CS 6140: Machine Learning
Spring 2017

Instructor: Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang
Email: luwang@ccs.neu.edu

Logistics
• Proposal grades and comments are available on blackboard.
 – Pick up during TA office hours
• Assignment 1 is due next week.
 – No need to print the code. Just submit it on Blackboard.
• Quiz solution will be posted.

What we learned last time
• Perceptron (and kernels)
• Support Vector Machines

Perceptron
• Weighted combination
 – The output of the neuron is a linear combination of the inputs
• Decision Function
 – At the end the results are combined into

$$f(x) = \sigma \left(\sum_{i=1}^{n} w_i x_i + b \right)$$

Perceptron Algorithm
• Nothing happens if we classify \((x_i, y_i)\) correctly
• If we see incorrectly classified observation we update \(w\) and \(b\)
• Positive reinforcement of observations

```plaintext
argument: \(X := \{x_1, \ldots, x_n\} \subset \mathcal{X}\) (data)
         \(Y := \{y_1, \ldots, y_n\} \subset \{\pm 1\}\) (labels)
function: \((w, b) = \text{Perceptron}(X, Y)\)
initialize \(w, b = 0\)
repeat
  Pick \((x, y)\) from data
  if \(y(w \cdot x + b) \leq 0\) then
    \(w' := w + y x\)
    \(b' := b + y\)
  end
until \(y(w \cdot x_i + b) > 0\) for all \(i\)
```
Perceptron Algorithm

- About the solution
 - Classification can be written in terms of dot products:
 \[w \cdot x + b = \sum_{i \in E} y_i x_i \cdot x + b \]
 - Argument: \(X := \{x_1, \ldots, x_n\} \subseteq \mathcal{X} \) (data)
 - \(Y := \{y_1, \ldots, y_n\} \subseteq \{-1, 1\} \) (labels)
 - Function \((w, b) = \text{Perceptron}(X, Y)\)
 - Initialize \(w, b = 0 \)
 - Repeat
 - Pick \((x, y)\) from data
 - If \(y(w \cdot x_i + b) \leq 0 \) then
 \[w' = w + y x_i \]
 \[b' = b + y \]
 - Until \(y(w \cdot x_i + b) > 0 \) for all \(i \)

Perceptron on Features

- Argument: \(X := \{x_1, \ldots, x_n\} \subseteq \mathcal{X} \) (data)
- \(Y := \{y_1, \ldots, y_n\} \subseteq \{-1, 1\} \) (labels)
- Function \((w, b) = \text{Perceptron}(X, Y)\)
- Initialize \(w, b = 0 \)
- Repeat
 - Pick \((x, y)\) from data
 - If \(y(w \cdot \Phi(x) + b) \leq 0 \) then
 \[w' = w + y \Phi(x) \]
 \[b' = b + y \]
 - Until \(y(w \cdot \Phi(x) + b) > 0 \) for all \(i \)
- Important detail
 - \(w = \sum y_i \Phi(x_i) \) and hence \(f(x) = \sum y_i \Phi(x_i) \cdot \Phi(x) + b \)

Kernels

- Definition
- A kernel function \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) is a symmetric function in its arguments for which the following property holds
 \[k(x, x') = \langle \Phi(x), \Phi(x') \rangle \] for some feature map \(\Phi \)

Support Vector Machine (SVM)

- SVMs (Vapnik, 1990’s) choose the linear separator with the largest margin.

