, and the
output includes the completed point cloud C̄ and uncertainty values Ū .

C.2.1 Derivation of σ for MC sampling

The probability the offset x of a point from the nearest ground truth point is less than
β is modeled by Equation C.1, where Φ is the Gaussian cumulative distribution func-
tion with mean 0 and variance σ2. The integral of the Gaussian probability density
function from −∞ to −β (and from β to ∞, due to symmetry) is Φ(−β; 0, σ2). We
subtract these tails from 1 to get the probability x lies in the region [−β, β] (Equa-
tion C.1). Equation C.2 results from expanding the definition of Φ. Equation C.3
and C.4 result from elimination and rearrangement of terms. Equation C.5 results
from the fact that erf−1 is an odd function. Equation C.6 results from rearranging
terms and is Equation 6.6.

Pr(−β ≤ x ≤ β) = Ū = 1− 2Φ(−β; 0, σ2) (C.1)

= 1− 2
1

2

[
1 + erf

(
−β√

2σ

)]
(C.2)

= − erf

(
−β√

2σ

)
(C.3)

erf−1(−U) =
−β√

2σ
(C.4)

erf−1(U) =
β√
2σ

(C.5)

β√
2 erf−1(Ū)

= σ (C.6)

APPENDIX C. ADDITIONAL DATA FOR CHAPTER 6 112

(a) Observed cloud. (b) Complete cloud. (c) Ground truth.

Figure C.3: Shape completions with PCN. Yellow represents high Ū values (near 1)
and blue represents low Ū values (near 0.5).

C.3 Experiments

We provide additional simulation results for the canonical placement, bin packing,
and bottle arrangement tasks. Details of the scenarios are described in Section 6.4.

C.3.1 Perception ablation study

Results for bin packing Test-2 (i.e., novel-object categories, including airplane, bowl,
and stapler) are shown in Table C.1. Results for bottle arrangement are shown
in Table C.2. We again see that perception is a significant source of error (place
execution success rate down 41.7% from GT Seg. & Comp. for bin packing Test-2
and down 14.4% for bottle arrangement). Also, we again find that shape completion
is critical to finding a regrasp plan (regrasp plan found rate down 56.7% for bin
packing Test-2 and down 92% for bottle arrangement).

APPENDIX C. ADDITIONAL DATA FOR CHAPTER 6 113

GT Seg. & Comp. GT Seg. Percep. GT Seg. & No Comp.
Place Execution Success 0.849 ± 0.011 0.459 ± 0.017 0.432 ± 0.017 0.304 ± 0.034
Regrasp Plan Found 0.878 ± 0.009 0.708 ± 0.013 0.718 ± 0.013 0.151 ± 0.010
Temporary Place Stable 1.000 ± 0.000 0.786 ± 0.114 0.167 ± 0.112 0.500 ± 0.500
Regrasp planning time (s) 36.85 ± 1.614 26.50 ± 0.891 25.22 ± 0.869 23.007 ± 2.145

Table C.1: Perception ablation study for bin packing Test-2. Showing average ±
standard error over 200 episodes.

GT Seg. & Comp. GT Seg. (Train) GT Seg. (Test) Percep. (Train) Percep. (Test) GT Seg. & No Comp.
Place Execution Success 0.970 ± 0.005 0.868 ± 0.011 0.860 ± 0.011 0.853 ± 0.011 0.826 ± 0.012 0.234 ± 0.053
Regrasp Plan Found 0.996 ± 0.002 0.998 ± 0.001 0.999 ± 0.001 0.988 ± 0.003 0.984 ± 0.004 0.064 ± 0.008
Temporary Place Stable 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 –
Regrasp planning time (s) 4.486 ± 0.100 1.680 ± 0.083 1.596 ± 0.065 1.598 ± 0.070 1.550 ± 0.066 1.144 ± 0.059

Table C.2: Perception ablation study for bottle arrangement. Showing average ±
standard error over 500 episodes.

C.3.2 Regrasp cost comparison

We also compare regrasp planning costs for objects from Test-2 (i.e., novel categories
including airplane, bowl, and stapler). Results for the canonical task are shown in
Table C.3, and results for the bin packing task are shown in Table C.4. The main
takeaway is that in both cases SP significantly outperforms the best-performing
baseline in terms of place execution success.

