Logistics

• Proposal grades and comments are available on blackboard.
• Assignment 2 is out.
• Due on 02/25
• Start Early!
• No need to print the code. Just submit it on Blackboard.
What we learned last time

• Perceptron (and kernels)

• Support Vector Machines
Perceptron

\[f(x) = w_1 x_1 + \ldots + w_6 x_6 \]
Perceptron

• Weighted combination
 – The output of the neuron is a linear combination of the inputs

• Decision Function
 – At the end the results are combined into

\[f(x) = \sigma \left(\sum_{i=1}^{n} w_i x_i + b \right) \]
Perceptron Algorithm

• Nothing happens if we classify \((x_i, y_i)\) correctly
• If we see incorrectly classified observation we update \(w\) and \(b\)
• Positive reinforcement of observations

\[
\text{argument: } X := \{x_1, \ldots, x_m\} \subset \mathcal{X} \text{ (data)} \\
Y := \{y_1, \ldots, y_m\} \subset \{\pm 1\} \text{ (labels)} \\
\text{function } (w, b) = \text{Perceptron}(X, Y) \\
\text{initialize } w, b = 0 \\
\text{repeat} \\
\quad \text{Pick } (x_i, y_i) \text{ from data} \\
\quad \text{if } y_i(w \cdot x_i + b) \leq 0 \text{ then} \\
\quad \quad w' = w + y_i x_i \\
\quad \quad b' = b + y_i \\
\quad \text{until } y_i(w \cdot x_i + b) > 0 \text{ for all } i \\
\text{end}
\]
Perceptron Algorithm

• About the solution
 – Classification can be written in terms of dot products:

\[w \cdot x + b = \sum_{j \in E} y_j x_j \cdot x + b \]

argument: \(X := \{x_1, \ldots, x_m\} \subset X \) (data)
 \(Y := \{y_1, \ldots, y_m\} \subset \{-1, 1\} \) (labels)

function \((w, b) = \text{Perceptron}(X, Y) \)

initialize \(w, b = 0 \)
repeat
 Pick \((x_i, y_i)\) from data
 if \(y_i(w \cdot x_i + b) \leq 0 \) then
 \[w' = w + y_i x_i \]
 \[b' = b + y_i \]
 until \(y_i(w \cdot x_i + b) > 0 \) for all \(i \)
end
$x \rightarrow \varphi(x)$
Perceptron on Features

argument: \(X := \{x_1, \ldots, x_m\} \subset \mathcal{X} \) (data)
\(Y := \{y_1, \ldots, y_m\} \subset \{\pm 1\} \) (labels)

function \((w, b) = \text{Perceptron}(X, Y, \eta)\)
 initialize \(w, b = 0 \)
 repeat
 Pick \((x_i, y_i)\) from data
 if \(y_i(w \cdot \Phi(x_i) + b) \leq 0\) then
 \[w' = w + y_i\Phi(x_i) \]
 \[b' = b + y_i \]
 until \(y_i(w \cdot \Phi(x_i) + b) > 0\) for all \(i\)
 end

Important detail
\[
 w = \sum_j y_j\Phi(x_j) \text{ and hence } f(x) = \sum_j y_j(\Phi(x_j) \cdot \Phi(x)) + b
\]
Kernels

• Definition

• A kernel function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a symmetric function in its arguments for which the following property holds

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle$$ for some feature map Φ
Some choices of kernel functions

<table>
<thead>
<tr>
<th>Kernel Function</th>
<th>Kernel Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$\langle x, x' \rangle$</td>
</tr>
<tr>
<td>Laplacian RBF</td>
<td>$\exp(-\lambda | x - x' |)$</td>
</tr>
<tr>
<td>Gaussian RBF</td>
<td>$\exp(-\lambda | x - x' |^2)$</td>
</tr>
<tr>
<td>Polynomial</td>
<td>$(\langle x, x' \rangle + c)^d$, $c \geq 0$, $d \in \mathbb{N}$</td>
</tr>
</tbody>
</table>
Support Vector Machine (SVM)

• SVMs (Vapnik, 1990’s) choose the linear separator with the largest margin.
Support vector machines

\[
\text{minimize}_{w,b} \quad w \cdot w \\
(w \cdot x_j + b) y_j \geq 1, \quad \forall j
\]

- Example of a convex optimization problem
 - A quadratic program
 - Polynomial-time algorithms to solve!
- Hyperplane defined by support vectors
 - Could use them as a lower-dimension basis to write down line, although we haven’t seen how yet
- More on these later

Non-support Vectors:
- everything else
- moving them will not change \(w \)

