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Abstract— This paper considers the problem of grasp pose
detection in point clouds. We follow a general algorithmic
structure that first generates a large set of 6-DOF grasp
candidates and then classifies each of them as a good or
a bad grasp. Our focus in this paper is on improving the
second step by using depth sensor scans from large online
datasets to train a convolutional neural network. We propose
two new representations of grasp candidates, and we quantify
the effect of using prior knowledge of two forms: instance or
category knowledge of the object to be grasped, and pretraining
the network on simulated depth data obtained from idealized
CAD models. Our analysis shows that a more informative
grasp candidate representation as well as pretraining and prior
knowledge significantly improve grasp detection. We evaluate
our approach on a Baxter Research Robot and demonstrate an
average grasp success rate of 93% in dense clutter. This is a
20% improvement compared to our prior work.

I. INTRODUCTION

Grasp pose detection is a relatively new approach to
perception for robot grasping. Most approaches to grasp
perception work by fitting a CAD model of the object to
be grasped to sensor data (typically a point cloud). Grasp
configurations calculated for the CAD model are thereby
transformed into real world robot configurations. Unfortu-
nately, this approach inherently makes a closed world as-
sumption: that an accurate CAD model exists for every object
that is to be grasped. Moreover, registering a CAD model to
a partial and incomplete point cloud accurately and robustly
can be very challenging. In contrast, grasp pose detection
(GPD) characterizes the local geometry and/or appearance
of graspable object surfaces using machine learning methods.
Because GPD methods detect grasps independently of object
identity, they typically generalize grasp knowledge to new
objects as well.

Unfortunately, GPD methods have not yet been demon-
strated to be reliable enough to be used widely. Many GPD
approaches achieve grasp success rates (grasp successes as a
fraction of the total number of grasp attempts) between 75%
and 95% for novel objects presented in isolation or in light
clutter. Not only are these success rates too low for practical
grasping applications, but the light clutter scenarios that are
evaluated often do not reflect the challenges of real world
grasping.

In this paper, we evaluate a series of ideas intended
to improve GPD performance using data derived from the
BigBird dataset [17] – an online dataset comprised of depth
scans and RGB images of real objects. First, we focus on
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representation: we propose two new ways of representing
the grasp to the learning system and compare them to the
approaches proposed in [7] and [4]. Second, we evaluate the
advantages of using prior category and/or instance knowl-
edge of the object being grasped to improve grasp detection
accuracy. One would expect that even general knowledge of
the type of object that is being grasped should improve grasp
detection accuracy. Here, we quantify this effect. Third, we
evaluate the advantages of using training data derived from
idealized CAD models to help pretrain the convolutional
neural network used to do grasp classification. Although
differences between simulated depth scans and real scans
make it difficult to learn using simulated data alone, we have
found that pretraining on the simulated (CAD model) data
and finetuning on data from real scans is of benefit. Here, we
quantify how much advantage pretraining on CAD models
can confer. All of the above ideas are explored in the context
of the general algorithmic structure used in [18], where a
set of 6-DOF grasp candidates are first generated and then
classified. We expect our conclusions to generalize fairly
well to other approaches that follow the same algorithmic
structure.

We also evaluate our approach on a Baxter Research
Robot using an experimental protocol for grasping in dense
clutter proposed in our prior work. First, objects are selected
randomly and “poured” onto a tray in front of the robot.
The robot must then grasp and remove as many objects as
possible. Our results show that, out of 288 grasp attempts,
our system failed to grasp only 20 times (a ˜93% grasp
success rate) in this scenario. This is a 20% improvement
over the success rate reported in our prior work [18] 1.

