
1

Learning Manipulation Skills Via
Hierarchical Spatial Attention

Marcus Gualtieri and Robert Platt

Abstract—Learning generalizable skills in robotic
manipulation has long been challenging due to real-
world sized observation and action spaces. One
method for addressing this problem is attention focus
– the robot learns where to attend its sensors and
irrelevant details are ignored. However, these methods
have largely not caught on due to the difficulty of
learning a good attention policy and the added partial
observability induced by a narrowed window of focus.
This article addresses the first issue by constraining
gazes to a spatial hierarchy. For the second issue,
we identify a case where the partial observability
induced by attention does not prevent Q-learning
from finding an optimal policy. We conclude with
real-robot experiments on challenging pick-place tasks
demonstrating the applicability of the approach.

I. INTRODUCTION

Learning robotic manipulation has remained an
active and challenging research area. This is be-
cause the real-world environments in which robots
exist are large, dynamic, and complex. Partial ob-
servability – where the robot does not at once
perceive the entire environment – is common and
requires reasoning over past perceptions. Addition-
ally, the ability to generalize to new situations is
critical because, in the real world, new objects can
appear in different places unexpectedly.

The particular problem addressed in this paper
is the large space of possible robot observations
and actions – how the robot processes its past
and current perceptions to make high-dimensional
decisions. Visual attention has long been suggested
as a solution to this problem [1]. Focused percep-
tions can ignore irrelevant details, and generaliza-
tion is improved by the elimination of the many

Khoury College of Computer Sciences, Northeastern Univer-
sity, Boston, MA, 02115 USA e-mail: mgualti@ccs.neu.edu.

irrelevant combinations of object arrangements [1].
Additionally, as we later show, attention can result
in a substantial reduction to the number of actions
that need considered. Indeed, when selecting po-
sition, the number of action choices can become
logarithmic rather than linear in the volume of the
robot’s workspace. In spite of these benefits, visual
attention has largely not caught on due to (a) the
additional burden of learning where to attend and
(b) additional partial observability caused by the
narrowed focus.

We address the first challenge – efficiently learn-
ing where to attend – by constraining the system
to a spatial hierarchy of attention. On a high level
this means the robot must first see a large part of
the scene in low detail, select a position within
that observation, and see the next observation in
more detail at the position previously selected, and
so on for a fixed number of gazes. We address
the second challenge – partial observability induced
by the narrowed focus – by identifying attention
with a type of state-abstraction which preserves
the ability to learn optimal policies with efficient
reinforcement learning (RL) algorithms.

This article extends our prior work [2], wherein
we introduced the hierarchical spatial attention
(HSA) approach and demonstrated it on 3 chal-
lenging, 6-DoF, pick-place tasks. New additions
include (a) faster training and inference times, (b)
more ablation studies and comparisons to related
work, (c) better understanding of when an optimal
policy can be learned when using this approach, (d)
longer time horizons, and (e) improved real-robot
experimental results.

The rest of the paper is organized as follows.
First is related work (Section II). Next, the general
manipulation problem is described and the visual

2

attention aspect is added (Sections III and IV-A).
After that, the HSA constraints are added, and this
approach is viewed as a generalization of earlier
approaches (Section IV-B to IV-E). The bulk of
the paper includes analysis and comparisons in 4
domains of increasing complexity (Section V). Real
robot experiments are described close to the end
(Sections V-C and V-D). Finally, we conclude with
what we learned and future directions (Section VI).

II. RELATED WORK

This work is most related to robotic manipula-
tion, reinforcement learning, and attention models.
It is extends our prior research on 6-DoF pick-place
[2] and primarily builds on DQN [3] and Deictic
Image Mapping [4].

A. Learning Robotic Manipulation

Traditional approaches to robotic manipulation
consider known objects – a model of every object
to be manipulated is provided in advance [5], [6],
[7]. While these systems can be quite robust in
controlled environments, they encounter failures
when the shapes of the objects differ from ex-
pected. Recent work has demonstrated grasping of
novel objects by employing techniques intended to
address the problem of generalization in machine
learning [8], [9], [10], [11], [12], [13], [14], [15],
[16].

There have been attempts to extend novel object
grasping to more complex tasks such as pick-
place. However, these have assumed either fixed
grasp choices [17] or fixed place choices [18]. The
objective of the present work is to generalize these
attempts – a single system that can find 6-DoF grasp
and place poses.

Other research considers grasping and pushing
novel objects to a target location [19]. Their ap-
proach is quite different: a predictive model of
the environment is learned and used for planning,
whereas we aim to learn a policy directly. Other
work has considered the problem of domain transfer
[20] and sparse rewards in RL [21]. We view these
as complimentary ideas that could be combined
with our approach for an improvement.

B. Reinforcement Learning
Like several others, we apply RL techniques to

the problem of robotic manipulation (see above-
mentioned [10], [13], [15], [18], [21] and survey
[22]). RL is appealing for robotic control for several
reasons. First, several algorithms (e.g., [23], [24])
do not require a complete model of the environment.
This is of particular relevance to robotics, where
the environment is dynamic and difficult to de-
scribe exactly. Additionally, observations are often
encoded as camera or depth sensor images. Deep
Q-Networks (DQN) demonstrated an agent learning
difficult tasks (Atari games) where observations
were image sequences and actions were discrete [3].
An alternative to DQN that can handle continuous
action spaces are actor-critic methods like DDPG
[25]. Finally, RL – which has its roots in optimal
control – provides tools for the analysis of learning
optimal behavior (e.g. [26], [27], [28]), which we
refer to in Section V-A.

C. Attention Models
Our approach is inspired by models of visual

attention. Following the early work of Whitehead
and Ballard [1], we distinguish overt actions (which
directly affect change to the environment) from per-
ceptual actions (which retrieve information). Simi-
lar to their agent model, our abstract robot has a
virtual sensor which can be used to focus attention
on task-relevant parts of the scene. The present
work updates their methodology to address more
realistic problems, and we extend their analysis
by describing a situation where an optimal policy
can be learned even in the presence of “perceptual
aliasing” (i.e. partial observability).

Attention mechanisms have also been used with
artificial neural networks to identify an object of
interest in a 2D image [29], [30], [31], [32]. Our
situation is more complex in that we identify 6-
DoF poses of the robot’s hand. Improved grasp
performance has been observed by active control of
the robot’s sensor [33], [34]. These methods attempt
to identify the best sensor placement for grasp
success. In contrast, our robot learns to control
a virtual sensor for the purpose of reducing the
complexity of action selection and learning.

3

Work contemporary with ours also considered
attention for controlling high-dimensional manipu-
lators [35]. Important differences from our approach
include the use of policy gradient instead of value-
based methods, sensing 2D depth instead of 3D
point clouds, and learned instead of fixed attention
parameters.

III. PROBLEM STATEMENT

The problem considered herein is learning to
control a move-effect system (Fig. 1, cf. [4]):

Definition 1 (Move-Effect System). A move-effect
system is a discrete time system consisting of a
robot, equipped with a depth sensor and end ef-
fector (e.e.), and rigid objects of various shapes
and configurations. The robot perceives a history
of point clouds C1, . . . , Ck, where Ci ∈ Rnc×3

is acquired by the depth sensor; an e.e. status,
h ∈ {1, . . . , nh}; and a reward r ∈ R. The robot’s
action is move-effect(Tee , o), where Tee ∈ W is
the pose of the e.e., W ⊆ SE (3) is the robot’s
workspace, and o ∈ {1, . . . , no} is a prepro-
grammed controller for the e.e. For each stage t =
1, . . . , tmax , the robot receives a new perception
and takes an action.

