Category Level Pick and Place Using Deep Reinforcement Learning

Marcus Gualtieri, Andreas ten Pas, and Robert Platt
College of Computer and Information Science, Northeastern University

Abstract— General purpose robots need the ability to per-
ceive and manipulate novel objects. In this work, we focus on
robotic pick and place where the object category (e.g. bottles) is
known but a model of the exact object instance is unavailable.
We formulate the problem as a Markov Decision Process (MDP)
and solve it with reinforcement learning (RL). The action-value
function (Q-function) is approximated with a deep convolutional
neural network (CNN). We train the robot in simulation, and
we show the robot can successfully pick and place novel objects
in both simulation and on a URS.

I. INTRODUCTION

We imagine that, in the future, general-purpose robots will
provide us assistance in cluttered, human environments. A
key capability that such robots would need is the ability to
perceive and manipulate novel objects — novel in the sense
that the robot has seen the same type before but not the exact
instance. Previously we have worked towards this goal by
training a robot to grasp novel objects in clutter [4]. The next
step is to do something useful with the grasped object, such
as place it down in a gentle and organized fashion. Typically
robots perform this pick and place task by first estimating the
object’s pose and placing it in a known, target pose [5], [14],
[21]. Object pose estimation in clutter for object category is
a difficult, ongoing challenge for researchers [23].

We approach the problem not by explicitly finding object
pose, but by allowing the robot learn correct grasp and place
decisions through trial-and-error. This is an RL problem:
the robot must learn a policy for grasp and place decisions
through a reward signal, where the robot receives positive
reward for a correct placement.

Success for our approach involves three key points. The
first is we can make use of recent advances in grasp detection
and motion planning. Assuming these capabilities simplifies
the learning problem. The second is how sensor data is
represented to the robot. We follow the recent trend in using
deep learning for function approximation in RL [18]. Thus,

Fig. 1. Illustration of pick and place scenario that requires multiple picks
and places. (Left) Object is grasped in initial configuration. (Center) First
place is to make the mug upright so it can be grasped from the top. (Right)
Places mug deep in box — the gripper must be vertical to box.

we need to represent the sensor information to the neural
network in some fashion. Mnih er al. showed that, in clut-
tered scenarios, it may be helpful to restrict the perceptions
input into the network, i.e. what is called attention focus
in humans [17]. We follow a similar idea and represent a
grasp as local geometric information. The object surface
geometry local to a grasp essentially encodes the object
pose in the hand of the robot. Finally, we would like to
train the robot in simulation so as to save time and wear
on the robot hardware. This introduces a difficult problem
of transferring knowledge obtained in simulation to a very
different, physical environment, but the cost benefits of
training in simulation are too substantial to ignore.

We demonstrate the utility of our approach in both sim-
ulation and on a real robot. In simulation the robot can
correctly place bottles in clutter 87% of the time. On the
actual robot this drops to about 73% (97% grasp success
rate and 76% place success rate). Although this is still
below human performance, we expect this result to scale
up with simulation fidelity and continued learning in the
physical environment. A video of our approach running on
the URS robot can be found here: http://www.ccs.neu.
edu/home/atp/bottles_clutter.mp4.

II. PROBLEM DEFINITION

Given a sensor perception of a scene, the robot’s task is to
grasp an object and place it gently in a target configuration.
The object category is known, but the robot may have never
seen the specific object instance before. The sensor percep-
tion we consider here is a colorless point cloud obtained
from a depth sensor. There may be constraints on the robot
arm configuration during placement. For example, it may be
the gripper during the place needs to be vertical to a box so
the object and gripper can fit into the box (see Figure 1).
What counts as a “gentle” and “target” placement depends
on context and will be made precise in Sections IV and V.

In order to simplify this problem we make use of recent
advances in robotic grasp perception. Specifically, we assume
that there is a black-box which converts the point cloud
data into a sampling of grasps which are likely to be
geometrically stable grasps. A grasp detection black-box
which can predict stable grasps on a wide range of objects
is not an unreasonable assumption as several have become
available [4], [12], [24].

We also assume motion planning and control of the
robot can be handled by a motion planning black-box. For
example, we use Trajopt and OpenRAVE [2], [25]. Thus,
the robot only needs to know the target grasp or the target

http://www.ccs.neu.edu/home/atp/bottles_clutter.mp4
http://www.ccs.neu.edu/home/atp/bottles_clutter.mp4

placement, and a motion plan can be generated to move the
arm there. The problem then simplifies to that of selecting
a grasp from the set provided by the grasp detector and
selecting a placement.