II. PRIOR WORK

Grasp pose detection is distinguished from other ap-
proaches to robot grasping because it attempts to characterize
graspable object surfaces in terms of local features rather
than gross object geometry. For example, Lenz et al. model
a graspable geometry as an oriented rectangle in an RGBD
image [12]. Given a number of candidate rectangles, machine
learning methods trained on human-labeled data are used
to predict which rectangles are grasps and which are not.
An important characteristic of this work is that grasps are
detected in the plane of the RGBD sensor: each detection cor-
responds to an x, y, θ position and orientation in an RGBD
image. In order to use these detections to grasp, the gripper

1GPD code available at: github.com/atenpas/agile_grasp2



must approach the grasp target from a direction roughly
orthogonal to the plane of the RGBD sensor. Several other
approaches in the literature also detect grasps as an x, y, θ
position and orientation in an RGBD image. For example,
Pinto and Gupta take a similar approach except that the
training data comes from on-line experience obtained by the
robot during an automated experience-gathering phase [14].
Using the same hand-labeled dataset, Redmon and Angelova
pose grasp detection as a regression problem and solve it
using convolutional neural network (CNN) methods [15].

A key limitation of detecting grasps as an x, y, θ pose in an
RGBD image is that it constrains the robot hand to approach
the object from one specific direction. This is a serious
limitation because it is often easiest to grasp different ob-
jects in the same scene from different directions. Fischinger
and Vincze take a step toward relaxing this constraint by
detecting a grasp as an x, y, θ pose in a heightmap [3]. Since
different heightmaps can be constructed from the same point
cloud at different elevations, this enables the algorithm to
control the grasp approach direction. The grasp template
approach of Herzog et al. is still more flexible because it
aligns the approach direction on a grasp-by-grasp basis with
the object surface normal at the grasp point [4]. Kappler,
Bohg, and Schaal show that the grasp templates proposed
by Herzog et al. can be combined with a CNN-based grasp
classifier [7]. Finally, ten Pas and Platt propose a geometry-
based method of generating grasp candidates and propose
a representation that can be viewed as a variation on the
template-based approach of Herzog [18].

An alternative approach is to demonstrate grasps on a set
of objects to a robot and then to transfer these grasps to
novel objects. While Kroemer et al. use actions afforded
by object parts to learn the shape of the part [10], Detry
et al. [1] learn the geometry of typically grasped object
parts. Kopicki et al. optimizes over the combination of a
contact and a hand configuration model to generate grasp
candidates [9]. In comparison, our approach does not require
human demonstration.

III. GRASP POSE DETECTION

A. Problem statement

The input to our algorithm is a 3-D point cloud, C ⊂ R3.
Each point in the cloud is paired with at least one viewpoint
(i.e. camera location) from which that point was observed,
V : C → V , where V ⊂ R3 denotes the set of viewpoints. Let
CV = (C,V, V ) denote the combined cloud and viewpoints.
The algorithm also takes as input the geometric parameters
of the robot gripper to be used, θ, and a subset of points,
CG ⊂ C , that identify which parts of the point cloud contain
objects to be grasped.

The output of the algorithm is a set of robot hand poses,
H ⊂ SE(3), such that if the robot hand is moved to a hand
pose in H and the gripper fingers are closed, then force
closure is expected to be achieved for some object in the
scene. This paper only considers the case where the robot
hand is a 1-DOF two-fingered parallel jaw gripper. Although
the current version of the algorithm takes a point cloud as

input, it would be easy to modify it to take a truncated signed
distance function (TSDF) instead.

B. Outline of the GPD algorithm

The grasp pose detection algorithm follows the two steps
shown in Algorithm 1.

Algorithm 1 GPD

Input: a point cloud and associated viewpoints, CV ;
a subset of the cloud where grasping is to occur, CG ;
hand geometry, θ
Output: a set of 6-DOF grasp configurations, H ⊂ SE(3)

1: C = Sample Gasp Candidates(CV, CG , θ)
2: H = Classify(C,CV )

In Step 1, we sample several thousand grasp candidates.
Each grasp candidate is a 6-DOF hand pose, h ∈ SE(3).
First, we sample points uniformly at random from CG . For
each sample, we calculate a surface normal and an axis
of major principle curvature of the object surface in the
neighborhood of that point. Potential hand candidates are
generated at regular orientations orthogonal to the curvature
axis. At each orientation, we “push” the hand forward from
a collision-free configuration until the fingers first make con-
tact with the point cloud (a similar pushing strategy is used
by Kappler et al. as part of the grasp candidate generation
process [7]). Once we have an in-contact hand configuration,
we check to see whether any points from the cloud are
contained between the fingers. If none are contained, then
that grasp candidate is discarded. This process continues until
a desired number of grasp candidates are generated. Figure 1
illustrates candidates found using this method. Full details on
the sampling method can be found in [18].