Support Vectors:
- data points on the canonical lines
Allowing for slack: “Soft margin SVM”

\[
\begin{align*}
 \text{minimize}_{w, b} & \quad w \cdot w + C \sum_j \xi_j \\
 \left(w \cdot x_j + b \right) y_j & \geq 1 - \xi_j, \quad \forall j \quad \xi_j \geq 0
\end{align*}
\]

“slack variables”

Slack penalty $C > 0$:
- $C = \infty \rightarrow$ have to separate the data!
- $C = 0 \rightarrow$ ignores the data entirely!
- Select using validation data

For each data point:
- If margin ≥ 1, don’t care
- If margin < 1, pay linear penalty
Dual for the non-separable case

Primal:

\[
\begin{align*}
\text{minimize}_{w,b} & \quad \frac{1}{2} w \cdot w + C \sum_j \xi_j \\
(w \cdot x_j + b) y_j & \geq 1 - \xi_j, \quad \forall j \\
\xi_j & \geq 0, \quad \forall j
\end{align*}
\]

Dual:

\[
\begin{align*}
\text{maximize}_{\alpha} & \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j \\
\sum_i \alpha_i y_i & = 0 \\
C & \geq \alpha_i \geq 0
\end{align*}
\]

Solve for w,b, \alpha:

\[
\begin{align*}
w & = \sum_i \alpha_i y_i x_i \\
b & = y_k - w \cdot x_k \\
\text{for any } k \text{ where } C > \alpha_k > 0
\end{align*}
\]
Dual formulation only depends on dot-products of the features!

\[
\max_{\alpha \geq 0, \sum_j \alpha_j y_j = 0} \sum_j \alpha_j - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)
\]

First, we introduce a feature mapping:

\[
x_i x_j \rightarrow \Phi(x_i) \cdot \Phi(x_j)
\]

Next, replace the dot product with an equivalent kernel function:

\[
\maximize_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

\[
K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)
\]

\[
\sum_i \alpha_i y_i = 0
\]
Today’s Outline

• Feedforward neural network

• Training neural networks

• Restricted Boltzmann machine

Some slides are borrowed from Hugo Larochelle.
ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

- Neuron pre-activation (or input activation):
 \[a(x) = b + \sum_i w_i x_i = b + \mathbf{w}^\top \mathbf{x} \]

- Neuron (output) activation
 \[h(x) = g(a(x)) = g(b + \sum_i w_i x_i) \]

- \(\mathbf{w} \) are the connection weights
- \(b \) is the neuron bias
- \(g(\cdot) \) is called the activation function
ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

range determined by $g(\cdot)$

bias b only changes the position of the riff

(from Pascal Vincent’s slides)
Topics: linear activation function

- Performs no input squashing
- Not very interesting...

\[g(a) = a \]
Topics: sigmoid activation function

- Squashes the neuron's pre-activation between 0 and 1
- Always positive
- Bounded
- Strictly increasing

\[g(a) = \text{sigm}(a) = \frac{1}{1+\exp(-a)} \]
ACTIVATION FUNCTION

Topics: hyperbolic tangent ("tanh") activation function

- Squashes the neuron’s pre-activation between -1 and 1
- Can be positive or negative
- Bounded
- Strictly increasing

\[g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1} \]
ACTIVATION FUNCTION

Topics: rectified linear activation function

- Bounded below by 0 (always non-negative)
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities

\[g(a) = \text{reclin}(a) = \max(0, a) \]
class Neuron(object):
 # ...

 def forward(inputs):
 """ assume inputs and weights are 1-D numpy arrays and bias is a number """
 cell_body_sum = np.sum(inputs * self.weights) + self.bias
 firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
 return firing_rate
ARTIFICIAL NEURON

Topics: capacity, decision boundary of neuron

• Could do binary classification:
 ‣ with sigmoid, can interpret neuron as estimating $p(y = 1|x)$
 ‣ also known as logistic regression classifier
 ‣ if greater than 0.5, predict class 1
 ‣ otherwise, predict class 0

(similar idea can apply with tanh)
ARTIFICIAL NEURON

Topics: capacity of single neuron
• Can solve linearly separable problems
ARTIFICIAL NEURON

Topics: capacity of single neuron

- Can't solve non linearly separable problems...