No Cost Step Cost GQ MC CU SP
Place Execution Success 0.446 ± 0.011 0.535 ± 0.012 0.520 ± 0.012 0.543 ± 0.012 0.533 ± 0.012 0.591 ± 0.011
Temporary Place Stable 0.690 ± 0.021 0.555 ± 0.046 0.608 ± 0.030 0.717 ± 0.032 0.671 ± 0.036 0.742 ± 0.027
Plan Length 3.265 ± 0.035 2.323 ± 0.018 2.686 ± 0.025 2.501 ± 0.022 2.419 ± 0.020 2.518 ± 0.023
Regrasp planning time (s) 4.278 ± 0.156 14.84 ± 0.539 68.87 ± 0.657 99.36 ± 0.818 60.05 ± 0.633 74.08 ± 0.732

Table C.3: Cost comparison for canonical placement with novel-object categories
(over 2, 000 episodes). A cell is highlighted green iff the corresponding value is
significantly higher (i.e. p ≤ 0.05) than the highest baseline value.

No Cost Step Cost GQ MC CU SP
Place Execution Success 0.412 ± 0.017 0.417 ± 0.017 0.395 ± 0.017 0.458 ± 0.017 0.429 ± 0.017 0.465 ± 0.017
Temporary Place Stable 0.704 ± 0.051 0.714 ± 0.125 0.533 ± 0.075 0.750 ± 0.083 0.778 ± 0.101 0.686 ± 0.080
Plan Length 2.514 ± 0.036 2.094 ± 0.015 2.247 ± 0.024 2.167 ± 0.020 2.118 ± 0.017 2.193 ± 0.022
Regrasp planning time (s) 6.030 ± 0.237 8.484 ± 0.408 51.61 ± 1.113 58.56 ± 1.064 50.92 ± 1.177 53.35 ± 1.159

Table C.4: Cost comparison for bin packing with novel-object categories (over 200
episodes). A cell is highlighted green iff the corresponding value is significantly higher
(i.e. p ≤ 0.05) than the highest baseline value.

APPENDIX C. ADDITIONAL DATA FOR CHAPTER 6 114

Finally, Table C.5 shows the regrasp cost comparison for bottle arrangement.
Although the advantage of SP over GQ is not statistically significant, the advantage
of SP over no cost and step cost is statistically significant in terms of place execution
success rate. We attribute the good performance GQ to more accurate instance
segmentation and shape completion (because there are fewer objects to segment and
there is only one category for shape completion).

No Cost Step Cost GQ MC CU SP
Place Execution Success 0.831 ± 0.012 0.824 ± 0.012 0.860 ± 0.011 0.867 ± 0.011 0.820 ± 0.012 0.877 ± 0.011
Temporary Place Stable 0.889 ± 0.043 – 0.926 ± 0.051 1.000 ± 0.000 – 0.972 ± 0.028
Plan Length 2.122 ± 0.016 2.000 ± 0.000 2.061 ± 0.011 2.024 ± 0.007 2.000 ± 0.000 2.073 ± 0.012
Regrasp planning time (s) 1.378 ± 0.032 1.442 ± 0.045 31.98 ± 0.181 33.33 ± 0.458 30.55 ± 0.253 32.97 ± 0.259

Table C.5: Bottle arrangement performance (over 500 episodes). A cell is high-
lighted green iff the corresponding value is significantly higher (i.e. p ≤ 0.05) than
the highest baseline value.

115

Bibliography

[1] Rachid Alami, Jean-Paul Laumond, and Thierry Siméon. “Two manipula-
tion planning algorithms”. In: Proceedings of the Workshop on Algorithmic
Foundations of Robotics. A. K. Peters, Ltd., 1995, pp. 109–125.

[2] Rachid Alami, Thierry Siméon, and Jean-Paul Laumond. “A geometrical ap-
proach to planning manipulation tasks. The case of discrete placements and
grasps”. In: Int’l Symp. on Robotics Research. Cambridge, MA, USA: MIT
Press, 1991, pp. 453–463. isbn: 0262132532.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
“Hindsight experience replay”. In: Advances in Neural Information Processing
Systems. 2017, pp. 5048–5058.

[4] Oron Anschel, Nir Baram, and Nahum Shimkin. “Averaged-DQN: variance
reduction and stabilization for deep reinforcement learning”. In: Int’l Conf.
on Machine Learning. JMLR. 2017, pp. 176–185.

[5] Lars Berscheid, Pascal Meißner, and Torsten Kröger. “Self-supervised learn-
ing for precise pick-and-place without object model”. In: IEEE Robotics and
Automation Letters 5.3 (2020), pp. 4828–4835. doi: 10.1109/LRA.2020.

3003865.

[6] Dimitri Bertsekas. Dynamic programming and optimal control. 4th ed. Vol. 1.
Athena scientific, 2017.

[7] Dimitri Bertsekas. Dynamic programming and optimal control. 4th ed. Vol. 2.
Athena scientific, 2017.