The reward is usually instrumented by the system
engineer to indicate progress toward completion
of some desired task. The robot initially has no
knowledge of the system’s state transition dynam-
ics. The objective is, by experiencing a sequence of
episodes, for the robot to learn a policy – a mapping
from observations to actions – which maximizes the
expected sum of per-episode rewards.

For example, suppose the e.e. is a 2-fingered
gripper, o ∈ {open, close}, h ∈ {empty , holding},
the objects are bottles and coasters, and the task is
to place all the bottles on the coasters. The reward
could be 1 for placing a bottle on a coaster, −1 for
removing a placed bottle, and 0 otherwise.

IV. APPROACH

Our approach has two parts. The first part is
to reformulate the problem as a Markov decision
process (MDP) with abstract states and actions

Fig. 1: The move-effect system. The robot has an
e.e. which can be moved to pose Tee to perform
operation o.

(Section IV-A). With this reformulation, the result-
ing state representation is substantially reduced, and
it becomes possible for the robot to learn to restrict
attention to task-relevant parts of the scene. The
second part is to add constraints to the actions so
that e.e. pose is decided sequentially (Section IV-B).
After these improvements, the problem is then
amenable to solution via standard RL algorithms
like DQN.

A. Sense-Move-Effect MDP

The sense-move-effect system adds a control-
lable, virtual sensor which perceives a portion of
the point cloud from a parameterizable perspective
(Fig. 2).

Definition 2 (Sense-Move-Effect System). A sense-
move-effect system is a move-effect system where
the robot’s actions are augmented with sense(Ts, z)
(where Ts ∈W and z ∈ R3

>0) and the point cloud
observations C1, . . . , Ck are replaced with a history
of k images, I1, . . . , Ik (where I ∈ Rnch×nx×ny).
The sense action has the effect of adding I =
Proj (Crop(Trans(Ts, Ck), z)) to the history.1

The sense action makes it possible for the robot
to get either a compact overview of the scene or to

1Proj : Rnc×3 → Rnch×nx×ny is nch orthographic
projections of points onto nch , nx × ny images. Each image
plane is positioned at the origin with a different orientation.
Image values are the point to plane distance, ambiguities resolved
with the nearest distance. Crop : Rnc×3 → Rnc′×3 returns
the nc′ ≤ nc points of C which lie inside a rectangular volume
situated at the origin with length, width, height z. Trans(Ts, C)
expresses C (initially expressed w.rt. the world frame) w.r.t. Ts.

4

Fig. 2: The sense-move-effect system adds a virtual,
mobile sensor which observes points in a rectangu-
lar volume at pose Ts with size z.

attend to a small part of the scene in detail. Since the
resolution of the images is fixed, large values of z
correspond to seeing more objects in less detail, and
small values of z correspond to seeing less objects
in more detail.

The robot’s memory need not include the last
k images – it can include any previous k im-
ages selected according to a predetermined strat-
egy. Because the environment only changes after
move-effect actions, we keep the latest image, Ik,
and the last k− 1 images that appeared just before
move-effect actions. Fig. 3 shows an example in
the bottles on coasters domain.

Fig. 3: Scene and observed images for k = 2
and nch = 1. Left. Scene’s initial appearance.
Left center. sense image (large z) just before
move-effect(Tee , close). Right center. Scene’s
current appearance. Right. Current sense image,
focused on the coaster (small z).

In order to apply standard RL algorithms to the
problem of learning to control a sense-move-effect
system, we define the sense-move-effect MDP.

Definition 3 (Sense-Move-Effect MDP). Given a
sense-move-effect system, a reward function, and
transition dynamics, a sense-move-effect MDP is
a finite horizon MDP where states are sense-move-

effect system observations and actions are sense-
move-effect system actions.

The reward function and transition details are
task and domain specific, respectively, examples of
which are given in Section V.

B. Hierarchical Spatial Attention
The observation is now similar to that of DQN

– a short history of images plus the e.e. status –
and can be used by a Q-network to approximate Q-
values. However, the action space remains large due
to the 6-DoF choice for Ts or Tee and the 3-DoF
choice for z. Additionally, it may take a long time
for the robot to learn which sense actions result
in useful observations. To remedy both issues, we
design constraints to the sense-move-effect actions.

Definition 4 (Hierarchical Spatial Attention). Given
a sense-move-effect system, L ∈ N>0, T 1

s ∈W , and
the list of pairs [(z1, d1), . . . , (zL, dL)], (where zi ∈
R3

>0 and di ∈ R6), hierarchical spatial attention
(HSA) constrains the robot to take L sense(Ts, z)
actions, with z = zi for i = 1, . . . , L, prior to each
move-effect action. Furthermore, the first sensor
pose in this sequence must be T 1

s ; the sensor poses
T i+1
s , for i = 1, . . . , L− 1, must be offset no more

than di from T i
s; and e.e. pose Tee must be offset

no more than dL of TL
s .2

The process is thus divided into tmax overt
stages, where, for each stage, L sense actions are
followed by 1 move-effect action (Fig. 4). The
constraints should be set such that the observation
size zi and offset di decrease as i increases, so
the point cloud under observation decreases in size,
and the volume within which the e.e. pose can
be selected is also decreasing. These constraints
are called hierarchical spatial attention because the
robot is forced to learn to attend to a small part of
the scene (e.g., Fig. 5).

To see how HSA can improve action sample
efficiency, consider the problem of selecting po-
sition in a 3D volume. Let α be the largest vol-
ume allowed per sample. With naive sampling, the

2Concretely, di = [x, y, z, θ, φ, ρ] indicates a position offset
of ±x/2, ±y/2, and ±z/2 and a rotation offset of ±θ/2,
±φ/2, and ±ρ/2.

5

Fig. 4: Initially, the state is empty. Then, L sense
actions are taken, at each point the latest image
is state. After this, the robot takes 1 move-effect
action. Then, the process repeats, but with the last
image before move-effect saved to memory.

Fig. 5: HSA applied to grasping in the bottles
on coasters domain (Section V-C). There are 4
levels (i.e. L = 4). The sensor’s volume size z is
36×36×23.75 cm for level 1, 10.5×10.5×47.5 cm
for levels 2 and 3, and 9× 9× 47.5 cm for level 4.
As indicated by blue squares, d constrains position
in the range of ±18 × 18 × 6.875 cm for level 1,
±4.5 cm3 for level 2, and ±1.125 cm3 for level
3. Orientation is selected for level 4 in the range
of ±90◦ about the hand approach axis. Red crosses
indicate the x, y position selected by the robot, and
the red circle indicates the angle selected by the
robot. Positions are sampled uniformly on a 6×6×6
grid and 60 orientations are uniformly sampled.
Pixel values normalized and height selection not
shown for improved visualization.

required number of samples ns is proportional to
the workspace volume v0 = d1(1)d1(2)d1(3), i.e.,
ns = dv0/αe. But with HSA, we select position
sequentially, by say, halving the volume size in each
direction at each step, i.e., di+1 = 0.5di. In this
case 8L samples are needed, i.e., a sample for each
octant at each step. The volume represented by each
sample at step i, for i = 1, . . . , L, is vi = v0/8

i.
To get vL ≤ α, i.e., to get the volume represented
by samples used for selecting e.e. position to be no
more than α, L = dlog8(v0/α)e. Thus, with HSA,
the sample complexity becomes logarithmic, rather
than linear, in v0.