We formulate the problem as an MDP. An MDP is a tuple
(S, A, R, T,~) of states S, actions A, rewards R, a transition
function 7', and a discount factor v [27]. For the pick and
place problem each of these components is described as
follows:

e s € 5:(G,P,g,p) where G is a sampling of grasps
obtained from a grasp detection sensor, P is a fixed
set of allowed placements (hand configurations), g is a
grasp that was selected in a previous time step, if any,
and p is a placement where the robot believes the object
has been placed in a previous time step, if any.

e a € A: (g,p) where g € G is the grasp the robot picks
and p € P is the hand configuration the robot uses to
place the object. We alternate between Pick and Place
actions: at the first time step pick actions are available,
at the second time step place actions are available, and
SO on.

e 7 € R: 1 if the object has been gently placed in a target
configuration (while meeting any placement constraints)
and 0O otherwise.

e T: An initially unknown, stochastic function of the
robot’s actions and the environment. Thus the problem
is model-free — the robot must learn the transition
dynamics from trial-and-error [27]. Note that T" will be
different for simulation versus for a physical robot.

e 7: It may be useful to discount rewards distant in the
future, so the robot will learn to place the object quickly,
all other things being equal.

We distinguish two types of placements: temporary and
final. Final placements are placements that meet all the
constraints required by the problem (see Figure 1). Tem-
porary placements may or may not meet the constraints
(e.g. Figure 1, center). If a temporary place is selected and
executed successfully, the robot will need to re-grasp and re-
place the object until it achieves a final place. The purpose
of the temporary placement is to reorient the object to detect
better grasps or to improve the robot’s confidence about the
object’s pose.

Good
Temporary
Placement

Bad
Temporary
Placement

Bad
Final
Placement

Grasp Selected

Place Final

Good
Final
Placement

Fig. 2. Summary diagram for our MDP. Terminal states are square. The
reward on each arrow is O unless indicated otherwise. The blue section is
only needed if the problem requires re-grasping and re-placing.

A summary diagram of our MDP is shown in Figure 2.
It is a summary diagram because the states shown in the
diagram are actually large collections of states. For example,
the “Grasp Selected” state covers every possible grasp that
could be selected. The part of the diagram shown in blue is
only required if temporary placements are available.

Given the MDP formulation, the goal of the pick and place
problem is to find a policy that maximizes the long-term,
discounted reward (i.e. maximize Equation 1). This is known
as an RL problem [27]. The task is episodic because each
trial always ends in a finite number of time steps [27].

Gi =71+t + Ve + -+ ey (D

III. APPROACH
A. Training Algorithm

Our training algorithm for pick and place is shown in
Algorithm 1. It is an instance of Sarsa, which is a method
for estimating action values (Q-values) and for taking actions
that maximize G; (Equation 1) [26]. The outer loop of the
training algorithm is one training round, i.e. one round of
adding experiences to the database. After obtaining new
experiences from a training round, we prune experiences if
the database is too large, starting with the oldest experiences.
We then label the data using the last network weights. We
then update the weights using a neural network optimization
framework, Caffe [7].

for i < 1 : nTrainingRounds do
for j < 1: nEpisodes do
Choose random object from training set
Place object in a random configuration
Sense point cloud C' and detect grasps G
s < initial state
a < Pick(.) (e-greedy)
for t < 1 : maxTime do
(r', ")« T(s,a)
if a = Pick(.) then
L a' < Place(.) (e-greedy)
else if « = Place(p)|p € Pemp then

Sense point cloud C' and detect grasps G
a' < Pick(.) (e-greedy)

else if a = Place(p)|p € Pjuu then
L a' <+ null

Add (s,a,r’,s’,a") to database
if s’ is terminal then break

Prune database if it is larger than maxExperiences
Label database using Q(s,a) < ' + Q(s',d’)
Run Caffe for nlterations on database

Aléorithm 1: Our Sarsa implementation for pick and place

For each training round, we run some number of episodes.
The algorithm enforces the transitions shown in Figure 2.
As shown in the figure, actions alternate between Pick and
Place, and the episode ends if the place was a final placement

Fig. 3. Grasp images representing point cloud local to gripper. Top: surface
normals (r,g,b) = (x,y,z). Bottom: height maps of the points. This grasp is
nearly centered on the bottle and upside-down.

or a harsh temporary placement. The transition function T’
propagates the simulator forward one step and evaluates the
reward. In this work we always train in simulation, but it
would be straightforward to implement this algorithm on the
robot, where the transition calls the motion planner and robot
control functions and a human annotator decides if the place
was gentle enough to merit a reward.