In Step 2 of Algorithm 1, we classify each candidate
as a grasp or not using a four-layer convolutional neural
network (CNN). CNNs have become the standard choice
for GPD classification and ranking [8]. The main choice
here is what CNN structure to use and how to encode to
the CNN the geometry and appearance of the portion of
the object to be grasped. We borrow the structure used
by LeNet [11] (the same structure is used by Kappler et
al.): two convolutional/pooling layers followed by one inner
product layer with a rectified linear unit at the output and
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Fig. 1: Illustrations of grasp candidates found using our
algorithm. Each image shows three examples of a gripper
placed at randomly sampled grasp candidate configurations.



one more inner product layer with a softmax on the output.
The outputs, kernel size, pooling strides, etc. are all identical
with those used by the LeNet solver provided in Caffe [5].
We used a learning rate of 0.00025 in all experiments. The
next section discusses how we encode the geometry and
appearance of the part of the object to be grasped.

C. Grasp representation

We represent a grasp candidate to the classifier in terms
of the geometry of the observed surfaces and unobserved
volumes contained within a region, R ⊂ R3, swept out
by the parallel jaw fingers as they close. Since the fingers
are modeled as rectangles that move toward or away from
each other, this region is a rectangular cuboid. Currently,
we ignore RGB information. Our representation is illustrated
in Figure 2. Figure 2(a) shows a grasp candidate generated
with respect to partial point cloud data (from the BigBird
dataset [17]). Figure 2(b) shows two sets of points in R.
One set of points, shown in magenta, shows points in the
cloud contained within R. The other set of points, shown in
blue, are sampled from the portion of R that is unobserved,
i.e., that is occluded from view by every sensor.

In the following, we will assume that the cuboid region R
is scaled to the unit cube and the points contained within it
are voxelized into a 60 × 60 × 60 grid. For every triple,
(x, y, z) ∈ [1, 60] × [1, 60] × [1, 60], V (x, y, z) ∈ {0, 1}
denotes whether the corresponding voxel is occupied and
U(x, y, z) ∈ {0, 1} denotes whether the corresponding
voxel has been observed. We will further assume that each
occupied voxel in R is associated with a unit, outward-
pointing surface normal vector, n̂(x, y, z) ∈ S2, that denotes
the orientation of the object surface at that point. All of the
above information can be calculated either from the point
cloud with associated viewpoints or from a TSDF.

Ideally, we would represent to the classifier the 3D ge-
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Fig. 2: Grasp representation. (a) A grasp candidate generated
from partial point cloud data. (b) Local voxel grid frame. (c-
e) Examples of grasp images used as input to the classifier.

ometry of the object surface contained between the gripper
fingers. Unfortunately, this would require passing a large
number of voxels to the CNN. Instead, we project the voxels
onto planes orthogonal to the standard basis axes of the voxel
grid and pass these to the CNN as input. The directions from
which we take these projections are illustrated by the arrows
in Figure 2(b). The red arrow points along the hand approach
vector, denoted by the x coordinate in the voxel grid V . The
green arrow points along a vector parallel to the axis of major
principle curvature of the object surface (we will call this
the “curvature axis”), denoted by the y coordinate in V . The
blue arrow points along an orthogonal direction that views
the grasp from the side, denoted by the z coordinate.

For each of these three projections, we will calculate three
images: an averaged heightmap of the occupied points, Io,
an averaged heightmap of the unobserved region, Iu, and
averaged surface normals, In. For example, to project onto
the plane constituted by the hand and curvature axes, i.e.,
the (x,y) plane, these maps are calculated as follows:

Io(x, y) =

∑
z∈[1,60] zV (x, y, z)∑
z∈[1,60] V (x, y, z)

Iu(x, y) =

∑
z∈[1,60] zU(x, y, z)∑
z∈[1,60] U(x, y, z)

In(x, y) =
|
∑

z∈[1,60] n̂(x, y, z)V (x, y, z)|∑
z∈[1,60] V (x, y, z)

The first two images, Io and Iu, are 60 × 60 images. The
last image, In(x, y), is a 60× 60× 3 image where the three
dimensions of the normal vector are interpreted as three
channels in the image. All together, we have five channels
of information for each of the three projections, for a total
of 15 channels total.