- ... unless the input is transformed in a better representation
Topics: single hidden layer neural network

- Hidden layer pre-activation:
 \[a(x) = b^{(1)} + W^{(1)}x \]
 \[(a(x)_i = b^{(1)}_i + \sum_j W^{(1)}_{i,j} x_j) \]

- Hidden layer activation:
 \[h(x) = g(a(x)) \]

- Output layer activation:
 \[f(x) = o\left(b^{(2)} + w^{(2)^T}h^{(1)}x\right) \]
NEURAL NETWORK

Topics: softmax activation function

- For multi-class classification:
 - we need multiple outputs (1 output per class)
 - we would like to estimate the conditional probability $p(y = c | x)$

- We use the softmax activation function at the output:

$$o(a) = \text{softmax}(a) = \left[\frac{\exp(a_1)}{\sum_c \exp(a_c)} \cdots \frac{\exp(a_C)}{\sum_c \exp(a_c)} \right]^T$$

 - strictly positive
 - sums to one

- Predicted class is the one with highest estimated probability
Topics: multilayer neural network

• Could have L hidden layers:

 * layer pre-activation for $k > 0$: $(h^{(0)}(x) = x)$

 $a^{(k)}(x) = b^{(k)} + W^{(k)} h^{(k-1)}(x)$

 * hidden layer activation (k from 1 to L):

 $h^{(k)}(x) = g(a^{(k)}(x))$

 * output layer activation ($k = L + 1$):

 $h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$
Topics: single hidden layer neural network

- Hidden layer pre-activation:
 \[a(x) = b^{(1)} + W^{(1)}x \]
 \[(a(x)_i = b^{(1)}_i + \sum_j W^{(1)}_{i,j} x_j) \]

- Hidden layer activation:
 \[h(x) = g(a(x)) \]

- Output layer activation:
 \[f(x) = o \left(b^{(2)} + w^{(2)^T} h^{(1)} x \right) \]

![Diagram of a neural network with layers and activation functions]
CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent's slides)
CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent's slides)
CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent’s slides)
Topics: universal approximation

• Universal approximation theorem (Hornik, 1991):
 > “a single hidden layer neural network with a linear output unit can approximate
 any continuous function arbitrarily well, given enough hidden units”

• The result applies for sigmoid, tanh and many other hidden layer activation functions

• This is a good result, but it doesn’t mean there is a learning algorithm that can find the necessary parameter values!
Demonstration of two layer NN

- http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
NEURAL NETWORK

Topics: parallel with the visual cortex

[picture from Simon Thorpe]
NEURAL NETWORK

Topics: parallel with the visual cortex

[picture from Simon Thorpe]
Topics: parallel with the visual cortex

[picture from Simon Thorpe]
Topics: parallel with the visual cortex
NEURAL NETWORK

Topics: parallel with the visual cortex

[picture from Simon Thorpe]
Topics: parallel with the visual cortex

[picture from Simon Thorpe]
Topics: parallel with the visual cortex

[picture from Simon Thorpe]
BIOLOGICAL NEURONS

Topics: synapse, axon, dendrite

- We estimate around 10^{10} and 10^{11} the number of neurons in the human brain:
 - they receive information from other neurons through their dendrites
 - the “process” the information in their cell body (soma)
 - they send information through a “cable” called an axon
 - the point of connection between the axon branches and other neurons’ dendrites are called synapses
BILOGICAL NEURONS

Topics: synapse, axon, dendrite

(from Hyvärinen, Hurri and Hoyer’s book)
BIOLOGICAL NEURONS

Topics: action potential, firing rate

- An action potential is an electrical impulse that travels through the axon:
 - this is how neurons communicate
 - it generates a “spike” in the electric potential (voltage) of the axon
 - an action potential is generated at neuron only if it receives enough (over some threshold) of the “right” pattern of spikes from other neurons

- Neurons can generate several such spikes every seconds:
 - the frequency of the spikes, called firing rate, is what characterizes the activity of a neuron
 - neurons are always firing a little bit, (spontaneous firing rate), but they will fire more, given the right stimulus
BIOLOGICAL NEURONS

Topics: action potential, firing rate

• Firing rates of different input neurons combine to influence the firing rate of other neurons:
 ‣ depending on the dendrite and axon, a neuron can either work to increase (excite) or decrease (inhibit) the firing rate of another neuron

• This is what artificial neurons approximate:
 ‣ the activation corresponds to a “sort of” firing rate
 ‣ the weights between neurons model whether neurons excite or inhibit each other
 ‣ the activation function and bias model the thresholded behavior of action potentials
How to train a neural network?