B. Neural Network for Q-Function Approximation

We use a deep CNN to approximate the Q-function. The
input is an encoding of the state and the action, and the output
is a scalar, real value representing the value of that state
action pair. Let’s first describe how the action is encoded.
The actions at any time step can either be Pick or Place.
For the Pick action, a grasp is input into the network and
the place vector is all zeros. For the Place action, a place
is selected and the input grasp image is all zeros. The grasp
is encoded to the network as a 12-channel image, similar to
the one used in our prior work on grasp detection [4]. An
example grasp image is shown in Figure 3. The place vector
is a 1-hot binary vector indicating which place was selected
from a fixed, discrete set P = [Py, Blinall-

Each of the 12 channels in the grasp image is a parallel
projection of points in the point cloud from a standard basis
axis in the reference frame of the grasp. This way, the grasp
image encodes information about the orientation of the grasp
relative to the object. The points used in the projection do
not include the entire point cloud. They only include points
within a small rectangular volume about the grasp. This is

grasp image

]

LeNet

place vector grasp image | | place vector

LeNet

| IP+RelU |

L]

| IP+RelLU |
¥
| e l

Q(s,a)

Fig. 4. CNN architecture used for the pick and place task. The blue portion
is only necessary if temporary placements are allowed.

important in cluttered scenes where other objects will be in
the full point cloud, making it necessary for the network
to learn what parts of the image are relevant. Mnih et al.
empirically showed that a small image focused on the object
of interest in a larger image can improve neural network
accuracy [17]. They refer to this approach as an attention
model and the small window within the larger image as a
glimpse. We hypothesize here that a large grasp image will
have trouble ignoring clutter and a small window should be
sufficient to infer the essential information for pick and place,
i.e. the pose of the object in the hand.

The encoding of the state to the network is very similar
to the encoding of the action: a grasp image and a 1-hot
place vector. At the first time step these are both zeros. Once
a Pick action has been performed, the image becomes the
encoding of the selected grasp. Once a Place action has been
performed, the place vector gets populated with the believed,
current object placement. These two pieces of information
together should inform the robot of the pose of the object,
assuming the place action was successful. Note that we never
estimate the object pose and provide this as input to the Q-
function. The only inputs are grasp images and placements.

A diagram of the CNN architecture is shown in Figure 4.
The inputs are shown at the top and the output, the Q-value,
at the bottom. Each image goes into a CNN component
exactly the same as LeNet [11] except the output has 100
digits instead of 10. These outputs, together with the place
information, are then concatenated and passed into two 60-
unit fully connected, inner product (IP) layers, each followed
by rectifier linear units (ReLU). After this there is one more
inner product to produce the output. If the pick and place
problem does not include temporary places (i.e. there is no
re-grasping), then only one image and one place vector needs
to be input to the network. This is because not enough time
steps are reached to observe and make use of the current
object pose (see the blue region in Figure 4).

IV. SIMULATION EXPERIMENTS

We trained and evaluated the performance of an RL robot
in simulation. We first evaluated the algorithms for a scenario
where all placements were final placements, i.e. P = Fjpy.
In this case every episode has exactly two time-steps — a
Pick time step and a Place time step. Let’s call this the two-
step scenario. Next we evaluated a scenario where temporary
placements were allowed. Let’s call this the re-grasp scenario
because the robot may grasp and place the object multiple
times. In the re-grasp scenario we designated all of the side
placements as temporary and all of the top placements as
final. In both scenarios the robot receives a reward of 1 at the
end of an episode for a correct, final placement. Otherwise,
the robot receives 0 reward. For a final placement to be
considered correct, the object up-axis must be nearly aligned
with the world up-axis, the object cannot be too high from
the table, and the object cannot be in collision with anything,
including the robot’s fingers. The requirements are the same
for a temporary placement except the object can have any
orientation.