C. Lookahead Sense-Move-Effect

So far we have not specified how action parame-
ters Ts, Tee , and z are encoded. For standard sense-
move-effect, these are typically encoded as 6 float-
ing point numbers representing the pose T and 3
floating point numbers representing the volume size
z. Alternatively, the pair (T, z) could be encoded
as the sense image that would be seen if the sensor
were to move to pose T with zoom z. This is as
if the action was “looking ahead” at the pose the
sensor or e.e. would move to if this action were
selected.

In particular, the lookahead sense-move-
effect MDP has actions sense(Ts, zs) and
move-effect(Tee , zee , o), the difference being the
additional parameter zee ∈ R3

>0 for move-effect .
The action samples are encoded as the height map
that would be generated by sense(T, z). Because
action has this rich encoding, state is just the e.e.
status and a history of k actions.

The HSA constraints for the lookahead variant
have the same parameterization – an initial pose T 1

s

and a list of pairs [(z1, d1), . . . , (zL, dL)]. The se-
mantics are slightly different. zi for i = 1, . . . , L−1
is the zs parameter for the ith sense , and zL is the
zee parameter. The di for i = 1, . . . , L− 1 specify
the offset of the sense action samples relative to
the last pose decided, T i

s . dL specifies the offset of
Tee relative to TL

s .

D. Relation to Other Approaches in the Literature

1) DQN: Consider a sense-move-effect MDP
with HSA constraints L = 1, T 1

s centered in the
robot’s workspace, and z1 and d1 large enough to
capture the entire workspace. The only free action
parameters for this system are the e.e. pose, which
is sampled uniformly and spaced appropriately for
the task, and the e.e. operation. In this case, the
observations and actions are similar to that of DQN
[3], and the DQN algorithm can be applied to the
resulting MDP.

However, this approach is problematic in robotics
because the required number of action samples is
large, and the image resolution would need to be
high in order to capture the required details of the

6

scene. For example, a pick-place task where e.e.
poses are in SE (3), the robot workspace is 1 m3,
the required position precision is 1 mm, and the
required orientation resolution is 1◦ per Euler angle
requires on the order of 1017 actions. Adding more
levels (i.e. L > 1) alleviates this problem.

2) Deictic Image Mapping: With L = 1, T 1
s

centered in the robot’s workspace, z1 the deictic
marker size (e.g., the size of the largest object to
be manipulated), and d1 large enough to capture
the entire workspace, HSA applied to the looka-
head sense-move-effect MDP is the Deictic Image
Mapping representation [4]. Similar to the case with
DQN, if the space of e.e. poses is large, and precise
positioning is needed, many actions need to be
sampled. In fact, the computational burden with the
Deictic Image Mapping representation is even larger
than that of DQN due to the need to create images
for each action. Yet, the deictic representation has
significant advantages over DQN in terms of effi-
cient learning due to its small observations [4].

HSA generalizes and improves upon both DQN
and Deictic Image Mapping by overcoming the
burden for the agent to select from many actions in
a single time step. Instead, the agent sequentially
refines its choice of e.e. pose over a sequence of L
decisions. We provide comparisons between these
approaches in Section V.

E. Implementation Methods

To implement HSA for a sense-move-effect MDP,
it is necessary to select values for HSA parameters
and a training algorithm. Here we provide rough
guidelines for making both choices for standard
HSA.

1) HSA Parameter Values: Ideal values for T 1
s ,

L, and [(z1, d1), . . . (zL, dL)] depend on the posi-
tion and size of the robot’s workspace, the desired
e.e. precision, and available computing resources.
In our implementations, we have separate levels
for selecting position and orientation, with position
selecting levels occurring first. The procedure for
deciding position selecting levels is as follows.
First, the position component of the initial sensor
pose T 1

s is set to the center of the robot’s workspace.
Second, the number of action samples ns depends

on computing resources, e.g., the number of Q-
values that can be evaluated in parallel. If ns = n3,
where n is the number of position samples spaced
evenly along an axis, then n is set to the largest
integer such that ns samples can be evaluated
efficiently. Third, the number of levels L is the min-
imum number of times the workspace needs divided
to achieve the desired e.e. precision. If p ∈ R3

>0 is
the desired e.e. precision and w ∈ R3

>0 is the size of
the workspace, L = maxi=1,...,3dlogn(w(i)/p(i))e.
Fourth, sampling regions di for i = 1, . . . , L should
be large enough so that, if patches size di are
centered on samples in level i−1, the entire region
is covered: di = w/ni−1. Lastly, observation sizes
zi for i = 1, . . . , L should be equal to di or the size
of the largest object to be manipulated, whichever is
largest. The latter condition is necessary if the entire
object must be visible to determine the appropriate
action. For example, when grasping bottles to be
placed upright, either the top or bottom of the bottle
must be visible to determine bottle orientation in
the hand. Deciding orientation selecting levels is
simpler: add 1 level per Euler angle, each with the
desired angular e.e. precision.

2) Training Algorithm: Algorithm 1 is a variant
of DQN [3] that follows the HSA constraints.
For concreteness, this implementation stores ex-
periences for Q-learning; modification for other
temporal difference (TD) update rules, such as Sarsa
[24] or Monte Carlo (MC) [36], is straight-forward.
For simplicity of exposition, we also restrict to the
case where image history consists of the current
image I and the image Ih before the last grasp,
e.e. status is binary empty or holding , and the e.e.
operation is binary open or close .

Initially, the Q-function gets random weights,
the experience replay database is empty, and the
probability of taking random actions ε = 1 (line 1).
The environment is initialized to a scene unique to
each episode (line 2). For each time step, the e.e.
status is observed (line 5), and Ih is the previously
observed image if the e.e. is holding something
(lines 6-8). Then, for each HSA level, a sense
action is taken (line 10), the pose of the next sense
action is determined either randomly or according
to Q (line 12), and the experience is saved (line 15).

7

Input: nEpisodes , tmax , T1, ns, L,
[(z1, d1), . . . , (zL, dL)],
maxExperiences , trainEvery

1 Initialize Q, D, ε
2 for i← 1, ...,nEpisodes do
3 env ← initialize-environment(i)
4 for t← 1, . . . , tmax do
5 h = get-ee-status(env)
6 Ih = NULL
7 if t > 1 ∧ h = holding then
8 Ih ← I

9 for l← 1, . . . , L do
10 I ← sense(Tl, zl)
11 o′ ← (h, Ih, I)
12 Tl+1 ←

get-pose(Q, o′, Tl, dl, ns, ε)
13 a′ ← T−1l Tl+1

14 if t > 1 ∨ l > 1 then
15 D ← D ∪ {(o, a, o′, r)}
16 o← o′; a← a′; r ← 0

17 op ← get-ee-op(h)
18 overtAct ← move-effect(TL+1, op)
19 r ← transition(env, overtAct)

20 D ← D ∪ {(o, a, NULL, r)}
21 if modulo(i, trainEvery) = 0 then
22 D ← prune-exp(D,maxExperiences)
23 Q← update-q-function(D,Q)

24 ε← decrease-epsilon(|D|)
Algorithm 1: Train standard HSA.

Actions are encoded relative to the previous sense
pose (line 13). Next, the robot moves the e.e. to
TL+1 and performs an operation op, after which a
reward is observed (lines 17 - 19). Finally, after
trainEvery episodes, the Q function is updated
with the current experiences (lines 21 - 23), and
ε is set inversely proportional to the number of
experiences (line 24).