Topics: multilayer neural network

- Could have L hidden layers:
 - layer input activation for $k > 0$ \(h^{(0)}(x) = x \)
 \[
 a^{(k)}(x) = b^{(k)} + W^{(k)} h^{(k-1)}(x)
 \]
 - hidden layer activation (k from 1 to L):
 \[
 h^{(k)}(x) = g(a^{(k)}(x))
 \]
 - output layer activation ($k = L + 1$):
 \[
 h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)
 \]
Empirical Risk Minimization

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms

\[
\arg \min_{\theta} \frac{1}{T} \sum_{t} l(f(x^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)
\]

- \(l(f(x^{(t)}; \theta), y^{(t)}) \) is a loss function
- \(\Omega(\theta) \) is a regularizer (penalizes certain values of \(\theta \))

- Learning is cast as optimization
 - ideally, we’d optimize classification error, but it’s not smooth
 - loss function is a surrogate for what we truly should optimize (e.g. upper bound)
The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize θ \quad ($\theta \equiv \{W^{(1)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)}\}$)
 - for N iterations
 - for each training example \quad $(x^{(t)}, y^{(t)})$
 \[\sqrt{\Delta} = -\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta) \]
 \[\sqrt{\theta} \leftarrow \theta + \alpha \Delta \]

- To apply this algorithm to neural network training, we need
 - the loss function $l(f(x^{(t)}; \theta), y^{(t)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)})$
 - the regularizer $\Omega(\theta)$ (and the gradient $\nabla_{\theta} \Omega(\theta)$)
 - initialization method
LOSS FUNCTION

Topics: loss function for classification

- Neural network estimates $f(x)_c = p(y = c | x)$
 - we could maximize the probabilities of $y^{(t)}$ given $x^{(t)}$ in the training set

- To frame as minimization, we minimize the negative log-likelihood

 $$l(f(x), y) = - \sum_c 1_{(y=c)} \log f(x)_c = - \log f(x)_y$$

 - we take the log to simplify for numerical stability and math simplicity
 - sometimes referred to as cross-entropy
The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize θ \quad ($\theta \equiv \{W^{(1)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)}\}$)
 - for N iterations
 - for each training example \quad $(x^{(t)}, y^{(t)})$
 \quad $\Delta = -\nabla_\theta l(f(x^{(t)}; \theta), y^{(t)}) - \lambda \nabla_\theta \Omega(\theta)$
 \quad $\theta \leftarrow \theta + \alpha \Delta$
 - \quad \{ training epoch \} \quad \{ iteration over all examples \}

- To apply this algorithm to neural network training, we need
 - the loss function \quad $l(f(x^{(t)}; \theta), y^{(t)})$
 - a procedure to compute the parameter gradients \quad $\nabla_\theta l(f(x^{(t)}; \theta), y^{(t)})$
 - the regularizer \quad $\Omega(\theta)$ \quad (and the gradient $\nabla_\theta \Omega(\theta)$)
 - initialization method
Gradient Computation

- Output layer gradient (o)
- Hidden layer gradient (h)
- Activation function gradient (a)
- Parameter gradient (W, b)
Gradient Computation

• Output layer gradient (o)

• Hidden layer gradient (h)

• Activation function gradient (a)

• Parameter gradient (W, b)
Topics: loss gradient at output

- Partial derivative:
 \[
 \frac{\partial}{\partial f(x)_c} - \log f(x)_y = \frac{-1_{(y=c)}}{f(x)_y}
 \]

- Gradient:
 \[
 \nabla f(x) - \log f(x)_y \\
 = -\frac{1}{f(x)_y} \begin{bmatrix}
 1_{(y=0)} \\
 \vdots \\
 1_{(y=C-1)}
\end{bmatrix} \\
 = \frac{-e(y)}{f(x)_y}
 \]
Topics: loss gradient at output pre-activation

- Partial derivative:
 \[
 \frac{\partial}{\partial a^{(L+1)}(x)_c} \log f(x)_y = -(1_{(y=c)} - f(x)_c)
 \]

- Gradient:
 \[
 \nabla a^{(L+1)}(x) \log f(x)_y = -(e(y) - f(x))
 \]
\frac{\partial}{\partial a^{(L+1)}(x)_c} - \log f(x)_y
\[
\frac{\partial}{\partial a^{(L+1)}(x)_c} - \log f(x)_y \\
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y
\]
\[
\frac{\partial}{\partial a^{(L+1)}(x)_c} - \log f(x)_y
\]
\[
= -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y
\]
\[
= -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \text{softmax}(a^{(L+1)}(x))_y
\]
\[
\frac{\partial}{\partial a^{(L+1)}(x)_c} - \log f(x)_y
\]

\[
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y
\]

\[
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \text{softmax}(a^{(L+1)}(x))_y
\]