D. Generating training labels

Fig. 3: A frictionless an-
tipodal grasp, with con-
tact surface normals anti-
parallel to each other.

In order to classify grasps
accurately in Step 2 of Algo-
rithm 1, we need to be able to
generate a large amount of train-
ing data to train the classifier.
In particular, we need training
data of the following form: a
set of exemplars where each ex-
emplar pairs a representation of
the geometry or appearance of
the local object surface relative
to a 6-DOF hand pose with a
label indicating whether or not
a grasp exists at that hand pose.
We generate the training data automatically as follows. First,
we use the grasp candidate sampling method described in
Section III-B to generate a large set of grasp candidates.
Then, we evaluate whether a frictionless antipodal grasp
would be formed if the fingers were to close on the mesh
from the hand pose associated with the grasp candidate. In
the context of a two-finger parallel jaw gripper, a frictionless



antipodal grasp means that each of the object surface normals
at contact is anti-parallel with the direction in which the con-
tacting finger closes and co-linear with the line connecting
the contacts [13] (see Figure 3). This is a particularly strong
condition: a frictionless antipodal grasp is in force closure
for any positive coefficient of friction.

In order to accomplish the above, we require a set of object
meshes where each mesh is registered to one or more point
clouds (or TSDFs) taken from different viewpoints. This
raw data can be obtained using online CAD models such
as those contained in 3DNET [19] and simulating the depth
images, or it can come from a dataset like BigBird that pairs
real depth images with a reconstructed mesh of the object.
Unfortunately, determining whether a grasp candidate is a
frictionless antipodal configuration can be tricky when the
object meshes are noisy. (For example, the object meshes in
the BigBird dataset are noisy because they are reconstructed
from actual sensor data.) We address this by “softening” the
frictionless antipodal condition described above slightly. In
particular, we assume that each vertex in the mesh is subject
to a small amount of position error (1mm in our experiments)
and evaluate whether an antipodal grasp could exist under
any perturbation of the vertices. This reduces to identifying
small contact regions in each finger where contact might be
established and evaluating whether the frictionless antipodal
condition described above holds for any pair of contacts in
these regions.

IV. EVALUATION

Achieving high-precision grasp detection is the key chal-
lenge in grasp pose detection. Here, we evaluate the effects
of various design choices.

A. Measuring recall-at-high-precision for grasp pose detec-
tion

Typically, classification performance is measured in terms
of accuracy – the proportion of predictions made by the
classifier that match ground truth. Most grasp pose detec-
tion systems described in the literature achieve something
between 75% and 95% grasp classification accuracy [3],
[4], [7], [12], [14]. Unfortunately, this accuracy number
alone does not give us a good indication of whether the
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Fig. 4: Example of recalling grasps at high precision. (a)
Precision-recall curve. (b) Grasps recalled at 99% precision.

resulting grasp pose detection system will have a high grasp
success rate. The key question is whether a particular grasp
pose detection system can detect grasps with high precision.
Precision is the proportion of all positives found by the
classifier that are true positives. In grasp pose detection,
the cost of a false positive is high because it can cause
a grasp attempt to fail. As a result, we want to travel
along the precision-recall curve and reach a point with very
high precision (i.e. very few false positives). This amounts
to adjusting the classifier acceptance threshold. Setting the
threshold very high will result in a high precision, but it
will reduce recall – the proportion of all true positives found
by the classifier. Therefore, a key metric for grasp pose
detection is recall-at-high-precision. Given a specification
that the system must find grasps with a certain minimum
precision (say 99%), what recall can be achieved? This is
illustrated in Figure 4(a). For a particular shampoo bottle
instance, we can recall 27% of the grasps at 99% precision.
The key insight is that since grasp pose detection systems can
detect hundres of grasps for a single object, we don’t need to
recall all of the grasps in order to have lots of choices about
which grasp to execute. This is illustrated in Figure 4(b).
Although we are only detecting 27% of all true positives,
there are still plenty of of alternatives.

