
An Introduction to Monads

Phillip Mates

March 6, 2012

1 / 20

Why Monads?

In a purely functional language:

I How do you encode actions with side-effects, such as reading
and writing files?

I Is there an elegant way to pass around program state without
explicitly threading it in and out of every function?

I How do you code up doubly nested for-loops?

I What about: Continuation passing style, Writing logs,
Memory transactions. . .

2 / 20

What are Monads?

They’re a very general abstraction idea that can be thought of as:

I containers that wrap values and are composable

I the inverse of pointers

I an abstraction for modeling sequential actions

I . . .

3 / 20

Error handling with Maybe

data Maybe a = Nothing

| Just a

lookup :: a -> [(a, b)] -> Maybe b

animalFriends :: [(String, String)]

animalFriends = [("Pony", "Lion")

, ("Lion", "Manticore")

, ("Unicorn", "Lepricon")]

4 / 20

-- Does Pony’s friend have a friend in animalMap?

animalFriendLookup :: [(String, String)] -> Maybe String

animalFriendLookup animalMap =

case lookup "Pony" animalMap of

Nothing -> Nothing

Just ponyFriend ->

case lookup ponyFriend animalMap of

Nothing -> Nothing

Just ponyFriendFriend ->

case lookup ponyFriendFriend animalMap of

Nothing -> Nothing

Just friend -> Just friend

5 / 20

Monads are comprised of two functions

-- Bind

(>>=) :: m a -> (a -> m b) -> m b

-- Inject value into a container

return :: a -> m a

6 / 20

Maybe Monad

-- (>>=) :: m a -> (a -> m b) -> m b

Just x >>= k = k x

Nothing >>= _ = Nothing

-- return :: a -> m a

return x = Just x

7 / 20

Using Maybe as a Monad

monadicFriendLookup :: [(String, String)] -> Maybe String

monadicFriendLookup animalMap =

lookup "Pony" animalMap

>>= (\ponyFriend -> lookup ponyFriend animalMap

>>= (\pony2ndFriend -> lookup pony2ndFriend animalMap

>>= (\friend -> Just friend)))

8 / 20

Using Maybe as a Monad

-- or even better:

sugaryFriendLookup :: [(String, String)] -> Maybe String

sugaryFriendLookup animalMap = do

ponyFriend <- lookup "Pony" animalMap

ponyFriend’ <- lookup ponyFriend animalMap

ponyFriend’’ <- lookup ponyFriend’ animalMap

return friend

9 / 20

Threading program state

type Sexpr = String

-- naive generation of unique symbol

transformStmt :: Sexpr -> Int -> (Sexpr, Int)

transformStmt expr counter = (newExpr, counter+1)

where newExpr = "(define " ++ var ++ " " ++ expr ++ ")"

var = "tmpVar" ++ (show counter)

10 / 20

Generalizing the threading of state

Let’s drop

Int -> (Sexpr, Int)

from
transformStmt :: Sexpr -> Int -> (Sexpr, Int)

and replace it with a more general type constructor:

newtype State s a = State {

runState :: s -> (a, s)

}

transformStmt :: Sexpr -> State Int Sexpr

11 / 20

Generalizing the threading of state

Let’s drop

Int -> (Sexpr, Int)

from
transformStmt :: Sexpr -> Int -> (Sexpr, Int)

and replace it with a more general type constructor:

newtype State s a = State {

runState :: s -> (a, s)

}

transformStmt :: Sexpr -> State Int Sexpr

12 / 20

State Monad

-- return :: a -> State s a

return a = State (\s -> (a, s))

-- (>>=) :: State s a -> (a -> State s b) -> State s b

m >>= k = State (\s -> let (a, s’) = runState m s

in runState (k a) s’)

13 / 20

State Monad Example

14 / 20

What can be a Monad?

Type constructors with an arity of one, for instance:

-- this can’t because it has arity 2:

ghci> :kind State

* -> * -> *

-- but these have arity 1:

ghci> :kind (State Int)

* -> *

ghci> :kind []

* -> *

15 / 20

Deriving the list monad

ghci> :type (>>=)

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

ghci> :type map

map :: (a -> b) -> [a] -> [b]

ghci> :type flip map

flip map :: [a] -> (a -> b) -> [b]

ghci> :type concat

concat :: [[a]] -> [a]

16 / 20

The List monad models non-determinism

return x = [x]

xs >>= f = concat (map f xs)

-- monadic powerset

ghci> powerset = [1,2]

>>= (\i -> [1..4]

>>= (\j -> [(i, j)]))

[(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)]

17 / 20

The List monad models non-determinism

return x = [x]

xs >>= f = concat (map f xs)

-- monadic powerset

ghci> powerset = [1,2]

>>= (\i -> [1..4]

>>= (\j -> [(i, j)]))

[(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)]

18 / 20

Desugaring do Blocks

do x <- foo === foo >>= (\x -> bar)

bar

do act1 === act1 >> act2

act2

19 / 20

Further Topics & Reading

I Monad Transformers

I “Real World Haskell” by O’Sullivan, Stewart, and Goerzen

I Corresponding blog post:
quined.net/articles/monads.html

20 / 20

quined.net/articles/monads.html

