
Deictic Image Mapping: An Abstraction For Learning Pose Invariant
Manipulation Policies

Robert Platt, Colin Kohler, Marcus Gualtieri

College of Computer and Information Science, Northeastern University
360 Huntington Ave, Boston, MA 02115, USA

{rplatt,ckohler,mgualti}@ccs.neu.edu

Abstract

In applications of deep reinforcement learning to robotics, it
is often the case that we want to learn pose invariant policies:
policies that are invariant to changes in the position and ori-
entation of objects in the world. For example, consider a peg-
in-hole insertion task. If the agent learns to insert a peg into
one hole, we would like that policy to generalize to holes pre-
sented in different poses. Unfortunately, this is a challenge us-
ing conventional methods. This paper proposes a novel state
and action abstraction that is invariant to pose shifts called
deictic image maps that can be used with deep reinforcement
learning. We provide broad conditions under which optimal
abstract policies are optimal for the underlying system. Fi-
nally, we show that the method can help solve challenging
robotic manipulation problems.

Introduction
Policies learned by deep reinforcement learning agents are
generally not invariant to changes in the position and ori-
entation of the camera or objects in the environment. For
example, consider the peg-in-hole insertion task shown in
Figure 1. A policy that can insert the peg into Hole A does
not necessarily generalize to Hole B. In order to learn a pol-
icy that can perform both insertions, the agent must be pre-
sented with examples of the hole in both configurations dur-
ing training. This is a significant problem in robotics because
we often want to learn policies most easily expressed relative
to an object (i.e. relative to the hole) rather than relative to an
image. Without the ability to generalize over pose, deep re-
inforcement learning must be trained with experiences that
span the space of all possible pose variation. For example,
in order to learn an insertion policy for any hole configura-
tion, the agent must be trained with task instances for hole
configurations spanning SE(2), a three dimensional space.
The problem is even worse in SE(3) which spans six dimen-
sions. The need for all this training data slows down learning
and hampers the agent’s ability to generalize over other di-
mensions of variation such as task and shape. While pose
invariance is not always desirable, the inability to generalize
over pose can be a major problem.

This paper introduces deictic image mapping, an ap-
proach to encoding robotic manipulation actions that gen-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A policy for inserting a peg into Hole A learned
using deictic image mapping generalizes to Hole B without
any additional training.

eralizes over the pose of the robot and other objects in
the world. We focus on the end-to-end learning setting in
robotics where state is typically encoded in terms of im-
ages and the action set corresponds to possible motions of
the robot. Our key idea is to encode action as an image of
the world that is centered, aligned, and focused on the target
pose of the motion. Since this representation encodes motion
actions in terms of the configuration of the world relative to
the endpoint of the motion, it generalizes well over changes
in object pose and camera viewpoint. We call this a “deictic”
representation because motion actions are encoded relative
to the environment rather than an absolute reference frame.

One of the interesting aspects of this work is that we
show that for a large class of problems, the proposed deic-
tic state and action abstraction induces an MDP homomor-
phism (Ravindran 2004; Ravindran and Barto 2003). In con-
sequence, we are assured that optimal policies found in us-
ing the deictic representation induce optimal policies for the
original problem. An important limitation of our approach is
the large action set that is often required: we have as many
of 26.9k actions in our experiments. This paper introduces a
number of techniques for handling this large branching fac-
tor in a Deep Q-learning (DQN) framework. Finally, we re-
port on a series of experiments that evaluates the approach
both in simulation and in hardware. The results show that
the method can solve a variety of challenging manipulation
problems with training times less than two hours on a stan-
dard desktop GPU system.

Figure 2: Left: the GRID-DISK domain. Disks are initially
placed on a grid randomly (top left). The agent must pick
one disk and place it adjacent to another (bottom left). Right:
learning curves averaged over 10 runs for DQN applied to
GRID-DISK for a 3× 3 grid (red), a 4× 4 grid (green), and a
5× 5 grid (blue).

Problem Statement
We will consider problems expressed for a class of robotic
systems that we call move-effect systems.
Definition 1 (Move-Effect System). A move-effect system
is a discrete time system comprised of a set of effectors
mounted on a fully actuated platform that operates in a Eu-
clidean space of dimension d ∈ {2, 3}. On every time step,
the system perceives an image or signed distance function,
I , and then executes a collision-free motion, am ∈ AM ⊂
SE(d), of the platform followed by a motion, ae ∈ AE , of
the effectors.

A good example of a move-effect robot is a robotic arm
engaged in prehensile manipulation. The robot may move
its hand (i.e. the “platform”) to any desired reachable pose
am ∈ AM ⊂ SE(3) via a collision-free motion. Once there,
it may execute an effector motion ae ∈ AE such as opening
or closing the hand. More complex manipulation systems
can also be formalized this way. For example, a domestic
robot that navigates within a house performing simple tasks
can be expressed as a move effect system in SE(2) where
the simple tasks to be performed are the “effector motions”.