V. APPLICATION DOMAINS

In this section we compare the HSA approach
in 4 application domains of increasing complexity.
The complexity increases in terms of the size of

the action space and in terms of the diversity of
object poses and geometries. We analyze simpler
domains because the results are more interpretable
and learning is faster (Table I). More complex
domains are included to demonstrate the practicality
of the approach. All training is in simulation, and
Sections V-C and V-D include test results for a psy-
chical robotic system. Source code for reproducing
the simulated experiments is available at [37].

A. Tabular Pegs on Disks

Here we analyze the HSA approach applied to a
simple, tabular domain, where the number of states
and actions is finite. The domain consists of 2 types
of objects – pegs and disks – which are situated on
a 3D grid (Fig. 6). The robot can move its e.e. to a
location on the grid and open/close its gripper. The
goal is for the robot to place all the pegs onto disks.

Fig. 6: Tabular pegs on disks with an 8×8×8 grid,
1 peg (red triangle), and 1 disk (blue circle).

If this problem is described as a finite MDP, even-
tual convergence to the optimal policy is guaranteed
for standard RL algorithms [26], [27]. However,
the number of state-action pairs is too large for
practical implementation unless some abstraction
is applied. The main question addressed here is
if convergence guarantees are maintained with the
HSA abstraction.

1) Ground MDP: Tabular pegs on disks is first
described without the sense-move-effect abstrac-
tion.
• State. A set of pegs P = {p1, . . . , pn}, a set

of disks D = {d1, . . . , dn}, and the current time
t ∈ {1, . . . , tmax}. A peg (resp. disk) is a location

8

Tabular Pegs on Disks Upright Pegs on Disks Bottles on Coasters 6-Dof Pick-Place
Time (hours) 0.23 1.29 8.12 96.54

TABLE I: Average simulation time for the 4 test domains. Times are averaged over 10 or more simulations
on 4 different workstations, each equipped with an Intel Core i7 processor and an NVIDIA GTX 1080
graphics card.

(x, y, z) ∈ {1, . . . ,m}3 except peg locations are
augmented with a special in-hand location h. Pegs
(resp. disks) cannot occupy the same location at
the same time, but 1 peg and 1 disk can occupy
the same location at the same time.

• Action. move-effect(x, y, z), which moves the
e.e. to (x, y, z) ∈ {1, . . . ,m}3 and opens/closes.
It opens if a peg is located at h and closes
otherwise.

• Transition. t increments by 1. If no peg is at h
and a peg p is at the action location, then the peg
is grasped (p = h). If a peg is located at h and the
action location a does not contain a peg, the peg
is placed (p = a). Otherwise, the state remains
unchanged.

• Reward. 1 if a peg is placed on an unoccupied
disk, -1 if a placed peg is removed, and 0 other-
wise.
Initially, pegs and disks are at distinct locations,

and no peg is in the e.e. The time horizon is tmax =
2n, where there is enough time to grasp and place
each peg. This MDP satisfies the Markov property
because the next state is completely determined
from the current state and action. The number of
possible states is shown in Eq. 1, and the number
of actions is |A| = m3. It is not practical to learn
the optimal policy by enumerating all state-action
pairs for this MDP: for example, if m = 16 and
n = 3, the state-action value lookup table size is
on the order of 1024.

|S| =
(
m3 + 1

n

)(
m3

n

)
tmax (1)

2) Sense-Move-Effect MDP: We apply the sense-
move-effect abstraction of Section IV-A and HSA
constraints of Section IV-B to the tabular pegs on
disks problem. The process is illustrated in Fig. 7.
At level 1, the sensor perceives the entire m3 grid
as 8 cells, each cell summarizing the contents of an

octant of space in the underlying grid. The robot
then selects one of these cells to attend to. At
levels 2, . . . , L − 1, the sensor perceives 8 cells
revealing more detail of the octant selected in the
previous level. At level L, the sensor perceives 8
cells in the underlying grid, and the location of the
underlying action is determined by the cell selected
here. Without loss of generality, assume the grid
size m of the ground MDP is a power of 2 and the
number of levels L is log2(m).

Fig. 7: HSA applied to the grid in Fig. 6. Columns
correspond to levels 1, 2, and 3. The observed
volume appears yellow, and the octant selected by
the robot appears green. Top. Robot selects the peg
and is holding it afterward. Bottom. Robot selects
the disk.

• State. The current level l ∈ {1, . . . , L}, the overt
time step t ∈ {1, . . . , tmax}, a bit h ∈ {0, 1}
indicating if a peg is held, and the tuple G =
(Gp, Gd, Gpd , Ge) where each Gi ∈ {0, 1}8. Gp

indicates the presence of unplaced pegs, Gd un-
occupied disks, Gpd placed pegs, and Ge empty
space.

• Action. The action is a ∈ {1, . . . , 8}, a location
in the observed grids.

9

• Transition. For levels l = 1, . . . , L−1, the robot
selects a cell in G which corresponds to some
partition of space in the underlying grid. The
sensor perceives this part of the underlying grid
and generates the observation at level l + 1. For
level L, the L selections determine the location
of the underlying move-effect action, l is reset
to 1, and otherwise the transition is the same as
in the ground MDP.

• Reward. The reward is 0 for levels 1, . . . , L −
1. Otherwise, the reward is the same as for the
ground MDP.

The above process is no longer Markov because a
history of states and actions could be used to better
predict the next state. For instance, for a sufficiently
long random walk, the exact location of all pegs
and disks could be determined from the history
of observations, and the underlying grid could be
reconstructed.

On the other hand, this abstraction results in
substantial savings in terms of the number of states
(Eq. 2) and actions (|A| = 8). The only nonconstant
term (besides tmax) is logarithmic in m. Referring
to the earlier example with m = 16 and n = 3, the
state-action lookup table size is the order of 1011.

|S| ≤ 233 log2(m)tmax (2)

3) Theoretical Results: The sense-move-effect
MDP with HSA constraints can be classified ac-
cording to the state abstraction ordering defined in
Li et al. [28]. In particular, we show Q∗-irrelevance,
which is sufficient for the convergence of a number
of RL algorithms, including Q-learning, to a policy
optimal in the ground MDP.

Definition 5 (Q∗-irrelevance Abstraction [28]).
Given an MDP M = 〈S,A, P,R, γ〉, any states
s1, s2 ∈ S, and an arbitrary but fixed weighting
function w(s), a Q∗-irrelevance abstraction φQ∗ is
such that for any action a, φQ∗(s1) = φQ∗(s2)
implies Q∗(s1, a) = Q∗(s2, a).

φQ∗ is a mapping from ground states to abstract

states and defines the abstract MDP.3

Theorem 1 (Convergence of Q-learning under
Q∗-irrelevance [28]). Assume that each state-action
pair is visited infinitely often and the step-size
parameters decay appropriately. Q-learning with
abstraction φQ∗ converges to the optimal state-
action value function in the ground MDP. Therefore,
the resulting optimal abstract policy is also optimal
in the ground MDP.

Because Li et al. do not consider action ab-
stractions, we redefine the ground MDP to have
the same actions as sense-move-effect MDP. Ad-
ditionally, to keep the ground MDP Markov, we
add the current level l, and the current point of
focus v ∈ {1, . . . ,m}3, to the state. This does
not essentially change the tabular pegs on disks
domain but merely allows us to rigorously make
the following connection.