Support vector machines

- Minimize \(w, b \) \[w \cdot x_j + b \geq 1, \forall j \]
- Example of a convex optimization problem
 - A quadratic program
 - Polynomial-time algorithms to solve
 - Hyperplane defined by support vectors
 - Could use them as a lower-dimension basis to write down the line, although we haven’t seen how yet

- Non-support vectors:
 - Everything else
 - Moving them will not change \(w \)
- Support vectors:
 - Data points on the canonical lines

- More on these later
Allowing for slack: “Soft margin SVM”

\[
\begin{align*}
\minimize_{\mathbf{w}, b} & \quad \mathbf{w} \cdot \mathbf{w} + C \sum_{j} \xi_j \\
\text{subject to} & \quad (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j, \quad \forall j, \xi_j \geq 0
\end{align*}
\]

Slack penalty \(C > 0 \):
- \(C \to \infty \) → have to separate the data!
- \(C \to 0 \) → ignores the data entirely!
- Select using validation data

For each data point:
- If margin \(\geq 1 \), don’t care
- If margin < 1, pay linear penalty

Dual for the non-separable case

Primal:
\[
\begin{align*}
\minimize_{\mathbf{w}, b} & \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_{j} \xi_j \\
\text{subject to} & \quad (\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j, \quad \forall j, \xi_j \geq 0, \quad \forall j
\end{align*}
\]

Solve for \(\mathbf{w}, b, \alpha \):
\[
\begin{align*}
\mathbf{w} &= \sum_{i} \alpha_i y_i \mathbf{x}_i \\
b &= y_k - \mathbf{w} \cdot \mathbf{x}_k
\end{align*}
\]

for any \(k \) where \(C > \alpha_k > 0 \)

Dual:
\[
\begin{align*}
\maximize_{\alpha} & \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j \\
\text{subject to} & \quad \sum_{i} \alpha_i y_i = 0 \\
& \quad C \geq \alpha_i \geq 0
\end{align*}
\]

Today’s Outline

• Feedforward neural network
• Training neural networks
• Restricted Boltzmann machine

Some slides are borrowed from Hugo Larochelle.
Activation Function

Sigmoid Activation Function
- Squashes the neuron's pre-activation between 0 and 1
- Always positive
- Bounded
- Strictly increasing

\[g(a) = \text{sign}(a) = \frac{1}{1 + e^{-a}} \]

Hyperbolic Tangent ("Tanh") Activation Function
- Squashes the neuron's pre-activation between -1 and 1
- Can be positive or negative
- Bounded
- Strictly increasing

\[g(a) = \tanh(a) = \frac{e^{a} - e^{-a}}{e^{a} + e^{-a}} \]

\[\frac{e^{a} - e^{-a}}{e^{a} + e^{-a}} \]

Rectified Linear Activation Function
- Bounded below by 0
 - Always non-negative
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities

\[g(a) = \text{relu}(a) = \max(0, a) \]

Class Neuron

```python
class Neuron(object):
    def forward(self, inputs):
        # Assume inputs and weights are 1-D numpy arrays and bias is a number
        cell_body_plus = np.dot(inputs * self.weights + self.bias
        firing_rate = 1.0 / (1.0 + math.exp(-cell_body_plus)) * self.sigmoid_activation_function
        return firing_rate
```

Artificial Neuron

Capacity Decision Boundary of Neuron
- Could do binary classification:
 - Sigmoid can interpret neuron as outputting \(p(y = 1|x) \)
 - Also known as logistic regression classifier
 - If greater than 0.5, predict class 1
 - Otherwise, predict class 0

Capacity of Single Neuron
- Can solve linearly separable problems

- OR \((x_1, x_2)\)
- AND \((x_1, x_2)\)
- AND \((x_1, x_2)\)
ARTIFICIAL NEURON

Topics: capacity of single neuron
- Can’t solve non-linearly separable problems...

XOR (x₁, x₂)

AND (x₁, x₂)

□ unless the input is transformed in a better representation

NEURAL NETWORK

Topics: single hidden layer neural network
- Hidden layer pre-activation:
 \[a^{(2)} = b^{(2)} + W^{(2)} x \]
- Hidden layer activation:
 \[h^{(2)} = g(a^{(2)}) \]
- Output layer activation:
 \[f(x) = a^{(2)} + b^{(3)} = \sum_{i} b^{(3)} + \sum_{i} w^{(3)} h^{(2)}(x_i) \]