The simulation environment was OpenRAVE [2]. The
robot model was just a floating gripper, which emphasizes
our assumption from Section II that a motion planning black-
box can be used to move the gripper to the desired pose.
We also assumed grasps will succeed unless the fingers
penetrate the object. Two point clouds were sensed in all
scenarios, taken from views above the object and 90° apart.
The table plane was removed from the point cloud for all of
these simulations because otherwise, the cylinders baseline
(described below) does not work.

We separately evaluated the robot with two different object
categories: mugs and bottles from 3DNet [30]. 25% of the
objects from each category were randomly selected for the
test set. The object scale was sampled uniformly from a
fixed range. Single objects were placed in the center of the
workspace in a semi-random (collision-free) orientation. In
clutter, there were 7 objects of the same class with a the
orientation sampled uniformly at random and the position
sampled from a Gaussian.

Training for the two-step scenario proceeded according to
Algorithm 1. Results for the two-step scenario are summa-
rized at the tops of Tables I and II. Clutter is more challeng-
ing than single objects and mugs are more challenging than
bottles. We attribute the difference in mugs to: 1) if no points
in the point cloud cover the bottom of the mug, it may be
impossible to distinguish which side is upright, and 2) if no
points cover the handle, the robot may choose a grasp where
the fingers penetrate the handle.

We compared our approach to a similar approach with
a larger grasp volume (LV). This is where the volume
generating the grasp images is doubled in each dimension.
While the larger volume will contain more information about
the object, we expect the LV approach to perform worse in
clutter due to the attention focus results of Mnih et al. [17].
We do in fact observe this performance drop for both objects
in clutter, irregardless of if the network was trained in clutter.

Next we compared to a cylinder-fitting approach. Since
bottles are nearly cylindrical one may ask if this problem can

TABLE I
AVERAGE CORRECT PLACEMENTS OVER 300 EPISODES FOR BOTTLES.

Method / # Bottles | 1 (Train) | 1 (Test) | 7 (Train) | 7 (Test)
1 Bottle 0.94 1.00 0.54 0.67
7 Bottles 0.74 0.78 0.78 0.87
1 Bottle LV 0.95 0.99 0.32 0.47
7 Bottles LV 0.88 0.96 0.66 0.80
Cylinders 0.41 0.43 0.23 0.24
Random 0.02 0.02 0.03 0.02
TABLE 11

AVERAGE CORRECT PLACEMENTS OVER 300 EPISODES FOR MUGS.

Method / # Mugs | 1 (Train) | 1 (Test) | 7 (Train) | 7 (Test)
1 Mug 0.92 0.84 0.62 0.60
7 Mugs 0.74 0.74 0.71 0.75
1 Mug LV 0.90 0.91 0.43 0.40
7 Mugs LV 0.67 0.67 0.70 0.70
Cylinders 0.14 0.08 0.09 0.12
Random 0.01 0.02 0.02 0.02

TABLE III
RE-GRASPING RESULTS FOR SINGLE MUGS OVER 300 EPISODES.

Metric / Tested With 1 Mug (Train) | 1 Mug (Test)
Correct Placements 0.85 0.84
Number of Placements 1.85 1.85

be solved using a more traditional model-fitting technique.
In this experiment we first segment the scene into k clusters,
using k-means [15]. £ = 1 for single objects (i.e. no cluster-
ing) and k = 7 for clutter. Then a cylinder is fit to the object
using Matlab’s cylinder fitting algorithm (MLESAC) [28].
A grasp aligned with and near to the center of the cylinder
is selected, and the placement is decided by the cylinder’s
length. The grasp up direction is chosen to be aligned with
the cylinder half which contains fewer points. This is because
objects are rarely top-heavy, so the bottom should be larger
and have more points. Note this cylinder baseline makes use
of domain knowledge that is learned automatically by the
RL agent. This includes the fact that bottles are typically
larger on the bottom, the approximate shape of the object
(i.e. cylindrical with the least-curvature axis needing to be
placed vertically), and the number of objects for k-means.
Also, cylinder fitting does not work at all unless the table
plane is removed (it gets the cylinder length wrong), whereas
the RL agent is not crippled if the table is included. On the
other hand, the cylinders method does not require several
hours of training.

