An Introduction to Monads

Phillip Mates

March 6, 2012

1/20

Why Monads?

In a purely functional language:

>

How do you encode actions with side-effects, such as reading
and writing files?

Is there an elegant way to pass around program state without
explicitly threading it in and out of every function?

How do you code up doubly nested for-loops?

What about: Continuation passing style, Writing logs,
Memory transactions. ..

20

What are Monads?

They're a very general abstraction idea that can be thought of as:

» containers that wrap values and are composable

v

the inverse of pointers

v

an abstraction for modeling sequential actions

20

Error handling with Maybe

data Maybe a = Nothing
| Just a

lookup :: a -> [(a, b)] -> Maybe Db

animalFriends :: [(String, String)]
animalFriends = [("Pony", "Lion")
, ("Lion", "Manticore")
("Unicorn", "Lepricon")]

/ 20

-— Does Pony’s friend have a friend in animalMap?
animalFriendLookup :: [(String, String)] -> Maybe String
animalFriendLookup animalMap =
case lookup "Pony" animalMap of
Nothing -> Nothing
Just ponyFriend ->
case lookup ponyFriend animalMap of
Nothing -> Nothing
Just ponyFriendFriend ->
case lookup ponyFriendFriend animalMap of
Nothing -> Nothing
Just friend -> Just friend

Monads are comprised of two functions

-— Bind
>>=) ::ma->(a->mb) —>nmb

-— Inject walue into a container
return :: a ->m a

20

Maybe Monad

-— (>>=) ::ma->(a->mb) >mbd
Just x >>=k = k x

Nothing >>= _ = Nothing

-— return :: a —-> ma

return x = Just x

Using Maybe as a Monad

monadicFriendLookup :: [(String, String)] -> Maybe String
monadicFriendLookup animalMap =
lookup "Pony" animalMap
>>= (\ponyFriend -> lookup ponyFriend animalMap
>>= (\pony2ndFriend -> lookup pony2ndFriend animalMap
>>= (\friend -> Just friend)))

Using Maybe as a Monad

-— or even better:
sugaryFriendLookup :: [(String, String)] -> Maybe String
sugaryFriendLookup animalMap = do
ponyFriend <- lookup "Pony" animalMap
ponyFriend’ <- lookup ponyFriend animalMap
ponyFriend’’ <- lookup ponyFriend’ animalMap
return friend

Threading program state

type Sexpr = String

-- naive generation of unique symbol

transformStmt :: Sexpr -> Int -> (Sexpr, Int)
transformStmt expr counter = (newExpr, counter+1)
where newExpr = "(define " ++ var ++ " " ++ expr ++ ")"

var = "tmpVar" ++ (show counter)

10/20

Generalizing the threading of state

Let's drop

Int -> (Sexpr, Int)

from

transformStmt :: Sexpr -> Int -> (Sexpr, Int)

and replace it with a more general type constructor:

11/20

Generalizing the threading of state

Let's drop

Int -> (Sexpr, Int)

from

transformStmt :: Sexpr -> Int -> (Sexpr, Int)

and replace it with a more general type constructor:

newtype State s a = State {
runState :: s —> (a, s)

3

transformStmt :: Sexpr -> State Int Sexpr

12/20

State Monad

-- return :: a -> State s a
return a = State (\s —> (a, s))

—— (>>=) :: State s a -> (a —> State s b) —-> State s b
m >>= k = State (\s -> let (a, s’) = runState m s
in runState (k a) s’)

13/20

State Monad Example

14 /20

What can be a Monad?

Type constructors with an arity of one, for instance:

-- this can’t because it has arity 2:
ghci> :kind State
* => ok => %

-— but these have arity 1:
ghci> :kind (State Int)
* > %

ghci> :kind []
* => %

15/20

Deriving the list monad

ghci> :type (>>=)
(>>=) :: (Monad m) =>ma -> (a->mb) ->mb

ghci> :type map
map :: (a -> b) -> [a] -> [b]

ghci> :type flip map
flip map :: [a] -> (a -> b) —> [b]

ghci> :type concat
concat :: [[al] -> [a]

16 /20

The List monad models non-determinism

[x]

concat (map f xs)

return x
xs >>= f

17 /20

The List monad models non-determinism

[x]

concat (map f xs)

return X
xs >>= f

-— monadic powerset
ghci> powerset = [1,2]

>>= (\i -> [1..4]

>>= (\j —> [E, 1)
[(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)]

18 /20

Desugaring do Blocks

do x <- foo === foo >>= (\x -> bar)
bar
do actil === actl >> act2

act?2

19/20

Further Topics & Reading

» Monad Transformers
» “Real World Haskell" by O'Sullivan, Stewart, and Goerzen

» Corresponding blog post:
quined.net/articles/monads.html

20/20

quined.net/articles/monads.html