Formulation as a Markov decision process
A Markov decision process (an MDP) is a tuple M =
(S,A, T,R) where S denotes a set of system states and A
a discrete set of actions. T : S × A × S → [0, 1] denotes
the transition probability function where T (st, at, st+1) is
the probability of transitioning to state st+1 when action at
is taken from state st. R : S ×A → R denotes the expected
reward of executing action a from state s. The solution to
an MDP is a control policy π : S → A that maximizes the
expected sum of future discounted rewards when acting un-
der the policy. We will assume that a motion planner (e.g. an
RRT or trajectory optimization planner) is available that can
find a collision free path to any reachable pose.

In order to use the MDP framework for move-effect sys-
tems, we need to define state and action sets. An action is de-
fined to be a pair, a = (am, ae) ∈ A whereA = AM ×AE .

The agent does not observe state directly, but it can observe
an image I ∈ [0 . . . 216]|grid| = I, taken at the beginning of
each time step taken via a camera and/or depth sensor. Here,
grid ⊂ Rd denotes the positions of a finite set of points
corresponding to the pixels or voxels in the image or signed
distance function. The system also has access to the config-
uration of its effectors, θ ∈ Θ, obtained using joint position
sensors. We define state to be a history of the k most recent
observations and actions:

st = 〈I1−k
t , θ1−k

t , a1−k
t , . . . , I−1

t , θ−1
t , a−1

t , It, θt〉, (1)

where It and θt denote the current values for those two vari-
ables and I−it , θ−it , and a−it denote the respective variables
as they were i time steps in the past (i.e. i time steps prior
to t). S = Ik × Θk × Ak−1 is the set of all states. History
based representations of state as in Equation 1 are often used
in deep reinforcement learning (e.g. (Mnih et al. 2013)).

Why move-effect problems are challenging
The standard MDP formulation described in the previous
section is not well suited to move-effect systems. For exam-
ple, consider the GRID-DISK domain as shown in Figure 2,
where the argent must pick one disk and place it horizon-
tally adjacent to the other. Transitions are deterministic: a
pick (resp. place) succeeds if executed for an occupied (resp.
unoccupied) cell and does not otherwise. This example is a
move-effect system where AM ⊂ SE(2) is the set of 16
grid positions and AE contains exactly one pick and one
place action (32 actions total). On each time step, the agent
observes an image of the grid as well as a single bit that de-
notes the configuration of its hand – either open or closed
(Equation 1 for k = 1). Using DQN on the MDP formu-
lation described above, the number of episodes needed to
learn a good policy increases as the number of cells in the
grid increases, as shown in Figure 2, right. In this experi-
ment, we used a standard ε-greedy DQN with dueling net-
works (Wang et al. 2015), no prioritized replay (Schaul et al.
2015), a buffer size of 10k, a batch size of 10, and an episode
length of 10 steps. Epsilon decreased linearly from 100%
to 10% over the training session. The neural network has
two convolutional+relu+pooling layers of 16 and 32 units
respectively with a stride of 3 followed by one fully con-
nected layer with 48 units. We use the Adam optimizer with
a learning rate of 0.0003.

Deictic image mapping
Move-effect systems have structure that makes problems in-
volving these systems easier to solve than the results in Fig-
ure 2 suggest. Notice that in the case of GRID-DISK, the op-
timal policy is most easily expressed relative to current disk
positions on the grid: the agent must learn to pick up a disk
and place it horizontally or vertically adjacent to the other.
This reflects a symmetry in the problem whereby world con-
figurations where objects occupy the same relative configu-
rations have similar (i.e. symmetric) transitions and reward
outcomes. In order to improve learning performance, we
need to encode the problem in a way that reflects this sym-
metry. Note that this cannot be accomplished just by switch-
ing to an actor critic method like DDPG (Lillicrap et al.

2015). DDPG could make it easier for the agent to learn to
generalize over position, but it cannot generalize over orien-
tation. Instead, we introduce deictic image state and action
mappings that induce an abstract MDP that captures prob-
lem symmetries and can be solved using DQN.

Action mapping
As expressed in the Problem Statement, each action is a pair,
at = 〈am(t), ae(t)〉 ∈ A = AM × AE , where we use the
notation am(t) to describe the destination of the platform
motion and ae(t) to describe the effector motion at time t.
Our key idea is to express am in terms of the appearance of
the world in the vicinity of am rather than as coordinates in
a geometeric space. Recall that on each time step, the move-
effect system observes an image or signed distance function,
I ∈ I = [0 . . . 216]|grid|, expressed over a finite set of po-
sitions, grid ⊂ Rd, corresponding to pixels or voxels. Let
crop(I, am) ⊂ I denote a cropped region of I centered on
am and aligned with the basis axes of am and let I ′ denote
the space of all possible crops. The action mapping is then
gs : A → A′ = I ′ ×AE where:

gst(at) = 〈crop(It, am(t)), ae(t)〉, (2)

It is an element of st, and am(t) and ae(t) are elements
of at. We call this a deictic image action mapping because
it uses an image to encode the motion relative to other ob-
jects in the world. This can be viewed as an action abstrac-
tion (Ravindran 2004; Ravindran and Barto 2003) and we
will callA′ the abstract action set. This encoding works well
for move-effect problems where the outcome of an effect ac-
tion depends only on the local geometry of the world where
the action was executed.