NEURAL NETWORK

Topics: softmax activation function
- For multi-class classification:
 - we need multiple outputs (1 output per class)
 - we would like to estimate the conditional probability \(p(y = c|x) \)
- We use the softmax activation function at the output:
 \[o(a) = \text{softmax}(a) = \left[\frac{\exp(a_1)}{\sum \exp(a_k)}, \ldots, \frac{\exp(a_n)}{\sum \exp(a_k)} \right] \]
 - strictly positive
 - sums to one
- Predicted class is the one with highest estimated probability

NEURAL NETWORK

Topics: single hidden layer neural network
- Hidden layer pre-activation:
 \[a^{(2)} = b^{(2)} + W^{(2)} x \]
- Hidden layer activation:
 \[h^{(2)} = g(a^{(2)}) \]
- Output layer activation:
 \[f(x) = a^{(2)} + b^{(3)} = \sum_{i} b^{(3)} + \sum_{i} w^{(3)} h^{(2)}(x_i) \]

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network
CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

![Diagram](from Neural Networks slides)

CAPACITY OF NEURAL NETWORK

Topics: universal approximation

- Universal approximation theorem (Cybenko, 1989)
 - A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units
- The result applies for sigmoid, tanh, and many other hidden layer activation functions
- This is a good result, but it doesn’t mean there is a learning algorithm that can find the necessary parameter values

![Graphs](3 hidden neurons, 6 hidden neurons, 20 hidden neurons)

NEURAL NETWORK

Topics: parallel with the visual cortex

![Diagram](from Sagi & Thurmer)
NEURAL NETWORK

Topics: parallel with the visual cortex

- [Image from S. Thorpe]

NEURAL NETWORK

Topics: parallel with the visual cortex

- [Image from S. Thorpe]

NEURAL NETWORK

Topics: parallel with the visual cortex

- [Image from S. Thorpe]

BIOLOGICAL NEURONS

Topics: synapse, axon, dendrite

- We estimate around 10^{10} and 10^{11} the number of neurons in the human brain:
 - they receive information from other neurons through their dendrites
 - the "process" the information in their cell body (soma)
 - they send information through a "cable" called an axon
 - the point of connection between the axon branches and other neurons' dendrites are called synapses

- [Image from S. Thorpe]
How to train a neural network?

The Learning Algorithm

Empirical Risk Minimization

Loss Function
The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - Initialize θ ($\theta = [W^{(1)}, b^{(1)}, \ldots, W^{(L-1)}, b^{(L-1)}]$)
 - For N iterations
 - For each training example $(x^{(i)}, y^{(i)})$
 - $\Delta = -\nabla_{\theta} f(x^{(i)}; \theta, y^{(i)}) - \lambda \nabla_{\theta} g(\theta)$
 - $\theta = \theta - \alpha \Delta$
 - To apply this algorithm to neural network training, we need:
 - The loss function $f(f(x^{(i)}; \theta), y^{(i)})$
 - A procedure to compute the parameter gradients $\nabla_{\theta} f(f(x^{(i)}; \theta), y^{(i)})$
 - The regularizer $g(\theta)$ (and the gradient $\nabla_{\theta} g(\theta)$)
 - Initialization method

Gradient Computation

- **Output layer gradient** (o)
- **Hidden layer gradient** (h)
- **Activation function gradient** (a)
- **Parameter gradient** (W, b)

Topics:

- **Gradient Computation**
 - Partial derivative:
 - $\frac{\partial}{\partial f(x_y)} \log f(x)_y = \frac{-1}{f(x)_y}$
 - Gradient:
 - $\nabla_{f(x)_y} \log f(x)_y = \frac{-1}{f(x)_y} \begin{bmatrix} I_{(y=0)} \\ I_{(y=C-1)} \end{bmatrix}$
 - $= \frac{-e(y)}{f(x)_y}$
 - $\frac{\partial}{\partial \theta(L+1)(x)_y} \log f(x)_y$
Gradient Computation

- Output layer gradient (o)
- Hidden layer gradient (h)
- Activation function gradient (a)
- Parameter gradient (W, b)
Gradient Computation