[8] Paul Besl and Neil McKay. “Method for registration of 3D shapes”. In: Sensor
Fusion IV: Control Paradigms and Data Structures. Vol. 1611. Int’l Society
for Optics and Photonics. SPIE, 1992, pp. 586–606. doi: 10.1117/12.57955.

http://dx.doi.org/10.1109/LRA.2020.3003865
http://dx.doi.org/10.1109/LRA.2020.3003865
http://dx.doi.org/10.1117/12.57955

BIBLIOGRAPHY 116

[9] Vassilios Christopoulos and Paul Schrater. “Handling shape and contact loca-
tion uncertainty in grasping two-dimensional planar objects”. In: IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems. 2007, pp. 1557–1563.

[10] Rosen Diankov. “Automated construction of robotic manipulation programs”.
PhD thesis. Robotics Institute, Carnegie Mellon University, 2010.

[11] Stanimir Dragiev, Marc Toussaint, and Michael Gienger. “Gaussian process
implicit surfaces for shape estimation and grasping”. In: IEEE Int’l Conf. on
Robotics and Automation. 2011, pp. 2845–2850.

[12] Stanimir Dragiev, Marc Toussaint, and Michael Gienger. “Uncertainty aware
grasping and tactile exploration”. In: IEEE Int’l Conf. on Robotics and Au-
tomation. 2013, pp. 113–119.

[13] Clemens Eppner, Sebastian Höfer, Rico Jonschkowski, Roberto Mart́ın-Mart́ın,
Arne Sieverling, Vincent Wall, and Oliver Brock. “Lessons from the Amazon
picking challenge: four aspects of building robotic systems.” In: Robotics: Sci-
ence and Systems. 2016.

[14] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.
“One-shot visual imitation learning via meta-learning”. In: Proceedings of the
1st Annual Conf. on Robot Learning. Vol. 78. Proceedings of Machine Learning
Research. PMLR, 13–15 Nov 2017, pp. 357–368.

[15] Justin Fu, Sergey Levine, and Pieter Abbeel. “One-shot learning of manip-
ulation skills with online dynamics adaptation and neural network priors”.
In: IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. 2016, pp. 4019–
4026.

[16] Wei Gao and Russ Tedrake. “kPAM-SC: generalizable manipulation plan-
ning using keypoint affordance and shape completion”. In: arXiv preprint
arXiv:1909.06980 (2019).

[17] Neha Garg, David Hsu, and Wee Sun Lee. “Learning to grasp under uncer-
tainty using POMDPs”. In: IEEE Int’l Conf. on Robotics and Automation.
2019, pp. 2751–2757.

[18] Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kael-
bling, and Dieter Fox. “Online replanning in belief space for partially ob-
servable task and motion problems”. In: IEEE Int’l Conf. on Robotics and
Automation. 2020, pp. 5678–5684. doi: 10.1109/ICRA40945.2020.9196681.

[19] Marcus Gualtieri, James Kuczynski, Abraham Shultz, Andreas ten Pas, Robert
Platt, and Holly Yanco. “Open world assistive grasping using laser selection”.
In: IEEE Int’l Conf. on Robotics and Automation. 2017, pp. 4052–4057.

http://dx.doi.org/10.1109/ICRA40945.2020.9196681

BIBLIOGRAPHY 117

[20] Marcus Gualtieri, Andreas ten Pas, and Robert Platt. “Pick and place without
geometric object models”. In: IEEE Int’l Conf. on Robotics and Automation.
2018.

[21] Marcus Gualtieri, Andreas ten Pas, Kate Saenko, and Robert Platt. “High
precision grasp pose detection in dense clutter”. In: IEEE Int’l Conf. on In-
telligent Robots and Systems. 2016.

[22] Marcus Gualtieri and Robert Platt. “Learning 6-DoF grasping and pick-place
using attention focus”. In: Proceedings of The 2nd Conference on Robot Learn-
ing. Vol. 87. Proceedings of Machine Learning Research. Oct. 2018, pp. 477–
486.

[23] Marcus Gualtieri and Robert Platt. “Learning manipulation skills via hier-
archical spatial attention”. In: IEEE Transactions on Robotics 36.4 (2020),
pp. 1067–1078.

[24] Marcus Gualtieri and Robert Platt. “Robotic pick-and-place with uncertain
object instance segmentation and shape completion”. In: IEEE Robotics and
Automation Letters 6.2 (2021), pp. 1753–1760. doi: 10.1109/LRA.2021.

3060669.

[25] Marcus Gualtieri and Robert Platt. “Viewpoint selection for grasp detection”.
In: IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems. 2017, pp. 258–
264.

[26] Kensuke Harada, Kazuyuki Nagata, Tokuo Tsuji, Natsuki Yamanobe, Akira
Nakamura, and Yoshihiro Kawai. “Probabilistic approach for object bin pick-
ing approximated by cylinders”. In: 2013 IEEE Int’l Conf. on Robotics and
Automation. 2013, pp. 3742–3747.