State mapping
The action mapping of Equation 2 induces a state abstrac-
tion. Recall that we defined state to be the history of the last
k observations and actions (Equation 1). We can simplify
this representation by using the action abstraction of Equa-
tion 2. The easiest way to do this is to define abstract state to
be the current robot state paired with a history of the k − 1
most recently executed abstract actions:

fk(st) = 〈{ crop(I1−k
t , a1−k

m (t)), a1−k
e (t), . . . ,

crop(I−1
t , a−1

m (t)), a−1
e (t), θt〉 (3)

where I−it , a−im (t), and a−ie (t) are elements of st and S ′ =

I ′k−1 × Ak−1
E × Θ is the set of abstract states. When k is

understood, we will sometimes abbreviate f = fk. We refer
to S ′ as the abstract state set.

DQN in the abstract state and action space
The state and action mappings introduced above induce an
abstract MDP that can be solved using DQN. Let Q′ :
S ′ ×A′ → R denote the abstract action-value function, ex-
pressed over the abstract state and action space, encoded by
a deep neural network. At the beginning of each time step,
we evaluate the abstract state, s′t = f(st), for the current
state, st. We can calculate the greedy action for the current

Figure 3: Left: example of a deictic action representation.
Right: deictic (red) versus DQN baseline (blue) for 5 × 5
GRID-DISK.

state st with respect to the abstract action-value function Q′
using:

a∗ = arg max
a∈A

Q′(f(st), gst(a)). (4)

After each time step, we store the underlying transition,
(st, at, st+1, rt) in the standard way. Training is nearly the
same as usual except that after sampling a mini-batch, we
calculate targets using the abstract state-action value func-
tion, rt + maxa∈AQ

′(f(st), gst(a)), rather than in the
standard way. The neural network that encodes Q′ takes
an abstract state-action pair as input and outputs a sin-
gle estimate of value. In our experiments, we use a stan-
dard convolutional architecture comprised of two convolu-
tion+relu+pooling layers followed by fully connected lay-
ers.

Consider the following example of deictic image map-
ping for the GRID-DISK domain introduced earlier. Recall
that for an image I ∈ I and a platform motion am ∈ AM ,
crop(I, am) is a cropped region of I centered and aligned
with am. AM is the set of platform motion target locations
corresponding to the cells (|AM | = 16 for 4×4 GRID-DISK).
In this example, we define crop(I, am) to be the 3 × 3 cell
square region centered on am. (We use zero-padding for am
positions on near the edge of the grid.) For example, Fig-
ure 3 left shows crop(I, am) for the place action shown in
Figure 2b. Since the agent is to place a disk to the left of an
existing disk, the deictic image for this place action shows
the existing disk to the right of an empty square where the
place will occur. θ is the configuration of the effector: in
this case just the configuration of the gripper jaws. Figure 3
right compares learning curves for DQN with deictic image
states and actions versus the DQN baseline averaged over 10
runs each for the 5× 5 GRID-DISK domain. DQN is param-
eterized just as it was in the last section. Notice that deictic
image mapping speeds up learning considerably.

Scaling up
A key challenge for deictic image mapping is the large
branching factor that is created by using end-to-end planned
motions rather than small displacements as actions. In stan-
dard DQN, we must evaluate the Q-value of each action in
order to select one for execution. However, many problems
of practical interest involve tens or hundreds of thousands of

potential actions. One approach to handling this would be to
adapt an actor critic method such as DDPG to the deictic im-
age mapping setting. However, we have so far only explored
the DQN version of our approach and leave an actor critic
version for future work. Instead, this section introduces sev-
eral techniques that together enable us to handle the large
branching factor for problems in SE(2). Note that large ac-
tion spaces are becoming more common in the literature. For
example, (Li, Hsu, and Lee 2018) uses a hand-coded heuris-
tic to prune action choices and (Zeng et al. 2018) uses a fully
convolutional network architectures to evaluate Q-values for
millions of actions.
Passing multiple actions as a batch to the Q-network:
Perhaps the easiest way to handle the large number of ac-
tions is to pass a large set of action candidates to the Q-
network as a single batch. Neural network back-ends such
as TensorFlow are designed for this and it enables us to eval-
uate as many as 4.6k actions in a single forward pass on a
standard NVIDIA 1080 GPU.
Keeping an estimate of the state-value function: The large
action branching factor is a problem every time it is nec-
essary to evaluate maxa∈AQ