- Output layer gradient (o)
- Hidden layer gradient (h)
- Activation function gradient (a)
- Parameter gradient (W, b)
Gradient Computation

- Output layer gradient (o)
- Hidden layer gradient (h)
- Activation function gradient (a)
- Parameter gradient (W, b)
BACKPROPAGATION

Topics: backpropagation algorithm
- This assumes a forward propagation has been made before
 - compute output gradient (before activation)
 \(\nabla_{w_{21:1}} \log f(x) \leftarrow \nabla_{w_{21:1}} \log f(x) \leftarrow \nabla_{w_{21:1}} \log f(x) \)
 - for \(k \) from 0 to 1
 - compute gradients of hidden layer parameters
 \(\nabla_{w_{k-1:1}} \log f(x) \leftarrow \nabla_{w_{k-1:1}} \log f(x) \leftarrow \nabla_{w_{k-1:1}} \log f(x) \)
 - compute gradient of hidden layer before
 \(\nabla_{w_{k-1:1}} \log f(x) \leftarrow \nabla_{w_{k-1:1}} \log f(x) \leftarrow \nabla_{w_{k-1:1}} \log f(x) \)
 - compute gradient of hidden layer before (before activation)
 \(\nabla_{w_{k-1:1}} \log f(x) \leftarrow \nabla_{w_{k-1:1}} \log f(x) \leftarrow \nabla_{w_{k-1:1}} \log f(x) \)

The Learning Algorithm

Topics: stochastic gradient descent (SGD)
- Algorithm that performs updates after each example
 - initialize \(\theta = \{ W^{(0)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)} \} \)
 - for \(N \) iterations
 - for each training example \((x^{(i)}, y^{(i)}) \)
 \(\Delta = -\nabla_{\theta} J(x^{(i)}; \theta; y^{(i)}) - \lambda \nabla_{\theta} J(\theta) \)
 - \(\theta \leftarrow \theta + \alpha \Delta \)
- To apply this algorithm to neural network training, we need
 - the loss function \(J(f(x^{(i)}; \theta), y^{(i)}) \)
 - a procedure to compute the parameter gradients \(\nabla_{\theta} J(x^{(i)}; \theta; y^{(i)}) \)
 - a regularizer \(\Omega(\theta) \)
 - an initialization method

REGULARIZATION

Topics: L2 regularization
- \(\Omega(\theta) = \sum_k \sum_i \sum_j (w_{ij}^{(k)})^2 = \sum_k ||W^{(k)}||_2^2 \)
- \(\nabla_{W_{ij}^{(k)}} \Omega(\theta) = 2w_{ij}^{(k)} \)
- Only applied on weights, not on biases (weight decay)
- Can be interpreted as having a Gaussian prior over the weights

REGULARIZATION

Topics: L1 regularization
- \(\Omega(\theta) = \sum_k \sum_i \sum_j |w_{ij}^{(k)}| \)
- Gradient: \(\nabla_{w_{ij}^{(k)}} \Omega(\theta) = \text{sign}(w_{ij}^{(k)}) \)
- Also only applied on weights
- Unlike L2, L1 will push certain weights to be exactly 0
- Can be interpreted as having a Laplacian prior over the weights
Empirical Risk Minimization

Topics: empirical risk minimization, regularization

- **Empirical risk minimization**
 - framework to design learning algorithms

 \[
 \arg\min_{\theta} \frac{1}{n} \sum_{i} l(f(x^{(i)}; \theta), y^{(i)}) + \lambda \Omega(\theta)
 \]

 - \(l(f(x^{(i)}; \theta), y^{(i)})\) is a loss function
 - \(\Omega(\theta)\) is a regularizer (penalizes certain values of \(\theta\))
 - Learning is cast as optimization
 - ideally, we'd optimize classification error but it's not smooth
 - loss function is a surrogate for what we truly should optimize (e.g., upper bound)