Let states and actions of the ground MDP be
denoted by s and a respectively. Similarly, let
states and actions of the sense-move-effect MDP be
denoted by s̄ and ā respectively. Let φSME : S → S̄
be the observation function.

Theorem 2 (φSME is Q∗-irrelevant). The sense-
move-effect abstraction, φSME , is a Q∗-irrelevance
abstraction.

Proof. Q∗(s, a) can be computed from s̄ and ā. The
reward after the current overt stage t depends on h,
whether or not it is possible to select a peg/disk,
and whether or not it is possible to avoid selecting
a placed peg. These are known from s̄ and ā.
Furthermore, whether or not a peg will be held after
the current stage can be determined from s̄ and ā.
Finally, due to tmax = 2n and the fact that all pegs
are initially unplaced, the sum of future rewards
following an optimal policy from the current stage
depends only on (a) whether or not a peg will be

3Although the definition is for infinite-horizon problems (due
to γ), our finite-horizon problem readily converts to an infinite-
horizon problem by adding an absorbing state that is reached
after tmax overt stages. The weight w(s) is the probability the
underlying state is s given its abstract state φ(s) is observed.
Any fixed policy, e.g. ε-greedy with fixed ε, induces a valid
w(s) and satisfies the definition.

10

held after the current stage and (b) the amount of
time left, t− 1.

4) Simulation Results: In these experiments,
there were n = 3 objects, and the grid size was
m = 16. Besides Deictic Image Mapping (where
L = 1), the number of levels was L = 4. A
comparison with no abstraction or HSA with L = 1
was not possible because the system quickly ran
out of memory (Eq. 1). The learning algorithm was
Sarsa [24], and actions were taken greedily w.r.t. the
current Q-estimate. An optimistic initialization of
action-values and random tie-breaking were relied
on for exploration.

The proof to Theorem 2 suggests the observabil-
ity of pegs, disks, placed pegs, and empty space
are all important for learning the optimal policy.
On the other hand, we empirically found no dis-
advantage to removing the Gpd (placed pegs) and
Ge (empty space) grids. However, it is important to
distinguish unplaced pegs and placed pegs. Fig. 8
shows learning curves for an HSA agent with Gp

and Gd grids versus an HSA agent with the same
grids but showing pegs/disks irregardless of whether
or not they are placed/occupied.

Fig. 8: Number of objects placed for the standard
HSA agent (blue) and a standard HSA agent with
a faulty sensor (red). Curves are first mean and ±σ
over each episode in 30 realizations, then averaged
over 1, 000-epsisode segments for visualization.

Lookahead HSA and Deictic Image Mapping
variants (Section IV-C and IV-D) result in an even

smaller state-action space than standard HSA. In
the tabular domain, this means faster convergence
(Fig. 9). Although the deictic representation seems
superior in these results, it has a serious drawback.
The action-selection time scales linearly with m3

because there is one action for each cell in the
underlying grid. The lookahead variant captures
the best of both worlds – small representation and
fast execution. Thus, in the tabular domain, looka-
head appears to be the satisfactory middle ground
between the two approaches. However, for more
complex domains, where Q-function approximation
is required, the constant time needed to generate
the action images becomes more significant, and
the advantage of lookahead in terms of episodes to
train diminishes (Section V-B).

Fig. 9: Number of objects placed for standard HSA
(blue), lookahead HSA (red), and Deictic Image
Mapping (yellow) agents. Curves are mean (solid)
and ±σ (shaded) over 30 realizations. Plot in log
scale for lookahead and deictic results to be visible.

B. Upright Pegs on Disks

In this domain, pegs and disks are modeled as tall
and flat cylinders, respectively, where the cylinder
axis is always vertical (Fig. 10, left). Unlike the
tabular domain, object size and position are sampled
from a continuous space. Grasp and place success
are checked with a set of simple conditions appro-

11

priate for upright cylinders.4 The reward is 1 for
grasping an unplaced peg, -1 for grasping a placed
peg, 1 for placing a peg on an unoccupied disk, and
0 otherwise.

Observations consist of 1 or 2 images (k = 2,
nch = 1, nx = ny = 64); the current HSA
level, l ∈ {1, 2, 3}; and the e.e. status, h ∈
{empty , holding}. Each HSA level selects (x, y, z)
position (Fig. 10, right). Gripper orientation is not
critical for this problem.

Fig. 10: Left. Example upright pegs on disks scene.
Right. Level 1, 2, and 3 images for grasping the
orange peg. Red cross denotes the (x, y) position
selected by the robot and the blue rectangle denotes
the allowed (x, y) offset. zx = zy = 36 cm2 for
level 1 and 9 cm2 for levels 2 and 3. dx = dy = 36
cm2 for level 1, 9 cm2 for level 2, and 2.25 cm2 for
level 3. Pixel values normalized and height selection
not shown for improved visualization.

1) Network Architecture and Algorithm: The Q-
function consists of 6 convolutional neural networks
(CNNs), 1 for each level and e.e. status, with
identical architecture (Table II). This architecture
results in faster execution time compared with our
previous version [2]. The loss is the squared dif-
ference between predicted and actual action-value
target, averaged over a mini-batch. The action-value
target is the reward received at the end of the current
overt stage.5 For CNN optimization, Adam [38] is
used with a base learning rate of 0.0001, weight
decay of 0.0001, and mini-batch size of 64.

4Grasp conditions: gripper is collision-free and the top-center
of exactly 1 cylinder is in the gripper’s closing region. Place
conditions: entire cylinder is above an unoccupied disk and the
cylinder bottom is at most 1 cm below or 2 cm above the disk
surface.

5With standard MC and γ = 1, the action-value target would
be the sum of rewards received after the current time step [36].
Since, for this problem, no positively rewarding grasp precludes
a positively rewarding place, ignoring rewards after the current
overt stage is acceptable.

layer kernel size stride output size
conv-1 7× 7 2 32× 32× 32
conv-2 7× 7 2 16× 16× 64
conv-3 7× 7 2 8× 8× 32
conv-4 7× 7 2 4× 4× 32
conv-5 7× 7 1 4× 4× 4

TABLE II: CNN architecture for the upright pegs on
disks domain. Each layer besides conv-4 and conv-5
has a rectified linear unit (ReLU) as the activation.

2) Simulation Results: We tested standard HSA
with 1, 2, and 3 levels. The number of actions (CNN
outputs) per level was adjusted so that each case had
the same 5.625 mm precision in positioning of the
e.e.: 1 level had 49 outputs, 2 levels 43 outputs and
46 outputs, and 3 levels each had 43 outputs. Note
that with 1 level this is the DQN (i.e. no-hierarchy)
approach (Section IV-D). Exploration was ε-greedy
with ε = 0.04.

Results are shown in Fig. 11. The 1 level case
is faster in terms of episodes because learning is
over fewer time steps. The 2 levels case initially
learns faster for the same reason. The 1 and 2 level
cases converge to higher values because, with 3
levels, there is a higher chance of taking a random
action during an overt stage. This is because more
levels imply more time steps over which a random
action could be selected w.p. ε. What is important
is that, in the last 5, 000 episodes when ε = 0, all
scenarios have similar performance. However, HSA
trains faster than DQN in terms of wall clock time
(1.29 versus 2.55 hours) because fewer actions need
evaluated (192 versus 262, 144). This advantage
becomes more staggering as dimensionality of the
action space increases, as in following sections.