B. Comparison between different representations

Several representations proposed in the literature can be
viewed in terms of the three projections described in Sec-
tion III-C. We compare these representations by evaluating
the accuracy with which they can predict grasps.

The dataset we use for this purpose is created based on
the point clouds and object meshes in the BigBird dataset.
We identify 55 objects (26 box-type objects, 16 cylindrical-
type objects, and 13 other objects) out of the 125 objects in
the BigBird dataset for which: 1) a complete mesh exists for
the object in the dataset; 2) the object can be grasped by a
parallel jaw gripper that can open by at most 10cm. From
this, we obtain a dataset of 216k grasp candidates evenly
balanced between positive and negative exemplars with a
185k/31k train/test split over views (for each object, the test
set does not contain any exemplars derived from a view that
is present in the training set).

The dataset is created by generating grasp candidates from
partial-view point clouds. As in all of our experiments, these
partial-view point clouds are created under the assumption
that every object is seen by two robot sensors that see the
object from viewpoints 53 degrees apart. This stereo-sensor
configuration is easy to configure in practice and it reflects
the configuration of our robot in the lab. We simulate this
configuration by registering together appropriate views from
the BigBird dataset. The grasp candidates are labeled by
checking whether a frictionless antipodal grasp exists with
respect to the full object mesh as described in Section III-D.

The accuracy of our full 15-channel representation as a
function of training iteration (in 100s) is shown in green in
Figure 5. Since this train/test split is over views, this result
describes the accuracy that would be achieved if we knew



we would be given one of the 55 BigBird objects, but did not
know in advance which one we would get. We compare the
full 15-channel accuracy to the accuracy that can be obtained
without using any of the occlusion channels (without Iu,
a 12-channel representation), shown in blue in Figure 5.
Notice that we gain approximately an additional 2% accuracy
by using this information. This is an important piece of
information because the occlusion information is difficult and
time-consuming to calculate: it requires a TSDF or precise
knowledge of the viewpoints and it involves evaluating a
relatively large subset of the volume contained between the
fingers. The recall-at-high-precision (99% precision) for the
15-channel and the 12-channel representation is 89% and
82%, respectively.

Fig. 5: Classification accuracy obtained using different grasp
candidate representations. Green: combined 15-channel rep-
resentation. Blue: same as green but without the occlusion
channels. Red: the representation used in our prior work [18].
Cyan: the representation used in both Kappler et al. [7]
and Herzog et al. [4]. The legend shows the recall-at-high-
precision (RAHP) metric for each of these representations
for 99% precision.

We compare the above to two additional representations to
the three-channel representation used in our prior work [18]
(shown in red in Figure 5). This representation is comprised
of the three-channel In image projected along the curvature
axis. It is suprising that this representation performs just
about as well as the 12-channel, without-occlusion repre-
sentation above even though it only contains three channels
of information. This suggests that beyond the curvature axis
projection, the two additional projections do not help much.

We also compare with the representations used in both
Kappler et al. and Herzog et al. (shown in cyan in Fig-
ure 5). That representation is comprised of three channels
of information projected along the hand approach axis. One
channel is Io. The second channel is Iu. The third channel
describes the unoccupied voxels in the space: If = Iu ∪ Io.
On average, this representation obtains at least 10% lower
accuracy than the other representations and only a 19%
recall-at-high-precision. This lower performance must be due
to either or both of these things: 1) projecting along the

axis of the hand approach vector loses more information
than other projections; 2) not encoding surface normals loses
information.

There are several representations in the literature that use
the RGB data as well as depth information from a single
depth image produced by a Kinect-like sensor. For example,
work from Saxena’s group detects grasp points in RGBD
images [12]. Similarly, Pinto and Gupta [14] use RGBD
information as well. In these cases, since the robot hand
typically approaches the object from the viewing direction,
the depth channel in the above is roughly equivalent to our
Io channel along the hand approach direction. As a result,
if the RGB information were not also present, then these
representations would fare no better than the Kappler et
al. representation described above. It is possible that the
additional RGB information makes up for the deficit, but
this seems unlikely given results reported by Lenz et al.
who obtain only 0.9% additional accuracy by using RGB
in addition to depth and surface normal information [12].