′(f(st), gst(a)). This happens
twice in DQN: once during action selection and again dur-
ing training when evaluating target values for a mini-batch.
We eliminate the second evaluation by estimating the ab-
stract state-value function, V ′, concurrently with the abstract
action-value function, Q′, using a separate neural network.
V ′ is trained using targets obtained during action selection:
each time we select an action for a given state, we update
the V ′ network using the just-evaluated max for that state.
This enables us to calculate a target using rt+γV ′(f(st+1))
rather than rt + γmaxa∈AQ

′(f(st), gst(a)).
Value function hierarchy: Another way to speed up eval-
uation of maxa∈AQ

′(f(st), gst(a)) is to leverage a hier-
archy of value functions specifically designed for move-
effect problems in SE(2) (Gualtieri and Platt 2018). Rather
than estimating Q′ directly using a single neural network,
we use a hierarchy of two networks, Q′1 and Q′2 (although
one could envision additional levels of hierarchy). Q′2 is
trained in the standard way: for each s, a pair in a mini-
batch,Q′2(f(s), gs(a)) is trained with the corresponding tar-
get. However, we also train Q′1(f(s), gs(Fix(a))) with the
same target, where Fix(a) ∈ SE(2) denotes the pose with
the same position as a but with an orientation that is fixed
with respect to the platform reference frame. Essentially, the
Q′1 estimate is an average of the value function over all ori-
entations for each given position.

Instead of maximizing by evaluating Q′2 for the posi-
tion and orientation of all possible motion actions, we score
each position using Q′1 and then maximize Q′2 over the po-
sitions and orientations corresponding to the top scoring
positions under Q′1. This is essentially a graduated non-
convexity method (Blake and Zisserman 1987). First, we
evaluate Q′1(f(s), gs(ā)) over all positions, ā ∈ Ā =
{Fix(a) : a ∈ A}. Let Ātop denote the top scoring
η percent of the abstract actions in Ā. Then, we evalu-
ate maxa∈Ātop

Q′2(f(s), gs(Fix
−1(a))), where Fix−1 de-

notes the one-to-many inverse of Fix that returns all fully-
specified poses that correspond to positions in Ātop. This ap-

proach enables us to estimate the maximum of Q′2 without
exhaustively evaluating the function for all poses in SE(2).
Like all graduated non-convexity methods, this approach is
not guaranteed to provide an optimum. However, our results
indicate that it works reasonably well on our problems (see
the comparison in the next section).
Using hand-coded heuristics: Another way to reduce the
action branching factor is to encode human knowledge about
which kinds of motions are likely to be relevant to the prob-
lem. This type of approach has been used by others includ-
ing (Li, Hsu, and Lee 2018) who hand-coded a heuristic
for identifying which push actions. In this paper, we con-
strain the system to move only to positions that are within a
neighborhood of some other visible object: we discard all
motions, am, where the associated cropped image patch,
crop(I, am), does not include pixels with some positive
height above the table plane.
Curriculum learning: Another thing that can speed up
training is curriculum learning (Bengio et al. 2009). This ba-
sically amounts to training the agent to solve a sequence of
progressively more challenging tasks. The hard part is defin-
ing the task sequence in such a way that each task builds
upon knowledge learned in the last. However, this is par-
ticularly easy with deictic image mapping. In this case, we
just need to vary the discretization of AM on each curricu-
lum task, starting with a coarse and ending with a fine dis-
cretization. For example, suppose we want to learn a GRID-
DISK policy over a fine grid of possible disk locations. We
would initially train using a coarse discretization and subse-
quently train on a more fine discretization. Although some
of the image patches in the fine discretization will be differ-
ent from what was experienced in the coarse discretization,
these new image patches will have a similar appearance to
nearby patches in the coarse discretization. Essentially, plat-
form motions that move to similar locations will be repre-
sentated by similar image patches. As a result, policy knowl-
edge learned at a coarse level will generalize appropriately
at the fine level.

Experiments
We evaluate deictic image mapping in simulation and on a
robot for problems with an action set that spans SE(2).

Block alignment in simulation
We evaluate on the block alignment problem shown on the
left side of Figure 4 where the agent must grasp one block
and place it in alignment with the other. We use a dense dis-
cretization of SE(2) in this problem: the agent can choose
to perform either a pick or place action (2 possibilities) at
any position on a 29 × 29 grid (841 possibilities) at one of
16 orientations over 180 deg (equivalent to 32 orientations
over 360 deg because of gripper symmetry), for a total of
26.9k different actions (last column of Table 1). We perform
experiments to answer the following questions. (1) Can de-
ictic image mapping solve the block alignment problem and
how does it perform relative to a flat DQN solution? (2) How
much does curriculum learning help? (3) What effect does
the value function hierarchy have on learning?

Curriculum stage number 1 2 3 4 5 6 7 8
Object Type Disks Disks Blocks Blocks Blocks Blocks Blocks Blocks

Num Positions 25 25 25 25 81 289 841 841
Num Orientations 2 8 2 4 8 8 8 16

Num Actions 100 400 100 200 1.2k 4.6k 13.5k 26.9k

Table 1: Eight-stage curriculum used in the simulated experiments.