[27] Peter Hart, Nils Nilsson, and Bertram Raphael. “A formal basis for the heuris-
tic determination of minimum cost paths”. In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (1968), pp. 100–107.

[28] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask R-
CNN”. In: IEEE Int’l Conf. on Computer Vision. 2017, pp. 2961–2969.

[29] Carlos Hernandez, Mukunda Bharatheesha, Wilson Ko, Hans Gaiser, Jethro
Tan, Kanter van Deurzen, Maarten de Vries, Bas Van Mil, Jeff van Egmond,
Ruben Burger, et al. “Team Delft’s robot winner of the Amazon picking
challenge 2016”. In: Robot World Cup. Springer. 2016, pp. 613–624.

http://dx.doi.org/10.1109/LRA.2021.3060669
http://dx.doi.org/10.1109/LRA.2021.3060669

BIBLIOGRAPHY 118

[30] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Os-
trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. “Rainbow: combining improvements in deep reinforcement learning”.
In: AAAI. 2018.

[31] Tommi Jaakkola, Michael Jordan, and Satinder Singh. “Convergence of stochas-
tic iterative dynamic programming algorithms”. In: Advances in Neural In-
formation Processing Systems. 1994, pp. 703–710.

[32] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
“Spatial transformer networks”. In: Advances in Neural Information Process-
ing Systems. 2015, pp. 2017–2025.

[33] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. “Caffe: convolutional
architecture for fast feature embedding”. In: Proceedings of the 22nd ACM
Int’l Conf. on Multimedia. ACM. 2014, pp. 675–678.

[34] Yun Jiang, Marcus Lim, Changxi Zheng, and Ashutosh Saxena. “Learning to
place new objects in a scene”. In: The Int’l Journal of Robotics Research 31.9
(2012), pp. 1021–1043.

[35] Yun Jiang, Changxi Zheng, Marcus Lim, and Ashutosh Saxena. “Learning
to place new objects”. In: Int’l Conf. on Robotics and Automation. 2012,
pp. 3088–3095.

[36] Edward Johns, Stefan Leutenegger, and Andrew Davison. “Deep learning a
grasp function for grasping under gripper pose uncertainty”. In: IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems. 2016, pp. 4461–4468.

[37] Leslie Pack Kaelbling, Michael Littman, and Anthony Cassandra. “Planning
and acting in partially observable stochastic domains”. In: Artificial intelli-
gence 101.1-2 (1998), pp. 99–134.

[38] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Integrated task and motion
planning in belief space”. In: The Int’l Journal of Robotics Research 32.9-10
(2013), pp. 1194–1227.

[39] Leslie Kaelbling and Tomás Lozano-Pérez. “Hierarchical task and motion
planning in the now”. In: IEEE/RSJ Int’l Conf. on Robotics and Automa-
tion. 2011, pp. 1470–1477.

[40] Gregory Kahn, Peter Sujan, Sachin Patil, Shaunak Bopardikar, Julian Ryde,
Ken Goldberg, and Pieter Abbeel. “Active exploration using trajectory op-
timization for robotic grasping in the presence of occlusions”. In: IEEE Int’l
Conf. on Robotics and Automation. May 2015.

BIBLIOGRAPHY 119

[41] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Her-
zog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent
Vanhoucke, and Sergey Levine. “Scalable deep reinforcement learning for
vision-based robotic manipulation”. In: Proceedings of The 2nd Conference on
Robot Learning. Vol. 87. Proceedings of Machine Learning Research. PMLR,
Oct. 2018, pp. 651–673.

[42] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal
motion planning”. In: The Int’l Journal of Robotics Research 30.7 (2011),
pp. 846–894.

[43] Ben Kehoe, Dmitry Berenson, and Ken Goldberg. “Estimating part tolerance
bounds based on adaptive cloud-based grasp planning with slip”. In: IEEE
Int’l Conf. on Automation Science and Engineering. 2012, pp. 1106–1113.

[44] Ben Kehoe, Dmitry Berenson, and Ken Goldberg. “Toward cloud-based grasp-
ing with uncertainty in shape: estimating lower bounds on achieving force
closure with zero-slip push grasps”. In: IEEE Int’l Conf. on Robotics and
Automation. 2012, pp. 576–583.

[45] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: Int’l Conf. on Learning Representations (2015).

[46] Jens Kober, Andrew Bagnell, and Jan Peters. “Reinforcement learning in
robotics: a survey”. In: The Int’l Journal of Robotics Research 32.11 (2013),
pp. 1238–1274.

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in Neural Infor-
mation Processing Systems. 2012, pp. 1097–1105.

[48] Athanasios Krontiris and Kostas Bekris. “Dealing with difficult instances of
object rearrangement.” In: Robotics: Science and Systems. 2015.