In another experiment we tested the sensitivity of
standard HSA to the choice of z and d parameters.
As explained in Section IV-E1, these parameters
are selected based on task geometry. If z (resp. d)
is too small, parts of the workspace will not be
perceivable (resp. reachable). On the other hand,
if z is too large, the scene will not be visible in
detail (because the perceived images are of fixed
resolution), and if d is too large, the samples at
the last level will not be dense, resulting in low
e.e. precision. Results for different values of z

12

Fig. 11: Standard HSA with varying number of
levels. (Blue) L = 3, (red) L = 2, and (yellow)
L = 1. Curves are mean ±σ over 10 realizations
then averaged over 1, 000 episode segments.

and d are shown in Table III. The “ideal” values
are those selected according to the principles in
Section IV-E1 and correspond to the 3-levels case
in Fig. 11. As expected, performance is much worse
when selecting z and d without consideration to task
geometry.

Small Ideal Large
level-1, zxy = 36.0 36.0 36.0
level-1, dxy = 36.0 36.0 36.0
level-2, zxy = 6.00 9.00 12.00
level-2, dxy = 6.00 9.00 12.00
levle-3, zxy = 6.00 9.00 12.00
level-3, dxy = 1.50 2.25 3.00
µ Return 2.69 3.91 2.83
σ Return 1.32 0.01 1.75

TABLE III: Varying standard HSA parameters zxy
and dxy (in cm). “Ideal” values were selected ac-
cording to Section IV-E1. “Small” (resp. “Large”)
values are smaller (resp. larger) than ideal. Last 2
rows are average and standard deviation over sum
of rewards per episode, after 10 different training
sessions and 1, 000 episodes per session.

We also compared standard HSA to lookahead
HSA, both with 3 levels. We did not compare to the
Deictic Image Mapping approach (Lookahead HSA
with 1 level) because computation of all 49 images
was prohibitively expensive. Results are shown in

Fig. 12. In contrast to the tabular results, both
scenarios perform similarly. We hypothesize that
the advantage of lookahead HSA is lost due to
the equivariance property of CNNs. Since execution
time for standard HSA is less than half that of
lookahead (1.29 versus 3.67 hours), from now on
we only consider standard HSA.

Fig. 12: Standard HSA (blue) versus lookahead
HSA (red).

C. Bottles on Coasters

The main question addressed here is if HSA
can be applied to a practical problem and imple-
mented on a physical robotic system. The bottles
on coasters domain is similar to the pegs on disks
domain, but now objects have complex shapes and
are required to be placed upright.6 The reward is 1
for grasping an unplaced object more than 4 cm
from the bottom (placing with bottom grasps is
kinematically infeasible in the physical system), −1
for grasping a placed object, 1 for placing a bottle,
and 0 otherwise.

Observations are similar to before except now
the image resolution is lower (nx = ny = 48),
and the overt time step is always input to grasp
networks (and never input to place networks). HSA

6Grasp conditions: gripper closing region intersects exactly 1
object and the antipodal condition from [12] with 15◦ friction
cone. Place conditions: bottle is upright, center of mass (CoM)
(x, y) position at least 2 cm inside an unoccupied coaster, and
bottom within ±2 cm of coaster surface.

13

has 3 levels selecting (x, y, z) position and 1 level
selecting orientation about the gripper approach axis
(Fig. 5).

To achieve the target precision in e.e. pose (3.75
mm position and 6◦ orientation for grasping), DQN
(or 1-level HSA) would need to evaluate over 53
million actions. Evaluation was prohibitively ex-
pensive with our computing hardware. HSA only
needs 404 actions (although we use 708 to achieve
redundancy, with little loss in computation time as
the evaluation is done in parallel).

1) Network Architecture and Algorithm: The
network architecture is shown in Table IV. There
is 1 network for each HSA level and e.e. status.
Weight decay is 0. Q-network targets are the reward
after the current overt stage.

layer kernel size stride output size
conv-1 8× 8 2 24× 24× 64
conv-2 4× 4 2 12× 12× 64
conv-3 3× 3 2 6× 6× 64

conv-4 / ip-1 2× 2 / - 1 / - 63/norient

TABLE IV: CNN architecture for the bottles on
coasters domain. Each layer besides the last has
a ReLU activation. The last layer is a convolution
layer for levels 1-3 (selecting position) and an inner
product (IP) layer for level 4 (selecting orientation).
norient = 60 for grasp networks and norient = 3
for place networks.

2) Simulation Results: 70 bottles from 3DNet
[39] were randomly scaled to height 10-20 cm.
Bottles were placed upright with probability 1/3
and on their sides with probability 2/3. Learning
curves for 2 bottles and 2 coasters are shown in
Fig. 13. Performance is lower than that of the
upright pegs on disks domain, reflective of the
additional problem complexity.

To test robustness of the system to background
noise, we ran the same experiment with the addition
of distractor objects. These distractors are 3 rectan-
gular blocks, with side lengths 1 to 4 cm, scattered
randomly in the scene (e.g., Fig. 14, left). Learning
performance is only slightly lower (Fig. 14, right).
However, if clutter is present at test time, it is
important to train the system with clutter. The robot
trained without clutter places an average of 1.24

Fig. 13: Number of bottles grasped (blue) and
placed (red). Curves are mean ±σ over 10 realiza-
tions then averaged over 1, 000 episode segments.
Standard HSA with L = 4.

bottles in the cluttered environment (versus 1.55 if
trained with clutter). The distractors are visible at
some levels (e.g., level 1), so the robot does need
to learn to ignore (and avoid collisions with) them.

Fig. 14: Left. Scene with clutter. Right. Learning
curves comparing average sum of rewards when
distractors are not present (blue) and present (red).

3) Top-n Sampling: Before considering experi-
ments on a physical robotic system, we address an
important assumption of the move-effect system of
Section III. The assumption is the e.e. can move
to any pose, Tee , in the robot’s workspace. Recent
advances in motion planning algorithms make this
a reasonable assumption for the most part; nonethe-
less, a pose can still sometimes be unreachable due
to obstacles, motion planning failure, or IK failure.

14

To address this issue, multiple, high-valued ac-
tions are sampled from the policy learned in simula-
tion. In particular, for each level l of an overt stage,
we take the top-n samples according to Eq. 3, where
Ql is the action-value estimate at level l, Qmax is
the maximum possible action-value, Qmin is the
minimum possible action-value, and p0 = 1.

pl = pl−1
Ql −Qmin

Qmax −Qmin
, l = 1, . . . , L (3)

Preliminary tests in simulation showed sampling
top-n pl values performs better than sampling top-n
QL values, as was done previously [2]. Sampling
top-n pl values may be viewed as an ensemble
method where each level votes on the final overt
action (cf. [40]).

During test time, the resulting n, Tee samples
are checked for IK and motion plan solution in
descending order of pL value. As n increases,
the probability of failing to find a reachable e.e.
pose decreases; however, the more poses that are
unreachable, the lower the pL value. Thus, when
designing an HSA system, it is important to not
over constrain the space of actions.

4) Robot Experiments: We tested the bottles on
coasters task with the physical system depicted in
Fig. 15. The system consists of a Universal Robots
5 (UR5) arm, a Robotiq 85 parallel-jaw gripper, and
a Structure depth sensor. The test objects (Fig.16)
were not observed during training. The CNN weight
files had about average performance out of the 10
realizations (Fig. 13).