Figure 4: Left: block alignment problem. Top left: two
blocks are placed randomly. Bottom left: the agent must pick
up one block and place it roughly in alignment with the sec-
ond. Right: learning curves for simulated blocks world do-
main. Blue: DIM with hierarchical value function only in
last two curriculum steps. Red: DQN baseline.

(1) Comparison with a DQN baseline: Here, we follow
the eight-task curriculum shown in Table 1, starting with
a task involving disks as in Figure 2 and ending with the
block alignment task. During the first six stages of curricu-
lum learning, we use all of the scaling-up techniques de-
scribed in the last section except for the value function hi-
erarchy (as we show later, this slows learning performance).
We only turn on the value function hierarchy in the last two
stages because the NVIDIA 1080 ran out of memory without
the hierarchy. Both DQN and deictic image mapping was pa-
rameterized exactly as it was earlier in the paper except that
the deictic experiments used prioritized replay with α = 0.6,
β = 0.4, and ε = 0.000001 and we start ε-greedy explo-
ration with ε = 0.5 instead of ε = 1 (but ε still decreases
linearly with time). The full training curriculum executes in
approximately 1.5 hours on a standard Intel Core i7-4790K
running one NVIDIA 1080 graphics card.

Figure 4 shows the results. DQN performance is shown in
red while deictic image mapping performance is shown in
blue. Notice the “spikes” downward in the learning curve.
Each spike corresponds to the start of a new task in the cur-
riculum (a total of eight spikes including the one at episode
zero). After the agent solves a task in the curriculum, this
triggers a switch to a new task. Performance drops while the
agent learns the new task but then recovers. The DQN agent
was stopped after the fourth curriculum stage because aver-
age reward per episode had dropped to nearly zero. Notice
that DQN completely fails to solve this task – it only learns

(a) (b)

Figure 5: (a) Ablation of curriculum learning. Blue, red:
learning curves for curriculum stages 4 and 5, respectively,
without running stages 1–3 first. Magenta: learning curve
with curriculum. (b) Ablation of hierarchical value func-
tion. Blue: WITHOUT Q-function hierarchy; Red: WITH
Q-function hierarchy.

anything meaningful in the easiest stages of the curriculum.
In contrast, the deictic agent does well throughout all eight
curriculum stages. Note that average reward per episode is
slightly lower on the fourth curriculum stage and onward be-
cause these tasks involve blocks in at least four orientations
which can sometimes be infeasible. This occurs when both
blocks are placed diagonally in a corner so that it is impos-
sible to pick up either block and place it in alignment with
the other.
(2) The effect of curriculum learning: We investigate
learning performance if we were to start learning for stages
4 and 5 of the curriculum without first going through the
prior curriculum steps. Here, the neural network is initial-
ized with random weights and we allow the agent to learn
for the same number of time steps as would be required by
the curriculum to get to that point. Figure 5a shows the re-
sults. The agent is able to learn stage 4 of the curriculum
relatively quickly starting from random weights, but it can-
not learn stage 5. This suggests that curriculum stages 1–
3 are superfluous but that stages 5 and onward cannot be
learned without some form of curriculum learning. Looking
at Table 1, this makes sense because it is at stage 5 that the
number of actions jumps from 400 to 1.2k.
(3) The effect of the value function hierarchy: Another
part of our strategy for speeding up the Q-function maxi-
mization operation is the value function hierarchy strategy
outlined earlier. We compare learning performance for the
first six curriculum stages with and without this additional
feature. Recall that η is the percentage of top scoring posi-
tions in Q′1 that are selected to further evaluation in Q′2. A
larger η results in faster evaluation, but a potentially worse

Task Success Avg # Num
Rate Steps Trials

3-in-row cube 94% 7.8 50
3 Cube Stack 90% 4.7 50
4 Cube Stack 84% 6.9 50

2 Rectangular Block Stack 80% N/A 83
Cube in mug 94% 2.72 50

Table 2: Results from robot experiments.

estimate of the maximum. Here, we set η = 0.2 Figure 5b
shows the comparison. Notice that the average reward per
episode is approximately 15% worse with the hierarchy as
compared to without it. We conclude that while the value
function hierarchy is sometimes needed to train in a reason-
able period of time, it should be avoided if possible.

