
A Kripke Logical Relation for Affine Functions:

The Story of a Free Theorem in the Presence of Non-termination

Phillip Mates
Northeastern University

Amal Ahmed
Northeastern University

June 14, 2013

Abstract

In the course of extending Ahmed and Blume’s recent work on fully abstract CPS translation to a
language with non-termination, we have encountered the need for a free theorem that cannot be proved
using existing logical relations. The free theorem involves a mix of affine functions and affinely-treated
intuitionistic functions. To reason about the latter, we have had to develop a step-indexed Kripke logical
relation with state transition systems (STS’s) that allows us to reason about how an affinely-treated function
may have been used.

A translation is said to be fully abstract if two source components cannot be distinguished by any source
context if and only if their translations cannot be distinguished by any target context. In recent work, Ahmed
and Blume [1] showed how to prove full abstraction of a CPS translation from STLC to System F using purely
operational techniques that have the promise to scale well to realistic languages and compilers. The key to
their full abstraction result is their CPS type translation which leverages answer-type polymorphism to ensure
that a target-level computation (which is assigned a type of the form ∀α.(τ → α) → α) can only produce an
answer by invoking its continuation. An important feature of their proof technique is the use of a multi-language
semantics that formalizes interoperability between the source and target language of the CPS transform. The
essence of why their multi-language approach works for CPS is due to an isomorphism between the types τ
and ∀α.(τ → α) → α—the same isomorphism as presented in Wadler [5]. This isomorphism requires that the
parametric condition k (v [τ ′] f) = v [τk] (k ◦ f) hold, where k : τ ′ → τk, v : ∀α.(τ → α)→ α, and f : τ → τ ′.

As Wadler noted, the parametric condition does not hold in the presence of effects such as non-termination.
The intuition for the latter is as follows: Let v be a function that calls its argument multiple times, v =
λ[α](g : int → α).(g 0); (g 1); (g 2). If we set f to the identity function, then v [int] id will evaluate to the
value 2. Now imagine k is a function that diverges when its input is 0 and otherwise behaves like identity,
k = λ(x : int).if0 x then Ω else x. On the left side of the parametric condition, k will be applied to 2, evaluating
to 2. However, on the right side, v will apply k ◦ id to the values 0, 1, and 2, resulting in divergence from the
first application of k ◦ id .

The failure of the parametric condition in an effectful setting is related to why the use of answer-type
polymorphism alone does not yield a fully abstract CPS translation. Informally, a computation of type ∀α.(τ →
α) → α may invoke its continuation multiple times which, in the presence of effects, may result in target-level
observations that are not possible in the source language (since source computations must use their continuation
exactly once). Thus, for fully abstract CPS translation of a language with effects one must use a type translation
that can ensure that target-level computations use their continuations linearly [2].

We consider fully abstract CPS translation for a language with recursive types. To scale the Ahmed-Blume
technique to a language with effects, we need more than just linearly-used continuations: we also need answer-
type polymorphism to achieve interoperability between the source and target of CPS. This time, however,
we leverage an isomorphism between the types τ and ∀α.(τ → α) (α, where the latter makes use of affine
functions (() to ensure that the continuation cannot be invoked more than once. Adapting the CPS translation
to affinely-treat continuations eliminates the problematic v we used above from the range of the translation,
leaving us to formally prove that the parametric condition holds when v : ∀α.(τ → α) (α. The standard
approach for proving such free theorems in an operational manner is to define a step-indexed binary logical
relation and use it to show that k (v [τ ′] f) is observably equivalent to v [τk] (k ◦ f). This is problematic
in the presence of affinity: logical relations are built by assigning semantic meanings to types, but what are
the semantics of affinely-treated terms at a given type? At base types, the semantics of affinely-treated terms
should be no different than that of their unrestricted counterparts. However, affinely-treated functions seem to
require a different semantics than their unrestricted counterparts: the semantics should reflect the fact that the

1

former will not be applied more than once—that is, there exists a unique input value to which an affinely-treated
function will be applied. This treatment has precedent in substructural denotational models [4] where, unlike
unrestricted functions of the same type, affinely-treated functions need only be defined for one unique input
value. The traditional semantic interpretation of an unrestricted function type in a logical relation is hence an
over-generalization of an affinely-treated function type because it parameterizes over all possible inputs to the
function, whereas affinely-treated functions should only require a definition for one input value.