\[
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})}
\]
\[
\frac{\partial}{\partial a^{(L+1)}(x)_c} \log f(x)_y \\
-1 \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y \\
-1 \frac{\partial}{\partial a^{(L+1)}(x)_c} \text{softmax}(a^{(L+1)}(x))_y \\
-1 \frac{\partial}{\partial a^{(L+1)}(x)_c} \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \\
-1 \frac{\partial}{\partial a^{(L+1)}(x)_c} \left(\frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \right) - \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \left(\frac{\partial}{\partial a^{(L+1)}(x)_c} \sum_{c'} \exp(a^{(L+1)}(x)_{c'}) \right) \left(\sum_{c'} \exp(a^{(L+1)}(x)_{c'}) \right)^2
\]

\[
\frac{\partial g(x)}{\partial x} \frac{h(x)}{\partial x} = \frac{\partial g(x)}{\partial x} \frac{1}{h(x)} - \frac{g(x)}{h(x)^2} \frac{\partial h(x)}{\partial x}
\]
\[
\frac{\partial}{\partial a^{(L+1)}(x)_c} \log f(x)_y \\
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y \\
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \text{softmax}(a^{(L+1)}(x))_y \\
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \\
= \frac{-1}{f(x)_y} \left(\frac{\exp(a^{(L+1)}(x)_y) - \exp(a^{(L+1)}(x)_{c'}) \left(\frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \right)}{\left(\sum_{c'} \exp(a^{(L+1)}(x)_{c'}) \right)^2} \right) \\
= \frac{-1}{f(x)_y} \left(\frac{\delta_{(y=c)} \exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} - \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \frac{\exp(a^{(L+1)}(x)_c)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \right)
\]
\[
\begin{align*}
\frac{\partial}{\partial a^{(L+1)}(x)_c} \log f(x)_y &= -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y \\
&= -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \text{softmax}(a^{(L+1)}(x))_y \\
&= -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \\
&= -\frac{1}{f(x)_y} \left(\frac{\frac{\partial}{\partial a^{(L+1)}(x)_c} \exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \right) - \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \left(\sum_{c'} \exp(a^{(L+1)}(x)_{c'}) \right)^2 \\
&= -\frac{1}{f(x)_y} \left(\frac{1_{(y=c)} \exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} - \frac{\exp(a^{(L+1)}(x)_c)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \right) \\
&= -\frac{1}{f(x)_y} \left(1_{(y=c)} \text{softmax}(a^{(L+1)}(x))_y - \text{softmax}(a^{(L+1)}(x))_y \text{softmax}(a^{(L+1)}(x))_c \right)
\end{align*}
\]
\[
\frac{\partial}{\partial a^{(L+1)}(x)_c} \log f(x)_y = -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y
\]

\[
= -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \text{softmax}(a^{(L+1)}(x))_y
\]

\[
= -\frac{1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})}
\]

\[
= -\frac{1}{f(x)_y} \left(\frac{1_\{y=c\} \exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} - \frac{\exp(a^{(L+1)}(x)_y)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \frac{\exp(a^{(L+1)}(x)_c)}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \right)
\]

\[
= -\frac{1}{f(x)_y} \left(1_\{y=c\} \text{softmax}(a^{(L+1)}(x))_y - \text{softmax}(a^{(L+1)}(x))_y \text{softmax}(a^{(L+1)}(x))_c \right)
\]

\[
= -\frac{1}{f(x)_y} \left(1_\{y=c\} f(x)_y - f(x)_y f(x)_c \right)
\]
\[
\frac{\partial}{\partial a^{(L+1)}(x)_c} \log f(x)_y - \log f(x)_y = \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} f(x)_y = \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \text{softmax} (a^{(L+1)}(x))_y \\
= \frac{-1}{f(x)_y} \frac{\partial}{\partial a^{(L+1)}(x)_c} \exp(a^{(L+1)}(x)_y) \frac{1}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} = \frac{-1}{f(x)_y} \left(\frac{\frac{\partial}{\partial a^{(L+1)}(x)_c} \exp(a^{(L+1)}(x)_y) \sum_{c'} \exp(a^{(L+1)}(x)_{c'})}{\exp(a^{(L+1)}(x)_y) \sum_{c'} \exp(a^{(L+1)}(x)_{c'})} - \frac{\exp(a^{(L+1)}(x)_y) \sum_{c'} \exp(a^{(L+1)}(x)_{c'})}{\left(\sum_{c'} \exp(a^{(L+1)}(x)_{c'}) \right)^2} \right) \\
= \frac{-1}{f(x)_y} \left(\frac{1_{(y=c)} \exp(a^{(L+1)}(x)_y) \sum_{c'} \exp(a^{(L+1)}(x)_{c'})}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} - \frac{\exp(a^{(L+1)}(x)_y) \sum_{c'} \exp(a^{(L+1)}(x)_{c'})}{\sum_{c'} \exp(a^{(L+1)}(x)_{c'})} \right) = \frac{-1}{f(x)_y} \left(1_{(y=c)} \text{softmax}(a^{(L+1)}(x))_y - \text{softmax}(a^{(L+1)}(x))_y \text{softmax}(a^{(L+1)}(x))_c \right) \\
= \frac{-1}{f(x)_y} \left(1_{(y=c)} f(x)_y - f(x)_y f(x)_c \right) = \frac{-1}{f(x)_y} \left(1_{(y=c)} - f(x)_c \right)
\]
Gradient Computation