Robot experiments
We performed robot experiments to get a sense of the kinds
of tasks that deictic image mapping can help solve. We used
a UR5 equipped with a Robotiq two finger gripper, as shown
in Figure 6a. In all experiments, objects were dumped ran-
domly onto a table in randomly selected positions within an
50 × 50 cm region within the manipulator workspace. All
end-to-end motions commanded by the agent were planned
using TrajOpt (Schulman et al. 2013) with the final gripper
pose constrained to be orthogonal to the table. All images
were acquired using a depth sensor (Structure IO, the light
blue device in Figure 6a,b) mounted to the gripper. At the
beginning of each time step, because of camera calibration
inaccuracies, the robot took images from four different po-
sitions above the table and stitched them together to create
a complete 2-D image. Then, the system selected and per-
formed a pick or place action consisting of a single colli-
sion free motion followed by an opening or closing motion
of the gripper. In all experiments, the system was trained
in completely in simulation using OpenRAVE (Diankov and
Kuffner 2008) using a simulated setup nearly identical to
the physical robot. Then, the policy learned in simulation
was executed and evaluated on the real robot. We evalu-
ated performance for the following five tasks. All tasks had
sparse rewards: the agent received 0 reward everywhere ex-
cept upon reaching the goal state.
Three-in-a-row cube arrangement: In this task, three
cubes were dumped onto a table and then re-oriented manu-
ally so that each block had a fixed orientation with respect to
the robot. The system was trained using the same parameters
as used in simulation, but using four curriculum stages start-
ing with a 10cm step size and annealing down to a 1cm step
size. The agent received +1 reward for achieving a three-in-
a-row alignment within ten time steps and zero otherwise.
As shown in the first row of Table 2, we obtain a 94% task
success rate over 50 trials.
Stacking three cubes: This task is the same as three-in-a-
row (above) except that the agent now received +1 reward
for stacking the three cubes. We obtain a 90% task success
rate (second row of Table 2).

Stacking four cubes: This task is the same as above except
that the agent must now stack four cubes (Figure 6b). We
obtain an 84% task success rate (third row of Table 2).
Stacking two rectangular blocks: In this task, eight rect-
angular blocks were dumped on the table (Figure 6c). The
robot received +1 reward every time it stacked one block on
to of another (Figure 6d). After every successful stack, the
top block was removed from the table by the experimenter.
Unlike the three cube stacking/arranging tasks above, the
action space for this task included 16 possible orienta-
tions (similar to the simulation experiments). The agent was
trained using a seven stage curriculum and the value func-
tion hierarchy with η = 0.1 that reduced the number of
actions from 51.2k down to 8.32k. This task is interesting
because the agent must learn to balance long blocks on top
of small blocks as shown in Figure 6d. The average success
rate for two-block stacking attempts was 80% (fourth row of
Table 2).
Cube in mug: Finally, we evaluated our approach on a task
where the robot must pick up a cube and drop it into a mug
(Figure 6f). During robot testing, at the start of each episode,
a random mug was chosen from the selection of eight mugs
shown in Figure 6e and was randomly placed on the table
in a upright position along with a block. Importantly, these
were novel mugs in the sense that they were different from
any of the six randomly re-scaled mugs used to train the sys-
tem. The agent received a reward of -0.1 when it moved the
mug and +1 when it solved the task within no more than 10
time steps. The average task success rate here was 94% (last
row in Table 2).

These five robot experiments suggest that deictic image
maps can be used to solve a variety of robotic manipulation
problems related to pick and place. The stacking-four-cubes
experiment demonstrates that the approach can solve prob-
lems that involve several pick/place actions. The stacking-
two-rectangular blocks experiments shows that the method
can perform relatively precise placements. Finally, the cube-
in-mug experiment shows that the method can be trained to
solve tasks involving novel objects.

Analysis
It turns out that deictic image mapping is theoretically cor-
rect in the sense that optimal policies for the abstract MDP
found using DQN induce optimal policies for the original
system. We use the MDP homomorphism framework.
Definition 2 (MDP Homomorphism, Ravindran
2004 (Ravindran 2004)). An MDP homomorphism from an
MDP M = 〈S,A, T,R〉 onto M′ = 〈S ′,A′, T ′, R′〉 is
a tuple of mappings, 〈f, {gs|s ∈ S}〉, where f : S → S ′
is a state mapping, gs : A → A′, s ∈ S is a set of action
mappings, and the following two conditions are satisfied for
all s ∈ S, a ∈ A, and s′ ∈ S ′:

T ′(f(s), gs(a), s′) =
∑

s̄∈{s∈S|f(s)=s′}

T (s, a, s̄) (5)

R′(f(s), gs(a)) = R(s, a). (6)

S ′ and A′ are the abstract state and action sets, respec-
tively. Recall that the action mapping introduced in Equa-

(a) (b) (c) (d) (e) (f)

Figure 6: (a) Experimental scenario. (b) four block stacking task. (c) initial block configuration for rectangular block stacking.
(d) rectangular block stacking task. (d) Mugs used in cube-in-mug task. (f) Cube-in-mug task.

tion 2 encodes an action a in terms of crop(I, am). Since I
is the image or signed distance function perceived by sen-
sors, this is a state-dependent mapping. The MDP Homo-
morphism framework is specifically relevant to this situation
because, unlike other abstraction frameworks (Givan, Dean,
and Greig 2003; Dean, Givan, and Leach 1997), it allows for
state dependent action abstraction. If we can identify condi-
tions under which the action mapping of Equation 2 in con-
junction with the state mapping of Equation 3 is an MDP
homomorphism, then a theorem exists that says that a solu-
tion to the abstract MDP induces a solution in the original
problem:

Theorem 1 (Optimal value equivalence, Ravindran
2004 (Ravindran 2004)). LetM′ = 〈S ′,A′, T ′, R′〉 be the
homomorphic image ofM = 〈S,A, T,R〉 under the MDP
homomorphism, 〈f, {gs|s ∈ S}〉. For any (s, a) ∈ S × A,
Q∗(s, a) = Q′∗(f(s), gs(a)).