[49] Brenden Lake, Tomer Ullman, Joshua Tenenbaum, and Samuel Gershman.
“Building machines that learn and think like people”. In: Behavioral and
Brain Sciences 40 (2017).

[50] Hugo Larochelle and Geoffrey Hinton. “Learning to combine foveal glimpses
with a third-order Boltzmann machine”. In: Advances in Neural Information
Processing Systems. 2010, pp. 1243–1251.

[51] Michael Laskey, Jeff Mahler, Zoe McCarthy, Florian Pokorny, Sachin Patil,
Jur van den Berg, Danica Kragic, Pieter Abbeel, and Ken Goldberg. “Multi-
armed bandit models for 2D grasp planning with uncertainty”. In: IEEE Int’l
Conf. on Automation Science and Engineering. 2015, pp. 572–579.

BIBLIOGRAPHY 120

[52] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition”. In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324.

[53] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting
robotic grasps”. In: The Int’l Journal of Robotics Research 34.4-5 (2015),
pp. 705–724.

[54] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-
end training of deep visuomotor policies”. In: Journal of Machine Learning
Research 17.1 (2016), pp. 1334–1373.

[55] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. “Learning
hand-eye coordination for robotic grasping with large-scale data collection”.
In: Int’l Symp. on Experimental Robotics. Springer. 2016, pp. 173–184.

[56] Sergey Levine, Nolan Wagener, and Pieter Abbeel. “Learning contact-rich ma-
nipulation skills with guided policy search”. In: IEEE Int’l Conf. on Robotics
and Automation. 2015, pp. 156–163.

[57] Lihong Li, Thomas Walsh, and Michael Littman. “Towards a unified theory
of state abstraction for MDPs”. In: Int’l Symp. on Artificial Intelligence and
Mathematics. 2006.

[58] Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. “Dexterous grasping
under shape uncertainty”. In: Robotics and Autonomous Systems 75 (2016),
pp. 352–364.

[59] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Görner, Song Tang, Bin
Fang, Fuchun Sun, and Jianwei Zhang. “PointNetGPD: detecting grasp con-
figurations from point sets”. In: IEEE Int’l Conf. on Robotics and Automation.
2019, pp. 3629–3635.

[60] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with
deep reinforcement learning”. In: arXiv preprint arXiv:1509.02971 (2015).

[61] Tomas Lozano-Pérez. “Motion planning and the design of orienting devices for
vibratory part feeders”. In: MIT Artificial Intelligence Laboratory Technical
Report (1986).

[62] Tomás Lozano-Pérez, Joseph Jones, Emmanuel Mazer, and Patrick O’Donnell.
“Task-level planning of pick-and-place robot motions”. In: Computer 22.3
(1989), pp. 21–29.

[63] Jens Lundell, Francesco Verdoja, and Ville Kyrki. “Beyond top-grasps through
scene completion”. In: arXiv preprint arXiv:1909.12908 (2020).

BIBLIOGRAPHY 121

[64] Jens Lundell, Francesco Verdoja, and Ville Kyrki. “Robust grasp planning
over uncertain shape completions”. In: IEEE/RSJ Int’l Conf. on Intelligent
Robots and Systems. 2019, pp. 1526–1532.

[65] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,
Xinyu Liu, Juan Ojea, and Ken Goldberg. “Dex-net 2.0: deep learning to
plan robust grasps with synthetic point clouds and analytic grasp metrics”.
In: Robotics: Science and Systems 13 (2017).

[66] Jeffrey Mahler, Sachin Patil, Ben Kehoe, Jur van den Berg, Matei Ciocar-
lie, Pieter Abbeel, and Ken Goldberg. “GP-GPIS-OPT: grasp planning with
shape uncertainty using gaussian process implicit surfaces and sequential con-
vex programming”. In: IEEE Int’l Conf. on Robotics and Automation. 2015,
pp. 4919–4926.

[67] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. “kPAM: key-
point affordances for category-level robotic manipulation”. In: Int’l Symp. on
Robotics Research. 2019.

[68] Andrew Miller and Peter Allen. “Graspit! a versatile simulator for robotic
grasping”. In: IEEE Robotics & Automation Magazine 11.4 (2004), pp. 110–
122.

[69] George Miller. “Wordnet: a lexical database for english”. In: Communications
of the ACM 38.11 (1995), pp. 39–41.

[70] Chaitanya Mitash, Rahul Shome, Bowen Wen, Abdeslam Boularias, and Kostas
Bekris. “Task-driven perception and manipulation for constrained placement
of unknown objects”. In: IEEE Robotics and Automation Letters 5.4 (2020),
pp. 5605–5612.

[71] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asyn-
chronous methods for deep reinforcement learning”. In: International confer-
ence on machine learning. 2016, pp. 1928–1937.