Available

Consumed
Consistent

Consumed
Inconsistent

v ≠ a1 v
v = a1 v

Figure 1: STS for id resource

To make this concrete, consider trying to prove the parametric condition
using a logical relation that treats affinely-treated functions of type τ → τ ′ in
the same way as unrestricted functions of that type. Specifically, let us try to
prove one direction of the above equivalence, that k (v [τ ′] id) - v [τk] k : τk,
where for simplicity we’ve let f = id . To do so, we assume the left side ter-
minates and are required to show that the right side does as well. Leveraging
the fundamental property of logical relations, which states that a well-typed
term is logically related to itself, we get that v - v : ∀α.(τ → α) (α. This
leaves us to show, after eschewing polymorphic-related intricacies, that the
left argument to v approximates the right argument, that is, id - k : τ → α.
We hence assume that id v1 ⇓∗, for an arbitrary v1 and v2 such that
v1 - v2 : τ , and must show that k v2 terminates. This is not provable
since we only know that k va ⇓∗ where v [τ ′] id ⇓∗ va, which gives us no
insight into the behavior of (k v2) when v1 6= va. To remedy this, the se-
mantic interpretation of functions that are affine resources must be able to
work with a constrained set of possible input values. Intuitively, this change
would allow us to select the set of inputs that must be considered when
proving id - k : τ → α to be all v1 - v2 : τ such that v1 = va.

To prove the parametric condition when v : ∀α.(τ → α) (α, we have developed a step-indexed Kripke
logical relation that borrows many ideas from existing Kripke models of mutable references [3]. In our logical
relation, applying an affine function (of type τ (τ ′) generates a new resource for which we create a fresh island
in the world. Each island contains a state-transition system (STS) that tracks the availability and usage of its
affine resource.1 These STS’s allow us to track whether an affinely-treated function is Available or has been
Consumed; depending on the input to the function, the STS is moved to a Consumed-Consistent or Consumed-
Inconsistent state. The Consistent/Inconsistent states are essentially a device that allows us to do classical
reasoning: either id and k were applied to the “good” inputs (i.e., inputs v1 - v2 : τ where v1 = va) putting us
in a Consistent state in which we can complete the proof; or they were applied to “bad” inputs (i.e., v1 - v2 : τ
where v1 6= va) in which case we will be able to prove a contradiction. To prove this contradiction in the case
of our free theorem, we must also make use of the ability to pick a relation for α. Thus, the semantics of
polymorphism, affine functions, and affinely-treated intuitionistic functions must all be leveraged in the proof of
the parametric condition. Figure 1 depicts the STS we use for the id resource in our proof of the above example.
We note that the creation of new resources in the world does not have an operational counterpart—it is akin to
ghost state. Our logical relation uses biorthogonality (>>) to ensure completeness with respect to contextual
equivalence. Using >> in the presence of substructural types was subtle and as far as we know, this is the first
logical relation for a substructural type system to make use of >>. This is currently work in progress.

References
[1] A. Ahmed and M. Blume. An equivalence-preserving CPS translation via multi-language semantics. In International

Conference on Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept. 2011.

[2] J. Berdine, P. O’Hearn, U. Reddy, and H. Thielecke. Linear continuation-passing. Higher Order Symbol. Comput.,
15(2-3):181–208, 2002.

[3] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects on local relational reasoning.
Journal of Functional Programming, 22(4&5):477–528, 2012.

[4] J. Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge University Press, New York, NY, USA, 1989.

[5] P. Wadler. Theorems for free! In ACM Symposium on Functional Programming Languages and Computer Architecture
(FPCA), Sept. 1989.

1The STS is uninteresting when the argument of the affine function is of base type; this corresponds to the observation that
there should be no difference between affinely-treated terms and unrestricted terms of base type.

2