- Output layer gradient (o)
- Hidden layer gradient (h)
- Activation function gradient (a)
- Parameter gradient (W, b)
Topics: loss gradient at hidden layer

... this is getting complicated!!
Topics: chain rule

- If a function $p(a)$ can be written as a function of intermediate results $q_i(a)$ then we have:

$$\frac{\partial p(a)}{\partial a} = \sum_i \frac{\partial p(a)}{\partial q_i(a)} \frac{\partial q_i(a)}{\partial a}$$

- We can invoke it by setting
 - a to a unit in layer
 - $q_i(a)$ to a pre-activation in the layer above
 - $p(a)$ is the loss function
Topics: loss gradient at hidden layers

- Partial derivative:

\[
\frac{\partial}{\partial h^{(k)}(x)_j} \log f(x)_y
\]

= \sum_i \frac{\partial - \log f(x)_y}{\partial a^{(k+1)}(x)_i} \frac{\partial a^{(k+1)}(x)_i}{\partial h^{(k)}(x)_j}

= \sum_i \frac{\partial - \log f(x)_y}{\partial a^{(k+1)}(x)_i} W^{(k+1)}_{i,j}

= (W^{k+1})^T (\nabla a^{k+1}(x) - \log f(x)_y)

Reminder:

\[a^{(k)}(x)_i = b^{(k)}_i + \sum_j W^{(k)}_{i,j} h^{(k-1)}(x)_j\]
Topics: loss gradient at hidden layers

- Gradient:
 \[
 \nabla h^{(k)}(x) = \log f(x)_y
 \]
 \[
 = W^{(k+1)T} \left(\nabla a^{(k+1)}(x) - \log f(x)_y \right)
 \]

REMEMBER
\[
a^{(k)}(x)_i = b^{(k)}_i + \sum_j W^{(k)}_{i,j} h^{(k-1)}(x)_j
\]
Topics: loss gradient at hidden layers pre-activation

- Partial derivative:

\[
\frac{\partial}{\partial a^{(k)}(x)_j} l(f(x), y) - \log f(x)_y = \frac{\partial}{\partial h^{(k)}(x)_j} \frac{\partial h^{(k)}(x)_j}{\partial a^{(k)}(x)_j} \frac{\partial h^{(k)}(x)_j}{\partial h^{(k)}(x)_j}
\]

\[
= \frac{\partial}{\partial h^{(k)}(x)_j} \log f(x)_y g'(a^{(k)}(x)_j)
\]

Reminder:

\[h^{(k)}(x)_j = g(a^{(k)}(x)_j)\]
Topics: loss gradient at hidden layers pre-activation

- Gradient:
 \[\nabla_{a^{(k)}(x)} \log f(x)_y = (\nabla_{h^{(k)}(x)} \log f(x)_y)^T \nabla_{a^{(k)}(x)} h^{(k)}(x) \]
 \[\nabla_{h^{(k)}(x)} \log f(x)_y \odot [\ldots, g'(a^{(k)}(x)_j), \ldots] \]

Reminder:
\[h^{(k)}(x)_j = g(a^{(k)}(x)_j) \]
Gradient Computation

• Output layer gradient (o)

• Hidden layer gradient (h)

• Activation function gradient (a)

• Parameter gradient (W, b)
ACTIVATION FUNCTION

Topics: linear activation function gradient

- Partial derivative:
 \[g'(a) = 1 \]

\[g(a) = a \]
Topics: sigmoid activation function gradient

- Partial derivative:

 \[g'(a) = g(a)(1 - g(a)) \]

- Sigmoid function:

 \[g(a) = \text{sigm}(a) = \frac{1}{1 + \exp(-a)} \]
ACTIVATION FUNCTION

Topics: tanh activation function gradient

- Partial derivative:
 \[g'(a) = 1 - g(a)^2 \]

\[
g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}
\]
Some Common Activation Functions