[72] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. “Re-
current models of visual attention”. In: Advances in Neural Information Pro-
cessing Systems. 2014, pp. 2204–2212.

[73] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Ve-
ness, Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Has-

BIBLIOGRAPHY 122

sabis. “Human-level control through deep reinforcement learning”. In: Nature
518.7540 (2015), pp. 529–533.

[74] Manfred Morari and Jay Lee. “Model predictive control: past, present and
future”. In: Computers & Chemical Engineering 23.4-5 (1999), pp. 667–682.

[75] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Closing the loop for
robotic grasping: a real-time, generative grasp synthesis approach”. In: Robotics:
Science and Systems. 2018.

[76] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Multi-view picking:
next-best-view reaching for improved grasping in clutter”. In: IEEE Int’l
Conf. on Robotics and Automation. 2019.

[77] Douglas Morrison, Adam Tow, Matt Mctaggart, R Smith, Norton Kelly-
Boxall, Sean Wade-Mccue, Jordan Erskine, Riccardo Grinover, Alec Gurman,
T Hunn, et al. “Cartman: the low-cost cartesian manipulator that won the
Amazon robotics challenge”. In: IEEE Int’l Conf. on Robotics and Automa-
tion. 2018, pp. 7757–7764.

[78] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. “6-DOF GraspNet:
variational grasp generation for object manipulation”. In: IEEE/CVF Int’l
Conf. on Computer Vision. 2019, pp. 2901–2910. doi: 10.1109/ICCV.2019.
00299.

[79] Richard Murray, Zexiang Li, and Shankar Sastry. A mathematical introduction
to robotic manipulation. CRC press, 1994.

[80] Christian Nielsen and Lydia Kavraki. “A two level fuzzy prm for manipula-
tion planning”. In: IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems.
Vol. 3. 2000, pp. 1716–1721.

[81] Jun Ota. “Rearrangement of multiple movable objects: integration of global
and local planning methodology”. In: IEEE Int’l Conf. on Robotics and Au-
tomation. Vol. 2. 2004, pp. 1962–1967.

[82] Jun Ota. “Rearrangement planning of multiple movable objects by using real-
time search methodology”. In: IEEE Int’l Conf. on Robotics and Automation.
Vol. 1. 2002, pp. 947–953.

[83] Christos Papadimitriou and John Tsitsiklis. “The complexity of markov deci-
sion processes”. In: Mathematics of operations research 12.3 (1987), pp. 441–
450.

[84] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. “Grasp
pose detection in point clouds”. In: The Int’l Journal of Robotics Research
36.13-14 (2017), pp. 1455–1473.

http://dx.doi.org/10.1109/ICCV.2019.00299
http://dx.doi.org/10.1109/ICCV.2019.00299

BIBLIOGRAPHY 123

[85] Andreas ten Pas and Robert Platt. “Localizing handle-like grasp affordances
in 3d point clouds”. In: Int’l Symp. on Experimental Robotics. 2014.

[86] Andreas ten Pas and Robert Platt. “Using geometry to detect grasps in 3d
point clouds”. In: CoRR abs/1501.03100 (2015). url: http://arxiv.org/
abs/1501.03100.

[87] Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: learning to
grasp from 50k tries and 700 robot hours”. In: IEEE Int’l Conf. on Robotics
and Automation. 2016, pp. 3406–3413.

[88] Robert Platt, Colin Kohler, and Marcus Gualtieri. “Deictic image maps: an
abstraction for learning pose invariant manipulation policies”. In: AAAI Conf.
on Artificial Intelligence. 2019.

[89] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas Guibas. “PointNet++:
deep hierarchical feature learning on point sets in a metric space”. In: Ad-
vances in neural information processing systems. 2017, pp. 5099–5108.

[90] Charles Qi, Hao Su, Kaichun Mo, and Leonidas Guibas. “PointNet: deep
learning on point sets for 3D classification and segmentation”. In: Conf. on
Computer Vision and Pattern Recognition. IEEE. 2017, pp. 652–660.

[91] Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, and
Sergey Levine. “Deep reinforcement learning for vision-based robotic grasping:
a simulated comparative evaluation of off-policy methods”. In: IEEE Int’l
Conf. on Robotics and Automation. 2018.

[92] G. Rummery and M. Niranjan. On-line Q-learning using connectionist sys-
tems. CUED/F-INFENG/TR 166. Cambridge University Engineering Depart-
ment, Sept. 1994.

[93] Radu Rusu. “Semantic 3d object maps for everyday manipulation in human
living environments”. PhD thesis. Technical University of Munich, Oct. 2009.

[94] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and Youcef
Mezouar. “Robotic manipulation and sensing of deformable objects in domes-
tic and industrial applications: a survey”. In: The Int’l Journal of Robotics
Research 37.7 (2018), pp. 688–716.