The cylinders method places objects correctly less than
half the time. The “up heuristic” does not work well because,
in many views, more of the top is visible than the bottom.
Also, cylinder fitting does not get the length of bottles cor-
rectly if the neck is much thinner than the bottom. With oddly
shaped bottles (e.g. mouthwash and bourbon), the cylinder
radius is overestimated. Cylinders fit much more poorly
in clutter because of occlusions and errors in clustering.
Unsurprisingly, mugs do worse than bottles because handles
make the object less cylindrical.

The last baseline is where the robot chooses grasps and
places uniformly at random. Of course this performs poorly,
but it is an interesting result because it gauges the problem
difficulty. Because the problem is model-free, the robot must
learn the values of grasps and places from trial-and-error,
starting with random actions that only succeed 2% of the
time.

Training for the re-grasping scenario proceeds in the same
way as the two-step scenario except about double the number
of training rounds is required. We only used mugs for this
analysis because our grasp detection sensor did not find many
grasps on the tops of bottles. Results for the re-grasping
scenario are shown in Table III.

V. ROBOT EXPERIMENTS

We ran a series of experiments to evaluate our method
on a URS robot. The weights learned in simulation were
kept fixed. As with the tests in simulation, we separately
evaluated the system with single objects and with clutter for

| . ¥ : _ n d 3 ¥
-— PRE Lt —— PRl e S

Fig. 5. Sequence of picks and places for bottles in clutter. The bottle with
the green cover was placed upside-down, but the rest (not counting the one
that rolled out) were successful.

both bottles and mugs. Unlike in simulation, grasps were
only considered successful if the object was transported to
the placement area. Placements were considered successful
if, after the fingers opened, the object was placed upright on
the target placement area.

The experiments were performed by a URS robot,
equipped with a Robotiq parallel-jaw gripper and a wrist-
mounted Structure depth sensor. Two sensor views were
always taken from fixed poses, 90° apart. The object set
included 7 bottles and 6 mugs. The objects were required
to fit into the gripper and be mostly visible to the sensor.
Some of the lighter bottles were partially filled so small
disturbances (e.g. sticking to fingers) would not cause a
failure. An example of a two-step clutter experiment with
bottles is shown in Figure 5.

The success rates and failure counts for robot experiments
are shown in Table IV. As we saw in simulation, mugs were
more challenging to place than bottles, partly for the same
reasons, and also because our grasp detector finds fewer
grasps on mugs. Additionally, the point cloud in reality
appears to have more noise and less visibility than the
simulated sensor at high incidence angles.

TABLE IV
(TOP) SUCCESS RATES FOR GRASP, TEMPORARY PLACE, FINAL PLACE,
AND ENTIRE TASK. (BOTTOM) PLACEMENT ERROR COUNTS BY TYPE.
RESULTS ARE AVERAGED OVER THE NUMBER OF TRIALS (MIDDLE).

1 Bottle | 7 Bottles 1 Mug | 6 Mugs | Re-grasp

Grasp 0.96 0.97 0.88 0.80 0.97

Final Place 0.89 0.76 0.80 0.61 0.76

Temp. Place - - - - 0.77

Entire Task 0.84 0.73 0.70 0.48 0.55

[#of Trials | 112] 97 [9%] 91 [72 |

Upside-down 5 19 5 4 0
Sideways 0 0 7 18 9
Fell Over 2 3 1 2 0

VI. RELATED WORK

The traditional approach to robotic pick and place is to
first estimate the object’s pose and then to plan motions that
re-orient the object to a desired, target pose. For example,

Nguyen et al. estimate the object’s pose, grasp a part of the
object that known to be graspable, and then reorient and
place the object [21]. This procedure can repeat multiple
times until the object reaches the target pose. Lin et al
focus on the perception part of the pick and place problem
where objects are presented in light clutter [14]. They also
view determining the object’s pose as the necessary first step.
Harada et al. use a cylinder fitting method to estimate the
object’s pose to pick from a dense pile of bananas [5]. Their
cylinder fitting mechanism is admittedly more sophisticated
than our cylinders baseline as they use a probabilistic model
to adjust the cylinder size and to rank the grasps. However,
each of these examples either only works on the exact object
used in training or generalize to objects very similar in
appearance. Pose estimation for novel objects in a given
category is an active area of research [6], [22], [29].

On the other hand, Jiang et al. show how to place new
objects in new place areas without explicitly estimating the
object’s pose [8]. Their placements are sampled instead of, as
in our case, fixed. However they do not jointly reason about
the grasp and the place — the grasp is predefined. Also their
learning method relies on segmenting the object, segmenting
the place area, hand-picked features, and human annotation
for place appropriateness.