- $g_{\text{linear}}(z)$
- $g_{\text{logistic}}(z)$
- $g_{\text{tanh}}(z)$

Activation Function Derivatives

- $g'_{\text{linear}}(z)$
- $g'_{\text{logistic}}(z)$
- $g'_{\text{tanh}}(z)$
Gradient Computation

• Output layer gradient (o)

• Hidden layer gradient (h)

• Activation function gradient (a)

• Parameter gradient (W, b)
GRADIENT COMPUTATION

Topics: loss gradient of parameters

- Partial derivative (weights):

\[
\frac{\partial}{\partial W_{i,j}^{(k)}} - \log f(x)_y \\
= \frac{\partial}{\partial a^{(k)}(x)_i} \log f(x)_y \frac{\partial a^{(k)}(x)_i}{\partial W_{i,j}^{(k)}} \\
= \frac{\partial}{\partial a^{(k)}(x)_i} \log f(x)_y a^{(k-1)}_j(x)
\]

REMINDER

\[a^{(k)}(x)_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} a^{(k-1)}(x)_j \]
Topics: loss gradient of parameters

- Gradient (weights):
 \[\nabla_{W^{(k)}} - \log f(x)_y = (\nabla_{a^{(k)}(x)} - \log f(x)_y) \cdot h^{(k-1)}(x)^T \]

REMINDER
\[a^{(k)}(x)_i = b^{(k)}_i + \sum_j W^{(k)}_{i,j} h^{(k-1)}(x)_j \]
Topics: loss gradient of parameters

- Partial derivative (biases):

\[
\frac{\partial}{\partial b_i^{(k)}} - \log f(x)_y = \frac{\partial - \log f(x)_y}{\partial a^{(k)}(x)_i} \frac{\partial a^{(k)}(x)_i}{\partial b_i^{(k)}}
\]

\[
= \frac{\partial - \log f(x)_y}{\partial a^{(k)}(x)_i}
\]

Reminder

\[
a^{(k)}(x)_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(x)_j
\]
Topics: loss gradient of parameters

- Gradient (biases):

\[
\nabla b^{(k)} - \log f(x)_y = \nabla a^{(k)}(x) - \log f(x)_y
\]

Reminder

\[
a^{(k)}(x)_i = b^{(k)}_i + \sum_j W^{(k)}_{i,j} h^{(k-1)}(x)_j
\]
Backpropagation
Topics: flow graph

- Forward propagation can be represented as an acyclic flow graph
- It's a nice way of implementing forward propagation in a modular way
 - each box could be an object with an fprop method, that computes the value of the box given its children
 - calling the fprop method of each box in the right order yield forward propagation
forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
Topics: automatic differentiation

- Each object also has a `bprop` method
 - it computes the gradient of the loss with respect to each children
 - `fprop` depends on the `fprop` of a box’s children, while `bprop` depends the `bprop` of a box’s parents
- By calling `bprop` in the reverse order, we get backpropagation
 - only need to reach the parameters
Topics: automatic differentiation

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each children
 - fprop depends on the fprop of a box’s children, while bprop depends the bprop of a box’s parents

- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters
Topics: automatic differentiation

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each child
 - fprop depends on the fprop of a box's children, while bprop depends on the bprop of a box's parents
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters
Topics: automatic differentiation

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each children
 - fprop depends on the fprop of a box’s children, while bprop depends the bprop of a box’s parents
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters
Topics: automatic differentiation

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each children
 - fprop depends on the fprop of a box’s children, while bprop depends the bprop of a box's parents
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters
Topics: automatic differentiation

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each child
 - fprop depends on the fprop of a box’s children, while bprop depends on the bprop of a box’s parents
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters
Topics: automatic differentiation

• Each object also has a bprop method
 ‣ it computes the gradient of the loss with respect to each children
 ‣ fprop depends on the fprop of a box’s children, while bprop depends the bprop of a box’s parents

• By calling bprop in the reverse order, we get backpropagation
 ‣ only need to reach the parameters
Topics: automatic differentiation

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each child
 - fprop depends on the fprop of a box's children, while bprop depends on the bprop of a box's parents

- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters
Topics: automatic differentiation

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each children
 - fprop depends on the fprop of a box's children, while bprop depends on the bprop of a box's parents

- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters
BACKPROPAGATION

Topics: backpropagation algorithm

• This assumes a forward propagation has been made before

 ‣ compute output gradient (before activation)

 \[\nabla_a^{(L+1)}(x) - \log f(x)_y \quad \iff \quad - (e(y) - f(x)) \nabla_a^{(L+1)}(x) - \log f(x)_y \quad \iff \quad - (e(y) - f(x)) \]