C. Pretraining on simulated data

Fig. 6: Accuracy with (red) and
without (blue) 3DNET pretrain-
ing.

One way to improve
classifier accuracy and
precision is to cre-
ate training data us-
ing point clouds or TS-
DFs created by sim-
ulating what a sensor
would observe looking
at a CAD model. Com-
pared with the amount
of real sensor data that
is available, there is a
huge number of CAD
models available online
(for example, 3DNET
makes available thousands of CAD models from 200 object
categories [19]). Ideally, we would train using this simulated
data. Unfortunately, there are subtle differences between
depth images obtained from real sensors and those obtained
in simulation that hurt performance. For example, recall the
31k test set derived from BigBird data described in Sec-
tion IV-B. Our best representation obtained approximately
90% accuracy over all 55 objects in the BigBird dataset.
However, when we train our system for 30000 iterations on
207k exemplars created using on 400 object CAD models
taken from 16 categories in 3DNET, we obtain only 83%
accuracy on the same test set. While it is possible that
different methods of simulating depth images could improve
performance, it is likely that a small difference will persist.

One approach to this problem is to pretrain the CNN
learning system using simulated data, but to “finetune” it
on real data more representative of the problem domain at
hand. We evaluated this approach by testing on the 216k
BigBird dataset described in Section IV-B. We compare the
learning curve obtained using the 15-channel representation
in Section IV-B starting with random network weights with



the learning curve obtained using the 3DNET weights as a
prior. Figure 6 shows the results. The pretrained weights have
a strong effect initially: the pretrained network obtains the
same accuracy at 4000 iterations as the non-pretrained net-
work obtains after 20000 iterations. However, the importance
of the contribution diminishes over time.

D. Using prior knowledge about the object

A key advantage of grasp pose detection is that it allows
us to use varying degrees of prior knowledge to improve
detection by adjusting the contents of the training set. If
we have no prior knowledge of the object to be grasped,
then we should train the grasp detector using data from a
large and diverse set of objects. If we know the category
of the object to be grasped (for example, if we know the
object is box-like), then we should train the grasp detector
using training data from only box-like objects. Finally, if
we know the exact object geometry, then we should use
training data derived only from that particular object. In
general, one would expect that the more prior knowledge
that is encoded into the network this way, the better our
classification accuracy will be.

Fig. 7: Grasp detection accuracy given no prior knowledge
of the object (red); given a category knowledge (blue); given
the precise geometry of the object (green). The legend shows
the recall-at-high-precision (RAHP) metric for each of these
representations for 99% precision.

We performed an experiment using 16 cylindrical-like
objects from the BigBird dataset and compared classification
accuracy in these three different scenarios. First, we trained
a network using training data derived only from the single
object in question using a train/test split (45k training and
5k test) on view angle (no one view shared between test
and training). This network was trained starting with weights
pretrained on the full 55 BigBird object set. Averaged
over the 16 cylindrical-like objects, we obtained roughly
97% classification accuracy and 83% recall-at-99%-precision
(the green line in Figure 7). Second, for each of the 16
cylindrical-like objects, we trained the network using data
derived from the other 15 objects (leave-one-object-out). This
gave us 150k exemplars for training and 10k for test for each

object. This network was pretrained on the 3DNET data.
Here we obtained approximately 93.5% accuracy and 35%
recall-at-99%-precision (the blue line in Figure 7). Finally,
for each object, we trained the network using all other objects
in the dataset. This gave us 278k training examples and 10k
test for each object. Here we obtained approximately 92%
accuracy and 27% recall-at-99%-precision (the red line in
Figure 7).

V. ROBOT EXPERIMENTS

To validate our GPD algorithm, we ran two dense clutter
experimental scenarios on a Baxter Research Robot. We
used the 3-channel representation (see Section IV-B) because
it is fast to compute and almost as accurate as the 15-
channel representation (see Figure 5). In the first scenario the
algorithm received point clouds from two statically mounted
depth sensors, and in the second scenario the point cloud
information came from a wrist-mounted depth sensor 2.