The idea of assigning task semantics to grasps is related to
the our pick and place problem. Dang and Allen introduced
the term “semantic grasp” and showed how to learn semantic
grasps given object category [1]. Myers et al. and Nguyen
et al. more recently proposed methods for detecting object
affordances [19], [20]. With these methods the robot learns
semantic grasps in a supervised fashion, whereas with our
approach the robot learns from trial-and-error and a reward
signal. Also, these papers are focused on detecting the task-
relevant object parts and/or grasps whereas ours is focused
on performing the task itself.

RL has long been studied for use in robot control. Kober
et al. give a comprehensive (but now somewhat dated) sur-
vey [10]. Most of these operate on the torque or acceleration
level of the robot controller whereas ours operates at a
higher level (because we assume grasp detection and motion
planning black-boxes). The RL alternative to a Q-learning is
to optimize the policy directly with respect to the reward.
This is called policy search, of which there are impressive
examples [3], [13]. Policy search seems to work well in cases
where human demonstrations are available [10]. It is also
possible to use actor-critic methods, a combination of policy
search with value approximation [10], [27].

VII. CONCLUSION

In this paper we have formulated the robotic pick and place
problem as an MDP. We showed a practical way for how it
can be solved in simulation without human demonstrations.
Key to our approach was the representation of the point cloud
sensor data to the CNN. The primary input to the CNN was
a multi-channel image oriented in the reference frame of a
grasp. This image contains information about the future pose
of the object in the robot’s hand. Further, we showed it is

important the image cover a relatively small volume if clutter
is present. This is because less clutter is visible in the image,
thus simplifying the learning problem. Also key to making
the problem tractable was to assume a grasp-detection sensor
and a motion planning black box. Apparently this knowledge
can be transferred to a physical robot in spite of these
assumptions as we showed with experiments on a URS.

Formulating the problem as an MDP is attractive not only
because the literature is full of RL solutions but also because
the framework is highly extensible. For example, with a small
change to the transition function we could easily relax the
simulation assumption that grasps always succeed. The only
difficulty is deciding how to simulate the grasps because
there are so many options [4], [9], [16]. Another simple
change would be to add sensor views as actions. This way,
the robot should learn to take as few views as possible while
getting enough information to perform the task. Another
straightforward extension would be to incorporate automatic
error-recovery: the robot would keep placing the object
until the robot was satisfied with the result. Although these
extensions are straightforward, the caveat is that it is not
clear how much longer training will take or how much larger
a neural network and/or state representation is needed. We
leave this, with additional domain transfer improvements, to
future work.

Known limitations include the time required for training
(about 12 hours for each object class), inability to recog-
nize correct objects when the clutter contains objects from
multiple classes, and fixed place options.

REFERENCES

[1] Hao Dang and Peter Allen. Semantic grasping: Planning robotic grasps
functionally suitable for an object manipulation task. In /[EEE/RSJ Int’]
Conf. on Intelligent Robots and Systems, pages 1311-1317, 2012.

[2] Rosen Diankov. Automated Construction of Robotic Manipulation
Programs. PhD thesis, Robotics Institute, Carnegie Mellon University,
2010.

[3] Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning
of manipulation skills with online dynamics adaptation and neural
network priors. In IEEE/RSJ Int’l Conf. on Intelligent Robots and
Systems, pages 4019-4026, 2016.

[4] Marcus Gualtieri, Andreas ten Pas, Kate Saenko, and Robert Platt.
High precision grasp pose detection in dense clutter. In IEEE Int’l
Conf. on Intelligent Robots and Systems, 2016.

[5] Kensuke Harada, Kazuyuki Nagata, Tokuo Tsuji, Natsuki Yamanobe,
Akira Nakamura, and Yoshihiro Kawai. Probabilistic approach for
object bin picking approximated by cylinders. In IEEE Int’l Conf. on
Robotics and Automation, pages 3742-3747, 2013.

[6] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm,
Nassir Navab, Pascal Fua, and Vincent Lepetit. Gradient response
maps for real-time detection of textureless objects. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(5):876-888, 2012.

[71 Yangqing Jia, Evan Shelhamer, Jeff Donahue, Ssergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell.
Caffe: Convolutional architecture for fast feature embedding. In ACM
Int’l Conf. on Multimedia, pages 675-678, 2014.