Initially, 2 coasters were randomly selected and
placed in arbitrary positions in the back half of the
robot’s workspace (too close resulted in unreachable
places). Then, 2 bottles were randomly selected and
placed upright with probability 1/3 and on the side
with probability 2/3. The bottles were not allowed
to be placed over a coaster.7 Top-n sampling with
n = 200 was used. A threshold was set for the final
grasp/place approach, whereby, if the magnitude
of the force on the arm exceeded this threshold,

7Python’s pseudorandom number generator was used to decide
the objects used and upright/side placement. Object position was
decided by a human instructed to make the scenes diverse.

Fig. 15: Test setup for bottles on coasters task:
a UR5 arm, Robotiq 85 gripper, Structure depth
sensor (mounted out of view above the table and
looking down), 2 bottles, and 2 coasters.

the motion canceled and the open/close action was
immediately performed.

Fig. 16: Test objects used in UR5 experiments.

Results are summarized in Table V, and a suc-
cessful sequence is depicted in Fig. 17. A grasp
was considered successful if a bottle was lifted to
the “home” configuration; a place was considered

15

successful if a bottle was placed upright on an
unoccupied coaster and remained there after the
gripper withdrew. Failures were: grasped a placed
object (×3), placed too close to the edge of a coaster
and fell over (×3), placed upside-down (×2), object
slip in hand after grasp caused a place failure (×1),
and object fell out of hand after grasp (×1).

Grasp Place
Attempts 60 59

Success Rate 0.98 0.90
Number of Objects 1.97± 0.18 1.67± 0.48

TABLE V: Performance for UR5 experiments plac-
ing 2 bottles on 2 coasters averaged over 30
episodes with ±σ. Task success rate with tmax = 4
was 0.67.

D. 6-DoF Pick-Place

The HSA method was also implemented for
6-DoF manipulation, and the same system was
tested on 3 different pick-place tasks [2].8 The
tasks included stacking a block on top of another,
placing a mug upright on the table, and (similar to
Section V-C) placing a bottle on a coaster. All tasks
included novel objects in light to moderate clutter
(Fig. 18). To handle perceptual ambiguities in mugs,
the observations were 3-channel images (k = 2,
nch = 3, nx = ny = 60) projected from a point
cloud obtained from 2 camera poses. HSA included
6 levels (L = 6) – 3 for (x, y, z) position and 1 for
each Euler angle. Results from UR5 experiments
are shown in Table VI.

Blocks Mugs Bottles
Grasp 0.96 0.86 0.89
Place 0.67 0.89 0.64
Task 0.64 0.76 0.57

n Grasps 50 51 53
n Places 48 44 47

TABLE VI: Top. Grasp, place, and task success
rates for the 3 tasks with tmax = 2 (i.e., 1 pick
1 place). Bottom. Number of grasp and place
attempts.

8This section refers to an earlier version of our system, so
the simulations took longer and the success rates for bottles are
lower. The setup was similar to that in Fig. 15 except the sensor
was mounted to the wrist. See [2] for more details.

VI. CONCLUSION

The primary conclusion is that the sense-move-
effect abstraction, when coupled with hierarchical
spatial attention, is an effective way of simultane-
ously handling (a) high-resolution 3D observations
and (b) high-dimensional, continuous action spaces.
These two issues are intrinsic to realistic problems
of robot learning. We provide several other con-
siderations relevant to systems employing spatial
attention:

A. Secondary Conclusions

• Compared to a flat representation, HSA can result
in an exponential reduction in the number of
actions that need to be sampled (Section IV-B).

• HSA generalizes DQN, and lookahead HSA gen-
eralizes Deictic Image Mapping (Section IV-D).

• The partial observability induced by an HSA
observation does not preclude learning an optimal
policy (Section V-A).

• HSA may take longer to learn than DQN in terms
of the number of episodes to convergence, but
HSA executes faster when the number of actions
is large (Section V-B).

• Lookahead HSA is preferred to standard HSA in
terms of the number of the episodes to train, but
execution time is longer by a constant and the
learning benefit diminishes when coupled with
function approximation (Sections V-A and V-B).

• HSA can be applied to realistic problems on a
physical robotic system (Sections V-C and V-D).

B. Limitations and Future Work

A concern with all deep RL methods is that
modeling and optimization errors induced by the
use of function approximation prevent the robot
from learning an optimal policy. This is true for
even simple problems, such as the upright pegs on
disks problem of Section V-B. Also, how manip-
ulation skills can be automatically and efficiently
transferred to different but related tasks remains
an open question. Even small changes to the task,
such as the inclusion of distractor objects, requires
complete retraining of the system for maximum per-
formance. Finally, HSA is a competing approach to

16

Fig. 17: Successful trial – all bottles placed in 4 overt stages. Image taken immediately after open/close.

Fig. 18: 6-DoF pick place on the UR5 system. Top.
Blocks task. Bottom. Mugs task. Notice the grasp is
diagonal to the mug axis, and the robot compensates
for this by placing diagonally with respect to the
table surface.

policy search methods in that both can handle high-
dimensional, continuous action spaces. It would
be interesting to see a comparison between these
approaches. Previous value-based approaches like
DQN cannot handle the high-dimensional action
spaces prevalent in robotics; thus, HSA enables a
comparison between value and policy search meth-
ods for these domains.

ACKNOWLEDGMENT

We thank Andreas ten Pas for reviewing early
drafts of this paper and the anonymous reviewers for
their insightful comments. Funding was provided by
NSF (IIS-1724257, IIS-1724191, IIS-1750649, IIS-

1830425, IIS-1763878), ONR (N00014-19-1-2131),
and NASA (80NSSC19K1474).

REFERENCES

[1] S. Whitehead and D. Ballard, “Learning to perceive and
act by trial and error,” Machine Learning, vol. 7, no. 1,
pp. 45–83, 1991.

[2] M. Gualtieri and R. Platt, “Learning 6-DoF grasping and
pick-place using attention focus,” in Proceedings of The
2nd Conference on Robot Learning, ser. Proceedings of
Machine Learning Research, vol. 87, Oct 2018, pp. 477–
486.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Ve-
ness, M. Bellemare, A. Graves, M. Riedmiller, A. Fid-
jeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis, “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, pp. 529–
533, 2015.

[4] R. Platt, C. Kohler, and M. Gualtieri, “Deictic image maps:
An abstraction for learning pose invariant manipulation
policies,” in AAAI Conf. on Artificial Intelligence, 2019.

[5] T. Lozano-Pérez, “Motion planning and the design of
orienting devices for vibratory part feeders,” MIT Artificial
Intelligence Laboratory Technical Report, 1986.

[6] P. Tournassoud, T. Lozano-Pérez, and E. Mazer, “Regrasp-
ing,” in IEEE Int’l Conf. on Robotics and Automation,
vol. 4, 1987, pp. 1924–1928.

[7] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox,
and S. Birchfield, “Deep object pose estimation for seman-
tic robotic grasping of household objects,” in Proceedings
of The 2nd Conference on Robot Learning, ser. Proceedings
of Machine Learning Research, vol. 87. PMLR, Oct 2018,
pp. 306–316.

[8] I. Lenz, H. Lee, and A. Saxena, “Deep learning for
detecting robotic grasps,” The Int’l Journal of Robotics
Research, vol. 34, no. 4-5, pp. 705–724, 2015.

[9] L. Pinto and A. Gupta, “Supersizing self-supervision:
Learning to grasp from 50k tries and 700 robot hours,”
in IEEE Int’l Conf. on Robotics and Automation, 2016,
pp. 3406–3413.

[10] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen,
“Learning hand-eye coordination for robotic grasping with
large-scale data collection,” in Int’l Symp. on Experimental
Robotics. Springer, 2016, pp. 173–184.