A. Hardware setup

We use the right 7-DOF arm of the Baxter Research
Robot in the experiments. Our robot hand is the stock Baxter
parallel-jaw gripper with the stock, short fingers and square
pads. The square pads were modified with a black rubber
covering, and rubber-covered pieces of metal were added to
the ends (shown in Figure 9). The ends bend slightly outward
to initially widen the bite which helped with minor, sub-
centimeter kinematic or point cloud registration errors. This
gripper is restricted to a 3 to 7cm width. Each object in
the test set was selected given this restriction. We mounted
two Asus Xtion Pro depth sensors to Baxter’s waist and an
Occipital Structure sensor to the robot’s wrist.

We used two computer systems in the experiments. Each
system consisted of a 3.5 GHz Intel Corei7-4770K CPU
(four physical cores), 32 GB of system memory, and an
Nvidia GeForce GTX 660 graphics card. One system was
used to run our GPD algorithm, and we used InfiniTAM [6]
on the other system to obtain a TSDF volume from the wrist-
mounted sensor while moving the robot arm. Communication
between the robot and the two PCs was handled by the robot
operating system (ROS). TrajOpt [16] was used for motion
planning.

B. Experimental protocol

We ran 45 clutter experiments, of which 15 rounds were
tested with a static placement of two Kinect sensors (we call
this the “passive scenario”), and of which 30 rounds were
tested with the wrist-mounted sensor while streaming images
(we call this the “active scenario”). The protocol for each
round is outlined in Table I. First, 10 objects were selected
uniformly at random from a set of 27. These 10 objects were
used for both the passive round and two active rounds. The
27 objects are the same common household items that we
used in our prior work [18], none of which are in the training
set. All of the objects are lighter than 500g and have at least

2Video: https://www.youtube.com/watch?v=p4JXpZVxr48



one side that fits within the gripper. Figure 8 shows a person
preparing one round of the experiment.

1. Randomly select 10 objects from the object set.
2. Place objects into a box.
3. Shake box until sufficiently mixed.
4. Pour box contents into tray in front of robot.
5. Run clutter removal algorithm (see Section V-C).
6. Terminate once any of these events occur:

i) No objects remain in tray.
ii) No grasp hypotheses were found after 3 attempts.
iii) The same failure occurs on the same object 3 times.

TABLE I: Clutter-removal experiment protocol for one
round.

The next steps were to place the 10 objects in a box and
to shake the box to mix the objects. We then poured the
contents of the box into a tray placed in front of the robot
on a table. Two objects (the sandcastle and the lobster) could
not be grasped from an upside down configuration. If either
of these objects fell into this configuration, then we manually
removed the object, turned it right side up, and placed it back
on the pile. The experiment proceeds until either there are
no objects remaining in the tray, until the GPD algorithm
has run three times and no grasp hypotheses were found,
or until the same failure occurs on the same object three
times in a row. The latter case only occurred once in our
experiments (in the active scenario), where the front of the
vacuum attachment was not grasped in a stable way.

(a) (b)

Fig. 8: Preparation of a clutter clearing task for Baxter. (a)
Pouring the box contents into the tray. (b) Tray contents
immediately after pouring.

C. Clutter removal algorithm

Our algorithm for clearing the clutter works as follows.
For the passive scenario, each Kinect sensor takes an im-
age, and both images are transformed into the robot’s base
frame, combined, and voxelized. The positions of the sensors
themselves are hard-coded into the algorithm and used for
the surface normal calculation. For the active scenario, we
use InfiniTAM to integrate a TSDF volume of the cluttered
scene [6] as the arm travels about 46cm along a fixed
trajectory. We used TrajOpt to generate this trajectory offline
and reused it in all experiments for the active scenario. The
trajectory was constrained to align the line-of-sight axis of
the sensor towards a point centered in the cluttered tray and

to keep a minimum distance of 40cm between this fixed
point and the origin of the sensor. (The minimum range of
the sensor is between 35 to 40cm.)