The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initializes \(\theta\) (\(\theta \equiv \{W^{(1)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)}\}\))
 - for \(N\) iterations:
 - for each training example \((x^{(i)}, y^{(i)})\)
 - \(\Delta = -\nabla_{\theta} l(f(x^{(i)}; \theta), y^{(i)}) - \lambda \nabla_{\theta} \Omega(\theta)\)
 - \(\theta = \theta + \alpha \Delta\)
 - training epoch
 - To apply this algorithm to neural network training, we need:
 - the loss function \(l(f(x^{(i)}; \theta), y^{(i)})\)
 - a procedure to compute the parameter gradients \(\nabla_{\theta} l(f(x^{(i)}; \theta), y^{(i)})\)
 - the regularizer \(\Omega(\theta)\) (and the gradient \(\nabla_{\theta} \Omega(\theta)\))
 - initialization method

Toolkits

- **TensorFlow**
 - https://www.tensorflow.org/
 - Python and C++

- **Theano**
 - http://deeplearning.net/software/theano/
 - Python

- **Torch**
 - http://torch.ch/
 - LuaJIT
Unsupervised Learning with Neural Networks

• Unsupervised learning: only use the inputs for learning
 – automatically extract meaningful features for your data
 – leverage the availability of unlabeled data
 – add a data-dependent regularizer to training

\(-\log p(x^{(t)}) \)

Unsupervised Learning with Neural Networks

• Restricted Boltzmann machines

Restrict Boltzmann Machine

Topics: RBM, visible layer, hidden layer, energy function

\[
E(x, h) = -h^T W x - e^T x - h^T h + \sum_{i} x_i h_i - \sum_{i} y_i h_j
\]

\[p(x, h) = \exp(-E(x, h))/Z \]

Example of Data Set: MNIST

Filters

Restricted Boltzmann Machine

Topics: RBM, visible layer, hidden layer, energy function

\[
E(x, h) = -h^T W x - e^T x - h^T h + \sum_{i} x_i h_i - \sum_{i} y_i h_j
\]

\[p(x, h) = \exp(-E(x, h))/Z \]
Inference

- Conditional distributions: \(P(h|x), P(x|h) \)
- Sample distribution: \(P(x) \)

\[
p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')}
\]

\[
p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')}
= \frac{\exp(h^T W x + e^T x + b^T h)/Z}{\sum_{h' \in \{0,1\}^n} \exp(h'^T W x + e^T x + b^T h')/Z}
= \frac{\prod_{i \in \text{row of } W} \exp(h_i^T W x + e^T x + b^T h)/Z}{\sum_{h' \in \{0,1\}^n} \prod_{i \in \text{row of } W} \exp(h'^T W x + e^T x + b^T h')/Z}
\]
\[p(h|x) = \frac{p(x, h)}{\sum_h p(x, h)} = \frac{\exp(h^T W x + e^T x + b h)}{\sum_{h' \in \{0,1\}^d} \exp(h'^T W x + e^T x + b h')} \]

\[= \frac{\sum_{h \in \{0,1\}^d} \exp(h^T W x + e^T x + b h)}{\sum_{h' \in \{0,1\}^d} \exp(h'^T W x + e^T x + b h')} \]

\[= \frac{\sum_{h \in \{0,1\}^d} \exp(h^T W x + b h)}{\sum_{h' \in \{0,1\}^d} \exp(h'^T W x + b h')} \]

\[= \prod_{i \in \{0,1\}^d} \frac{\exp(h_i^T W x + b_i)}{\sum_{h' \in \{0,1\}^d} \exp(h'_i^T W x + b_i')} \]

\[p(h|x) = \frac{p(x, h)}{\sum_h p(x, h)} = \frac{\exp(h^T W x + e^T x + b h)}{\sum_{h' \in \{0,1\}^d} \exp(h'^T W x + e^T x + b h')} \]

\[= \frac{\sum_{h \in \{0,1\}^d} \exp(h^T W x + e^T x + b h)}{\sum_{h' \in \{0,1\}^d} \exp(h'^T W x + e^T x + b h')} \]