Here, Q∗(·) and Q′∗(·) denote the optimal action-value
function for the underlying MDP and the abstract MDP re-
spectively. We now show that the deictic image mapping in-
duces an MDP homomorphism.

Theorem 2. Given a move-effect system with state set
S; action set A; transition function T such that for all
t ∈ R>0, θt+1 is conditionally independent of st given
crop(It, am(t)); a deictic image mapping 〈f, {gs|s ∈ S}〉;
and an abstract reward function R′ : S ′ × A′ → R; then
there exist a reward function R and an abstract transition
function T ′ for which 〈f, {gs|s ∈ S}〉 is an MDP homomor-
phism from M = 〈S,A, T,R〉 to M′ = 〈S ′,A′, T ′, R′〉.

Proof. See Appendix 1 in supplementary materials.

As a consequence of Theorem 2 and 1, we know that op-
timal solutions to the abstract MDP induced by Equations 3
and 2 induce optimal solutions to the original move-effect
system as long as the conditions of Theorem 2 are satisfied.

Related Work, Limitations, and Discussion
This work is related to prior applications of deixis in AI.
Evidence exists that the human brain leverages deictic rep-
resentations during performance of motor tasks (Ballard et
al. 1997). Whitehead and Ballard proposed an application of
deixis to reinforcement learning, focusing on blocks world
applications in particular (Whitehead and Ballard 1991).

While our representations are only loosely related to Bal-
lard’s computational architecture, our work is closely related
to the psychological evidence in (Ballard et al. 1997).

The analysis section of this paper leverages the MDP
Homomorphism framework introduced by Ravindran and
Barto (Ravindran 2004; Ravindran and Barto 2003). MDP
Homomorphisms are related to other MDP abstraction meth-
ods (Givan, Dean, and Greig 2003; Dean, Givan, and Leach
1997). However, unlike those methods, the MDP Homomor-
phisms allow for the state-dependent action abstraction, a
critical part of our proposed abstraction.

This paper is also generally related to a variety of recent
works exploring deep learning for robotic manipulation. The
work of (Zeng et al. 2018) is related to ours in that they
estimate a Q-function over a large number of grasping and
pushing actions, in their case by creating a fully convolu-
tional Q-network. The work of (Li, Hsu, and Lee 2018) also
involves a large action space of push actions, pruned us-
ing a heuristic. Other pieces of recent related manipulation
work are (Fang et al. 2018) and (Gualtieri, ten Pas, and Platt
2018) who each propose methods of learning task-relevant
grasps in the context of a reinforcement learning problem.
Our work can be loosely viewed as an extension of recent
grasp detection work by (Mahler et al. 2017) and (Gualtieri
et al. 2016), however the focus here is on more complex ma-
nipulation tasks rather than just grasping.

In contrast to some of the work cited above, a nice aspect
of our method is that it can be applied to a relatively gen-
eral class of problems, such as those explored in our experi-
ments. However, the method has important limitations. First,
limits on the number of actions that can be realistically con-
sidered on a given time step means that it will be important
to find ways to limit the number of motion actions that need
to be considered. Another limitation is that the deictic image
patch used to represent a motion only “sees” a portion of the
total image. As a result, our method is not well suited to re-
spond to non-local state information. Although we have not
yet tried this, we expect that this problem can be solved by
using a “foveated” action patch that “sees” the world around
a potential action choice at multiple resolutions.

Acknowledgements
This work has been supported in part by the National
Science Foundation through IIS-1426968, IIS-1427081,
IIS-1724191, IIS-1724257, IIS-1763469, and IIS-1830425,
NASA through NNX13AQ85G, Amazon through an ARA,
and Google through an FRA.