[95] Ashutosh Saxena, Justin Driemeyer, and Andrew Ng. “Robotic grasping of
novel objects using vision”. In: The Int’l Journal of Robotics Research 27.2
(2008), pp. 157–173.

http://arxiv.org/abs/1501.03100
http://arxiv.org/abs/1501.03100

BIBLIOGRAPHY 124

[96] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow,
and Pieter Abbeel. “Finding locally optimal, collision-free trajectories with
sequential convex optimization.” In: Robotics: Science and Systems. Vol. 9. 1.
2013, pp. 1–10.

[97] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári.
“Convergence results for single-step on-policy reinforcement-learning algo-
rithms”. In: Machine learning 38.3 (2000), pp. 287–308.

[98] Richard Smallwood and Edward Sondik. “The optimal control of partially
observable markov processes over a finite horizon”. In: Operations research
21.5 (1973), pp. 1071–1088.

[99] Nathan Sprague and Dana Ballard. “Eye movements for reward maximiza-
tion”. In: Advances in Neural Information Processing Systems. 2004, pp. 1467–
1474.

[100] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[101] Mike Stilman, Jan-Ullrich Schamburek, James Kuffner, and Tamim Asfour.
“Manipulation planning among movable obstacles”. In: IEEE Int’l Conf. on
Robotics and Automation. 2007, pp. 3327–3332.

[102] Xiao Sun, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen Wei. “Inte-
gral human pose regression”. In: European Conf. on Computer Vision. 2018,
pp. 529–545.

[103] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction.
Second. MIT Press Cambridge, 2018.

[104] Gabriel Taubin. “Estimation of planar curves, surfaces, and nonplanar space
curves defined by implicit equations with applications to edge and range im-
age segmentation”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 11 (1991), pp. 1115–1138.

[105] Gerald Tesauro. “TD-Gammon, a self-teaching backgammon program, achieves
master-level play”. In: Neural computation 6.2 (1994), pp. 215–219.

[106] Gerald Tesauro and Gregory Galperin. “On-line policy improvement using
Monte-Carlo search”. In: Advances in Neural Information Processing Systems.
1997, pp. 1068–1074.

[107] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
2005.

BIBLIOGRAPHY 125

[108] Philip Torr and Andrew Zisserman. “MLESAC: a new robust estimator with
application to estimating image geometry”. In: Computer Vision and Image
Understanding 78.1 (2000), pp. 138–156.

[109] Pierre Tournassoud, Tomás Lozano-Pérez, and Emmanuel Mazer. “Regrasp-
ing”. In: IEEE Int’l Conf. on Robotics and Automation. Vol. 4. 1987, pp. 1924–
1928.

[110] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter
Fox, and Stan Birchfield. “Deep object pose estimation for semantic robotic
grasping of household objects”. In: Proceedings of The 2nd Conference on
Robot Learning. Vol. 87. Proceedings of Machine Learning Research. PMLR,
Oct. 2018, pp. 306–316.

[111] Jacob Varley, Chad DeChant, Adam Richardson, Joaqúın Ruales, and Pe-
ter Allen. “Shape completion enabled robotic grasping”. In: IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems. 2017, pp. 2442–2447.

[112] Ulrich Viereck, Andreas ten Pas, Kate Saenko, and Robert Platt. “Learning
a visuomotor controller for real world robotic grasping using easily simulated
depth images”. In: Proceedings of the Conf. on Robot Learning. 2017.

[113] Weiwei Wan, Hisashi Igawa, Kensuke Harada, Hiromu Onda, Kazuyuki Na-
gata, and Natsuki Yamanobe. “A regrasp planning component for object re-
orientation”. In: Autonomous Robots 43.5 (2019), pp. 1101–1115.

[114] Dian Wang, Colin Kohler, Andreas ten Pas, Alexander Wilkinson, Maozhi Liu,
Holly Yanco, and Robert Platt. “Towards assistive robotic pick and place in
open world environments”. In: arXiv preprint arXiv:1809.09541 (2019).

[115] Dian Wang, Colin Kohler, and Robert Platt. Policy learning in SE(3) action
spaces. 2020. arXiv: 2010.02798 [cs.RO].

[116] Gerhard Wäscher, Heike Haußner, and Holger Schumann. “An improved ty-
pology of cutting and packing problems”. In: European journal of operational
research 183.3 (2007), pp. 1109–1130.

[117] Christopher Watkins. “Learning from delayed rewards”. PhD thesis. King’s
College, Cambridge, 1989.

[118] Christopher Watkins and Peter Dayan. “Q-learning”. In: Machine learning
8.3-4 (1992), pp. 279–292.