17

[11] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu,
J. Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to
plan robust grasps with synthetic point clouds and analytic
grasp metrics,” Robotics: Science and Systems, vol. 13,
2017.

[12] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp
pose detection in point clouds,” The Int’l Journal of
Robotics Research, vol. 36, no. 13-14, pp. 1455–1473,
2017.

[13] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog,
E. Jang, D. Quillen, E. Holly, M. Kalakrishnan, V. Van-
houcke, and S. Levine, “Scalable deep reinforcement learn-
ing for vision-based robotic manipulation,” in Proceedings
of The 2nd Conference on Robot Learning, ser. Proceedings
of Machine Learning Research, vol. 87. PMLR, 29–31
Oct 2018, pp. 651–673.

[14] D. Morrison, P. Corke, and J. Leitner, “Closing the loop for
robotic grasping: A real-time, generative grasp synthesis
approach,” in Robotics: Science and Systems, 2018.

[15] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and
S. Levine, “Deep reinforcement learning for vision-based
robotic grasping: A simulated comparative evaluation of
off-policy methods,” in IEEE Int’l Conf. on Robotics and
Automation, 2018.

[16] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. Hogan,
M. Bauza, D. Ma, O. Taylor, M. Liu, E. Romo, N. Fazeli,
F. Alet, N. Chavan-Dafle, R. Holladay, I. Morona, Q.-N.
Prem, D. Green, I. Taylor, W. Liu, T. Funkhouser, and
A. Rodriguez, “Robotic pick-and-place of novel objects
in clutter with multi-affordance grasping and cross-domain
image matching,” in IEEE Int’l Conf. on Robotics and
Automation, 2018.

[17] Y. Jiang, C. Zheng, M. Lim, and A. Saxena, “Learning
to place new objects,” in Int’l Conf. on Robotics and
Automation, 2012, pp. 3088–3095.

[18] M. Gualtieri, A. ten Pas, and R. Platt, “Pick and place
without geometric object models,” in IEEE Int’l Conf. on
Robotics and Automation, 2018.

[19] A. Xie, A. Singh, S. Levine, and C. Finn, “Few-shot
goal inference for visuomotor learning and planning,” in
Proceedings of The 2nd Conference on Robot Learning,
ser. Proceedings of Machine Learning Research, vol. 87.
PMLR, 29–31 Oct 2018, pp. 40–52.

[20] S. James, A. Davison, and E. Johns, “Transferring end-to-
end visuomotor control from simulation to real world for
a multi-stage task,” in Conf. on Robot Learning, vol. 78.
Proceedings of Machine Learning Research, 2017, pp.
334–343.

[21] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and
W. Zaremba, “Hindsight experience replay,” in Advances in
Neural Information Processing Systems, 2017, pp. 5048–
5058.

[22] J. Kober, A. Bagnell, and J. Peters, “Reinforcement learn-
ing in robotics: A survey,” The Int’l Journal of Robotics
Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[23] C. Watkins, “Learning from delayed rewards,” Ph.D. dis-
sertation, King’s College, Cambridge, 1989.

[24] G. Rummery and M. Niranjan, “On-line Q-learning using
connectionist systems,” Cambridge University Engineering
Department, CUED/F-INFENG/TR 166, September 1994.

[25] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” arXiv preprint arXiv:1509.02971,
2015.

[26] C. Watkins and P. Dayan, “Q-learning,” Machine learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[27] T. Jaakkola, M. Jordan, and S. Singh, “Convergence of
stochastic iterative dynamic programming algorithms,” in
Advances in Neural Information Processing Systems, 1994,
pp. 703–710.

[28] L. Li, T. Walsh, and M. Littman, “Towards a unified theory
of state abstraction for MDPs,” in Int’l Symp. on Artificial
Intelligence and Mathematics, 2006.

[29] N. Sprague and D. Ballard, “Eye movements for reward
maximization,” in Advances in Neural Information Pro-
cessing Systems, 2004, pp. 1467–1474.

[30] H. Larochelle and G. Hinton, “Learning to combine foveal
glimpses with a third-order Boltzmann machine,” in Ad-
vances in Neural Information Processing Systems, 2010,
pp. 1243–1251.

[31] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu,
“Recurrent models of visual attention,” in Advances in
Neural Information Processing Systems, 2014, pp. 2204–
2212.

[32] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu, “Spatial transformer networks,” in
Advances in Neural Information Processing Systems,
2015, pp. 2017–2025.

[33] M. Gualtieri and R. Platt, “Viewpoint selection for grasp
detection,” in IEEE/RSJ Int’l Conf. on Intelligent Robots
and Systems, 2017, pp. 258–264.

[34] D. Morrison, P. Corke, and J. Leitner, “Multi-view picking:
Next-best-view reaching for improved grasping in clutter,”
in IEEE Int’l Conf. on Robotics and Automation, 2019.

[35] B. Wu, I. Akinola, and P. Allen, “Pixel-attentive policy
gradient for multi-fingered grasping in cluttered scenes,”
in IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems,
2019.

[36] R. Sutton and A. Barto, Reinforcement Learning: An In-
troduction, 2nd ed. MIT Press Cambridge, 2018.

[37] “Source code for: Learning manipulation skills via HSA,”
https://github.com/mgualti/Seq6DofManip, accessed:
2019-11-13.

[38] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” Int’l Conf. on Learning Representations,
2015.

[39] W. Wohlkinger, A. Aldoma, R. Rusu, and M. Vincze,
“3DNet: Large-scale object class recognition from CAD
models,” in IEEE Int’l Conf. on Robotics and Automation,
2012, pp. 5384–5391.

[40] O. Anschel, N. Baram, and N. Shimkin, “Averaged-DQN:
Variance reduction and stabilization for deep reinforcement
learning,” in Int’l Conf. on Machine Learning, 2017, pp.
176–185.

https://github.com/mgualti/Seq6DofManip

18

Marcus Gualtieri is a PhD student
at Northeastern University in Boston,
Massachusetts. In 2017 he received the
MS degree in computer science from
Northeastern, and 2008 he received
the BS degree in software engineering
from Florida Institute of Technology.
His research interests include robot
learning and planning in unstructured
environments.

Robert Platt is an associate professor
at Northeastern. Prior to that, he was a
research scientist at MIT and a robotics
engineer at NASA. He earned his PhD
in Computer Science in 2006 from the
University of Massachusetts, Amherst.
His research interests primarily include
perception, planning, and control for
robotic manipulation.

	Introduction
	Related Work
	Learning Robotic Manipulation
	Reinforcement Learning
	Attention Models

	Problem Statement
	Approach
	Sense-Move-Effect MDP
	Hierarchical Spatial Attention
	Lookahead Sense-Move-Effect
	Relation to Other Approaches in the Literature
	DQN
	Deictic Image Mapping

	Implementation Methods
	HSA Parameter Values
	Training Algorithm

	Application Domains
	Tabular Pegs on Disks
	Ground MDP
	Sense-Move-Effect MDP
	Theoretical Results
	Simulation Results

	Upright Pegs on Disks
	Network Architecture and Algorithm
	Simulation Results

	Bottles on Coasters
	Network Architecture and Algorithm
	Simulation Results
	Top-n Sampling
	Robot Experiments

	6-DoF Pick-Place

	Conclusion
	Secondary Conclusions
	Limitations and Future Work

	References
	Biographies
	Marcus Gualtieri
	Robert Platt