\[= \frac{\sum_{h \in \{0,1\}^d} \exp(h^T W x + b h)}{\sum_{h' \in \{0,1\}^d} \exp(h'^T W x + b h')} \]

\[= \prod_{i \in \{0,1\}^d} \frac{\exp(h_i^T W x + b_i)}{\sum_{h' \in \{0,1\}^d} \exp(h'_i^T W x + b_i')} \]

\[p(h = 1|x) = \frac{\exp(b + W x)}{1 + \exp(b + W x)} \]
Inference

- Conditional distributions: $P(h|x)$, $P(x|h)$
- Sample distribution: $P(x)$

\[
p(h_j = 1 | x) = \frac{\exp(b_j + W_{j,x})}{1 + \exp(b_j + W_{j,x})}
\]

\[
p(h_j = 1 | x) = \frac{1}{1 + \exp(-b_j - W_{j,x})}
\]

\[
p(h_j = 1 | x) = \text{sigmoid}(b_j + W_{j,x})
\]

RESTRICTED BOLTZMANN MACHINE

FREE ENERGY

Topics: RBM, visible layer, hidden layer, energy function

Energy function: $E(x, h) = -h^T W x - c^T x - b^T h$

$p(x, h) = \exp(-E(x, h))/Z$

$p(x) = \sum_{h \in \{0,1\}^v} p(x, h) = \sum_{h \in \{0,1\}^v} \frac{1}{Z} = \exp(-F(x))/Z$

$p(x) = \sum_{h \in \{0,1\}^v} \exp(h^T W x + c^T x + b^T h)/Z$

$p(x) = \exp(c^T x) \sum_{h_j \in \{0,1\}} \cdots \sum_{h_0 \in \{0,1\}} \exp \left(\sum_j h_j W_{j,x} + b_j h_j \right)/Z$
\[p(x) = \sum_{h \in [0,1]^n} \exp(h^T W x + e^T x + h^T b) / Z \]

\[= \exp(e^T x) \sum_{h \in [0,1]^n} \exp \left(\sum_{j} h_j W_{j} x + h_j b_j \right) / Z \]

\[= \exp(e^T x) \left(\sum_{h \in [0,1]^n} \exp(h_0 W_{0} x + h_0 b_0) \right) \cdots \left(\sum_{h \in [0,1]^n} \exp(h_{m} W_{m} x + h_{m} b_{m}) \right) / Z \]

\[= \exp(e^T x) \left(1 + \exp(h_0 W_{0} x + h_0 b_0) \right) \cdots \left(1 + \exp(h_{m} W_{m} x + h_{m} b_{m}) \right) / Z \]

\[= \exp(e^T x) \exp \left(\sum_{j} \log \left(1 + \exp(h_j W_{j} x + h_j b_j) \right) \right) / Z \]

\[= \exp(e^T x) \exp \left(\sum_{j} \text{softplus}(h_j W_{j} x + h_j b_j) \right) / Z \]

\[= \exp(e^T x) \exp \left(\sum \text{softplus}(h_j W_{j} x) \right) / Z \]

Restricted Boltzmann Machine

Topics: free energy

\[h_{x}(x) = \exp \left(e^T x + \sum_{j} \log \left(1 + \exp(h_j W_{j} x) \right) \right) / Z \]

\[x = \exp \left(e^T x + \sum \text{softplus}(h_j W_{j} x) \right) / Z \]
Useful Resources for Deep Learning

• Book for deep learning
 – Deep Learning
 – By Ian Goodfellow, Yoshua Bengio, and Aaron Courville
 – http://www.deeplearningbook.org/

Useful Resources for Deep Learning

• Tutorials
 – General
 – Natural language processing
 – Computer Vision
 • https://sites.google.com/site/deeplearningcvpr2014/

What we learned today

• Feedforward neural network
• Training neural networks
• Restricted Boltzmann machine

Homework

• Read Murphy CH 16.5 and CH 28.
• Read slides from Hugo Larochelle.
 – http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html