The next step is to run the GPD algorithm. The GPD
algorithm typically returns hundreds of grasp candidates in
about 3s. In order to select the grasp that is expected to
be most likely to succeed, we first use IKFast [2] to find
collision-free IK solutions for each grasp and remove those
that have no solution. We use OpenRAVE [2] for collision
checking, and we model the point cloud obstacle as 2cm
cubes centered at points in a voxelized cloud. Our next step
is to prune grasps that are very close to the joint limits of the
robot arm or require a width that is less than 3cm or more
than 7cm. For each remaining grasp, we modify its position
by the average position of all other grasps that are similar in
position and orientation. This is important because it makes
it more likely that the grasp will succeed if the gripper
is slightly off due to kinematic or point cloud registration
errors.

After filtering grasps, we compute a utility function that
takes the height of the grasp position, the required gripper
width, the angle between the grasp approach vector and the
robot base vertical axis, and the c-space distance the arm
needs to travel to reach the grasp from a fixed, nominal
configuration into account. We have empirically found it is a
good strategy to grasp the highest object and approach from
the top because of potential collisions with other objects
in the tray. Additionally, the distance the arm travels is
important because a smaller distance is less likely to put
the arm in a position where the kinematic readings are
significantly off, and it also takes less time.

Fig. 9: Gripper closing on the first object in the clutter.

D. Results

The results of our experiments are presented in Table II.
For the 15 rounds of experiments with the passive, statically
placed sensors, we observed an 84% grasp success rate (22
grasp failures out of 138 grasp attempts). Of the 22 failures,
5 were due to point cloud registration or kinematic errors
of the robot, 13 were due to perception errors caused by
our GPD algorithm, 2 were due to a collision of the fingers
with the object before the grasp, and 2 were due to the
object dropping out after an initially successful grasp. In
this scenario, 77% of the objects placed in front of the robot
were cleared. The others were either knocked out of the tray,



pushed too far forward to be seen by the sensors, or grouped
too close together for a finger-clear grasp to be found.

For the 30 rounds of experiments with the active, wrist-
mounted sensor, we observed a 93% grasp success rate (20
grasp failures out of 288 grasp attempts). Out of the 20
failures, 5 were due to point cloud registration or kinematic
errors of the robot, 9 were due to perception errors caused
by our GPD algorithm, 4 were due to a collision of the
fingers with the object before the grasp, and 2 were due to
the object dropping out after an initially successful grasp.
In this scenario, 90% of the objects were cleared from the
tray. This improvement is partially due to the front of the tray
being more visible to the wrist-mounted sensor, but otherwise
some objects were still left behind for the same reasons as
in the passive scenario.

The 9% grasp success rate improvement in the active
scenario compared to the passive scenario is due to to having
a better and more complete view of the objects in the tray.
If the objects are not seen at all, a collision can occur which
may cause the target object to move out of the way before
the gripper closes. Also, the more partial the point cloud
of the objects, the more difficult it is for GPD to correctly
classify the grasps.

Passive scenario Active scenario
Grasp success rate 84% 93%
No. of objects 150 300
No. of objects removed 116 (77%) 269 (90%)
No. of grasp attempts 138 288
No. of grasp failures 22 20

TABLE II: Results of the clutter-removal experiments.

VI. CONCLUSION

In this paper, we have built up on previous work on grasp
pose detection in point clouds that first creates a large set
of grasp hypotheses and then classifies them as a good or
a bad grasps. We proposed three ways of improving the
classification step. First, we introduced a new 15-channel
grasp candidate representation as input to train a CNN. We
compared this representation to existing representations from
the literature and to our own representation from previous
work. We find that the more information our representation
encodes, the better the classifier performs. However, our
15-channel representation performs just slightly better than
our 12-channel representation; although it is much more
expensive to compute. Second, we found that a network
pretrained on simulated depth data obtained from online data
sets reduces the number of iterations required to achieve high
classification accuracy compared to an untrained network.
Third, using prior instance or category information about
the object to be grasped improves classification performance.
Compared to our previous work, our robot experiments in
this paper show an increase of the average success rate from
73% to 93% for grasping novel objects in dense clutter. This
result emphasizes that the ways we proposed to enhance the
classification significantly improve robot grasping in the real
world.

GPD algorithms are currently limited by not being able to
infer non-geometric object properties such as center of mass,
inertia, and weight. Moreover, as these algorithms typically
avoid point cloud segmentation, there is no direct way to
grasp a specific object of interest and to distinguish between
two adjacent objects. In future work, we hope to address
these issues.
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