References
Ballard, D. H.; Hayhoe, M. M.; Pook, P. K.; and Rao, R. P.
1997. Deictic codes for the embodiment of cognition. Be-
havioral and Brain Sciences 20(4):723–742.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th an-
nual international conference on machine learning, 41–48.
ACM.
Blake, A., and Zisserman, A. 1987. Visual reconstruction.
MIT press.
Dean, T.; Givan, R.; and Leach, S. 1997. Model reduction
techniques for computing approximately optimal solutions
for markov decision processes. In Proceedings of the Thir-
teenth conference on Uncertainty in artificial intelligence,
124–131. Morgan Kaufmann Publishers Inc.
Diankov, R., and Kuffner, J. 2008. Openrave: A planning ar-
chitecture for autonomous robotics. Technical Report CMU-
RI-TR-08-34, Robotics Institute, Pittsburgh, PA.
Fang, K.; Zhu, Y.; Garg, A.; Kurenkov, A.; Mehta, V.; Fei-
Fei, L.; and Savarese, S. 2018. Learning task-oriented grasp-
ing for tool manipulation from simulated self-supervision.
arXiv preprint arXiv:1806.09266.
Givan, R.; Dean, T.; and Greig, M. 2003. Equivalence no-
tions and model minimization in markov decision processes.
Artificial Intelligence 147(1-2):163–223.
Gualtieri, M., and Platt, R. 2018. Learning 6-DoF grasping
and pick-place using attention focus. In Proceedings of The
2nd Conference on Robot Learning, volume 87 of Proceed-
ings of Machine Learning Research, 477–486. PMLR.
Gualtieri, M.; ten Pas, A.; Saenko, K.; and Platt, R. 2016.
High precision grasp pose detection in dense clutter. In IEEE
Int’l Conf. on Intelligent Robots and Systems.
Gualtieri, M.; ten Pas, A.; and Platt, R. 2018. Pick and place
without geometric object models. In IEEE Int’l Conf. on
Robotics and Automation (ICRA). IEEE.
Li, J. K.; Hsu, D.; and Lee, W. S. 2018. Push-net: Deep pla-
nar pushing for objects with unknown physical properties.
In Robotics: Science and Systems (RSS).
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Mahler, J.; Liang, J.; Niyaz, S.; Laskey, M.; Doan, R.;
Liu, X.; Ojea, J. A.; and Goldberg, K. 2017. Dex-net
2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. arXiv preprint
arXiv:1703.09312.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Ravindran, B., and Barto, A. 2003. Smdp homomorphisms:
An algebraic approach to abstraction in semi markov deci-
sion processes. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1011–1016.

Ravindran, B. 2004. An algebraic approach to abstraction
in reinforcement learning. Ph.D. Dissertation, University of
Massachusetts at Amherst.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.
Schulman, J.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; and
Abbeel, P. 2013. Finding locally optimal, collision-free tra-
jectories with sequential convex optimization. In Robotics:
Science and Systems. Citeseer.
Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanc-
tot, M.; and De Freitas, N. 2015. Dueling network ar-
chitectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.
Whitehead, S. D., and Ballard, D. H. 1991. Learning to per-
ceive and act by trial and error. Machine Learning 7(1):45–
83.
Zeng, A.; Song, S.; Welker, S.; Lee, J.; Rodriguez, A.; and
Funkhouser, T. 2018. Learning synergies between pushing
and grasping with self-supervised deep reinforcement learn-
ing. arXiv preprint arXiv:1803.09956.

Appendix 1: Proof of Theorem 2
Theorem 3. Given a move-effect system with state set
S; action set A; transition function T such that for all
t ∈ R>0, θt+1 is conditionally independent of st given
crop(It, am(t)); a deictic image mapping 〈f, {gs|s ∈ S}〉;
and an abstract reward function R′ : S ′ × A′ → R; then
there exist a reward function R and an abstract transition
function T ′ for which 〈f, {gs|s ∈ S}〉 is an MDP homomor-
phism fromM = 〈S,A, T,R〉 toM′ = 〈S ′,A′, T ′, R′〉.

Proof. The two conditions of Definition 2 that must be sat-
isfied are Equations 5 and 6.

First, consider Equation 6. Since we are given the abstract
reward function, R′, we can define the underlying reward
function to be R(s, a) = R′(f(s), gs(a)),∀(s, a) ∈ S × A.
Notice that the condition of the theorem that we are givenR′
means that it must be possible to express the reward function
in the abstract state and action space.

Now, consider how to satisfy Equation 5. We must iden-
tify an abstraction transition function T ′ such that for all
st, at, s

′
t+1 ∈ S ×A× S ′,

P (s′t+1|st, at) = T ′(f(st), gst(at), s
′
t+1) (7)

To show that T ′ exists that satisfies Equation 7, it is sufficient
to show that s′t+1 is conditionally independent of st and at
given f(st) and gst(at):

P (s′t+1|f(st), gst(at)) = P (s′t+1|f(st), gst(at), st, at)

= P (s′t+1|st, at), (8)

which is identical to Equation 7.
Notice, however, that since we can express s′t+1 as s′t+1 =

〈fk−1(st), gst(at), θt+1〉, then s′t+1 is conditionally inde-
pendent of st and at given fk−1(st) (and therefore fk(st) =
f(st)), gst(at), and θt+1. Since by assumption θt+1 is con-
ditionally independent of st given gst(at) and we know that
it is conditionally independent of at given ae(t) by the defi-
nitions of those variables, we know that s′t+1 is conditionally
independent of st and at given f(st) and gst(at). As a re-
sult, we have shown Equation 8 and the theorem is proven.