[119] Steven Whitehead and Dana Ballard. “Learning to perceive and act by trial
and error”. In: Machine Learning 7.1 (1991), pp. 45–83.

http://arxiv.org/abs/2010.02798

BIBLIOGRAPHY 126

[120] Gordon Wilfong. “Motion planning in the presence of movable obstacles”. In:
Annals of Mathematics and Artificial Intelligence 3.1 (1991), pp. 131–150.

[121] Ronald Williams. “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–
256.

[122] Walter Wohlkinger, Aitor Aldoma, Radu Rusu, and Markus Vincze. “3DNet:
large-scale object class recognition from CAD models”. In: IEEE Int’l Conf.
on Robotics and Automation. 2012, pp. 5384–5391.

[123] Bohan Wu, Iretiayo Akinola, and Peter Allen. “Pixel-attentive policy gradient
for multi-fingered grasping in cluttered scenes”. In: IEEE/RSJ Int’l Conf. on
Intelligent Robots and Systems. 2019.

[124] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xi-
aoou Tang, and Jianxiong Xiao. “3D ShapeNets: a deep representation for
volumetric shapes”. In: IEEE Conf. on computer vision and pattern recogni-
tion. 2015, pp. 1912–1920.

[125] Yuchen Xiao, Sammie Katt, Andreas ten Pas, Shengjian Chen, and Christo-
pher Amato. “Online planning for target object search in clutter under par-
tial observability”. In: IEEE Int’l Conf. on Robotics and Automation. 2019,
pp. 8241–8247.

[126] Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew
Markham, and Niki Trigoni. “Learning object bounding boxes for 3D instance
segmentation on point clouds”. In: Advances in Neural Information Processing
Systems. 2019, pp. 6737–6746.

[127] Kuan-Ting Yu, John Leonard, and Alberto Rodriguez. “Shape and pose re-
covery from planar pushing”. In: IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems. 2015, pp. 1208–1215.

[128] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert.
“PCN: point completion network”. In: Int’l Conf. on 3D Vision. 2018, pp. 728–
737.

[129] Brayan Zapata-Impata, Vikrant Shah, Hanumant Singh, and Robert Platt.
“AutOTranS: an autonomous open world transportation system”. In: CoRR
abs/1810.03400 (2018). arXiv: 1810.03400. url: http://arxiv.org/abs/
1810.03400.

http://arxiv.org/abs/1810.03400
http://arxiv.org/abs/1810.03400
http://arxiv.org/abs/1810.03400

BIBLIOGRAPHY 127

[130] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois Hogan,
Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo, Nima
Fazeli, Ferran Alet, Nikhil Chavan-Dafle, Rachel Holladay, Isabella Morona,
Qu-Nair Prem, Druck Green, Ian Taylor, Weber Liu, Thomas Funkhouser,
and Alberto Rodriguez. “Robotic pick-and-place of novel objects in clutter
with multi-affordance grasping and cross-domain image matching”. In: IEEE
Int’l Conf. on Robotics and Automation. 2018.

[131] Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker, Alberto
Rodriguez, and Jianxiong Xiao. “Multi-view self-supervised deep learning for
6D pose estimation in the Amazon picking challenge”. In: IEEE Int’l Conf.
on Robotics and Automation. 2017, pp. 1386–1383.

	Contents
	Introduction and Background
	Introduction
	Robotic Pick-and-Place
	Thesis Contributions and Outline

	Regrasping Partially Visible and Novel Objects
	The Move-Binary-Effect System
	Static Pick-and-Place Actions
	The Problem of Regrasping a Partially Visible and Novel Object

	Approaches to Related Problems
	Pick-and-Place in Fully Observed Environments
	Pick-and-Place of Partially Visible and Known Objects
	Grasping Novel Objects
	Grasping with Object Shape Uncertainty
	Pick-and-Place of Novel Objects
	Pick-and-Place with Uncertainty

	Policy Learning
	Grasp Detection for Discretizing Pick Actions
	The Descriptor-Based MDP
	Experiments in Simulation
	Experiments on a Real Robot
	Discussion

	Hierarchical Spatial Attention
	Problem Statement
	Approach
	Application Domains
	Discussion

	 Modular Architectures
	Regrasp Planning with Uncertain Object Instance Segmentation and Shape Completion
	Problem Statement
	System Overview
	Regrasp Planning Under Uncertainty
	Experiments
	Discussion

	 Conclusion
	Discussion
	Takeaways
	Opportunities for Future Research

	Reinforcement Learning
	Markov Decision Processes
	Policies
	Algorithms
	Beyond Value Learning
	Further Reading

	Additional Data for Chapter 4
	Pick Descriptor

	Additional Data for Chapter 6
	System Overview
	Regrasp Planning Under Uncertainty
	Experiments

	Bibliography