[8] Yun Jiang, Changxi Zheng, Marcus Lim, and Ashutosh Saxena.
Learning to place new objects. In Int’l Conf. on Robotics and
Automation, pages 3088-3095, 2012.

[9] Edward Johns, Stefan Leutenegger, and Andrew Davison. Deep

learning a grasp function for grasping under gripper pose uncertainty.

In IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages

4461-4468, 2016.

Jens Kober, Andrew Bagnell, and Jan Peters. Reinforcement learning

in robotics: A survey. The Int’l Journal of Robotics Research,

32(11):1238-1274, 2013.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324, 1998.

Jan Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for
detecting robotic grasps. The Int’l Journal of Robotics Research, 34(4-
5):705-724, 2015.

Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-
rich manipulation skills with guided policy search. In /EEE Int’l Conf.
on Robotics and Automation, pages 156-163, 2015.

Hsien-I Lin, Yi-Yu Chen, and Yung-Yao Chen. Robot vision to
recognize both object and rotation for robot pick-and-place operation.
In Int’l Conf. on Advanced Robotics and Intelligent Systems, pages
1-6. IEEE, 2015.

James MacQueen. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symp.
on mathematical statistics and probability, pages 281-297, 1967.
Andrew Miller and Peter Allen. Graspit! a versatile simulator for
robotic grasping. IEEE Robotics & Automation Magazine, 11(4):110-
122, 2004.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray
Kavukcuoglu. Recurrent models of visual attention. In Advances in
neural information processing systems, pages 2204-2212, 2014.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu,
Joel Veness, Marc Bellemare, Alex Graves, Martin Riedmiller, An-
dreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529-533,
2015.

Austin Myers, Ching L Teo, Cornelia Fermiiller, and Yiannis Aloi-
monos. Affordance detection of tool parts from geometric features.
In IEEE Int’l Conf. on Robotics and Automation, pages 1374-1381,
2015.

Anh Nguyen, Dimitrios Kanoulas, Darwin Caldwell, and Nikos
Tsagarakis. Detecting object affordances with convolutional neural
networks. In IEEE/RSJ Int’l Conf.on Intelligent Robots and Systems,
pages 2765-2770, 2016.

Anh Nguyen, Dimitrios Kanoulas, Darwin Caldwell, and Nikos
Tsagarakis. Preparatory object reorientation for task-oriented grasping.
In IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 893—
899, 2016.

Karl Pauwels and Danica Kragic. Simtrack: A simulation-based
framework for scalable real-time object pose detection and tracking. In
EEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 1300—
1307, 2015.

Colin Rennie, Rahul Shome, Kostas Bekris, and Alberto De Souza. A
dataset for improved rgbd-based object detection and pose estimation
for warehouse pick-and-place. IEEE Robotics and Automation Letters,
1(2):1179-1185, 2016.

Ashutosh Saxena, Justin Driemeyer, and Andrew Ng. Robotic grasping
of novel objects using vision. The Int’l Journal of Robotics Research,
27(2):157-173, 2008.

John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, and Pieter Abbeel. Finding locally optimal, collision-free
trajectories with sequential convex optimization. In Robotics: Science
and Systems IX, 2013.

Richard Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. Advances in neural information
processing systems, pages 1038-1044, 1996.

Richard Sutton and Andrew Barto. [Introduction to reinforcement
learning, volume 135. MIT Press Cambridge, 1998.

Philip Torr and Andrew Zisserman. Mlesac: A new robust estimator
with application to estimating image geometry. Computer Vision and
Image Understanding, 78(1):138-156, 2000.

Paul Wohlhart and Vincent Lepetit. Learning descriptors for object
recognition and 3d pose estimation. In Proceedings of the IEEE Conf.
on Computer Vision and Pattern Recognition, pages 3109-3118, 2015.
Walter Wohlkinger, Aitor Aldoma, Radu Rusu, and Markus Vincze.
3dnet: Large-scale object class recognition from cad models. In IEEE
Int’l Conf. on Robotics and Automation, pages 5384-5391, 2012.

	I Introduction
	II Problem Definition
	III Approach
	III-A Training Algorithm
	III-B Neural Network for Q-Function Approximation

	IV Simulation Experiments
	V Robot Experiments
	VI Related Work
	VII Conclusion
	References

