Proving Type Soundness

Paul Stansifer

March 11, 2010

@ARTICLE{Milner78athecy,
 author = {Robin Milner},
 title = {A theory of type polymorphism in programming},
 journal = {Journal of Computer and System Sciences},
 year = {1978},
 volume = {17},
 pages = {348--375}
}

Milner introduces the let-polymorphic type system in ML, and proves its soundness. Then he introduces a type-inference algorithm, W, and proves that, when W finds a type, it finds a correct one.

\textbf{Delta} This is the first appearance of an inferrable polymorphic type system.

@inproceedings{582176,
 author = {Damas, Luis and Milner, Robin},
 title = {Principal type-schemes for functional programs},
 booktitle = {POPL '82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages},
 year = {1982},
 isbn = {0-89791-065-6},
 pages = {207--212},
 location = {Albuquerque, New Mexico},
 doi = {http://doi.acm.org/10.1145/582153.582176},
 publisher = {ACM},
 address = {New York, NY, USA},
}

@phdthesis{tapl,
 author = "Lu\'is Damas",
 title = "Type Assignment in Programming Languages",
 school = "University of Edinburg",
 year = 1985
}
Damas and Milner extend ML with side-effects and present a type system and an (incorrect) proof of its soundness. They also prove the completeness of W

Delta The inference algorithm W is now known to be complete. Their type system for ML with effects is believed to be correct, but the category-theoretic proof technique is demonstrated to be excessively complicated.

@article{126888,
 author = {Milner, Robin and Tofte, Mads},
 title = {Co-induction in relational semantics},
 journal = {Theor. Comput. Sci.},
 volume = {87},
 number = {1},
 year = {1991},
 issn = {0304-3975},
 pages = {209--220},
 doi = {http://dx.doi.org/10.1016/0304-3975(91)90033-X},
 publisher = {Elsevier Science Publishers Ltd.},
 address = {Essex, UK},
}

Milner and Tofte use co-induction to prove the soundness of the ML type system.

Delta A new proof technique, co-induction, is demonstrated, which the authors will later use to (correctly) prove the soundness of ML with side-effects.

@ARTICLE{Wright92asyntactic,
 author = {Andrew K. Wright and Matthias Felleisen},
 title = {A Syntactic Approach to Type Soundness},
 journal = {Information and Computation},
 year = {1992},
 volume = {115},
 pages = {38--94}
}

The authors prove the soundness of the plain ML type system and several extensions of ML (side-effects, exceptions, continuations).

Delta The authors show how subject reduction (instead of ad-hoc selected proof techniques) can be used on many different kinds of languages, making proofs more modular and straightforward.