 ‣ for \(k \) from \(L+1 \) to \(1 \)

 - compute gradients of hidden layer parameter

 \[\nabla_W^{(k)} - \log f(x)_y \quad \iff \quad (\nabla_a^{(k+1)}(x) - \log f(x)_y) \cdot h^{(k-1)}(x)^T \]

 \[\nabla_b^{(k)} - \log f(x)_y \quad \iff \quad \nabla_a^{(k)}(x) - \log f(x)_y \]

 - compute gradient of hidden layer below

 \[\nabla_h^{(k-1)}(x) - \log f(x)_y \quad \iff \quad W^{(k)} \cdot (\nabla_a^{(k)}(x) - \log f(x)_y) \]

 - compute gradient of hidden layer below (before activation)

 \[\nabla_a^{(k-1)}(x) - \log f(x)_y \quad \iff \quad (\nabla_h^{(k-1)}(x) - \log f(x)_y) \odot [\ldots, g'(a^{(k-1)}(x)_j), \ldots] \]
Total error on training set vs. Number of epochs
3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error
The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize θ ($\theta \equiv \{W^{(1)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)}\}$)
 - for N iterations
 - for each training example $(x^{(t)}, y^{(t)})$
 - $\Delta = -\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta)$
 - $\theta \leftarrow \theta + \alpha \Delta$
 - training epoch
 - iteration over all examples

- To apply this algorithm to neural network training, we need
 - the loss function $l(f(x^{(t)}; \theta), y^{(t)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)})$
 - the regularizer $\Omega(\theta)$ (and the gradient $\nabla_{\theta} \Omega(\theta)$)
 - initialization method
Topics: L2 regularization

\[\Omega(\theta) = \sum_k \sum_i \sum_j \left(W_{i,j}^{(k)} \right)^2 = \sum_k \| W^{(k)} \|_F^2 \]

- Gradient: \(\nabla_{W^{(k)}} \Omega(\theta) = 2W^{(k)} \)
- Only applied on weights, not on biases (weight decay)
- Can be interpreted as having a Gaussian prior over the weights
REGULARIZATION

Topics: L1 regularization

\[\Omega(\theta) = \sum_k \sum_i \sum_j |W_{i,j}^{(k)}| \]

- Gradient: \(\nabla_{W^{(k)}} \Omega(\theta) = \text{sign}(W^{(k)}) \)
 - where \(\text{sign}(W^{(k)})_{i,j} = 1_{W_{i,j}^{(k)}>0} - 1_{W_{i,j}^{(k)}<0} \)

- Also only applied on weights

- Unlike L2, L1 will push certain weights to be exactly 0

- Can be interpreted as having a Laplacian prior over the weights
Empirical Risk Minimization

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms

 $$\arg\min_{\theta} \frac{1}{T} \sum_{t} l(f(x^{(t)}; \theta), y^{(t)}) + \lambda \Omega(\theta)$$

 - $l(f(x^{(t)}; \theta), y^{(t)})$ is a loss function
 - $\Omega(\theta)$ is a regularizer (penalizes certain values of θ)

- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - loss function is a surrogate for what we truly should optimize (e.g. upper bound)
The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize θ ($\theta \equiv \{W^{(1)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)}\}$)
 - for N iterations
 - for each training example $(x^{(t)}, y^{(t)})$
 - $\Delta = -\nabla_\theta l(f(x^{(t)}; \theta), y^{(t)}) - \lambda \nabla_\theta \Omega(\theta)$
 - $\theta \leftarrow \theta + \alpha \Delta$
 - training epoch = iteration over all examples

- To apply this algorithm to neural network training, we need
 - the loss function $l(f(x^{(t)}; \theta), y^{(t)})$
 - a procedure to compute the parameter gradients $\nabla_\theta l(f(x^{(t)}; \theta), y^{(t)})$
 - the regularizer $\Omega(\theta)$ (and the gradient $\nabla_\theta \Omega(\theta)$)
 - initialization method
Topics: initialization

- For biases
 - initialize all to 0

- For weights
 - Can’t initialize weights to 0 with tanh activation
 - we can show that all gradients would then be 0 (saddle point)
 - Can’t initialize all weights to the same value
 - we can show that all hidden units in a layer will always behave the same
 - need to break symmetry
 - Recipe: sample $W^{(k)}_{i,j}$ from $U[-b, b]$ where $b = \frac{\sqrt{6}}{\sqrt{H_k + H_{k-1}}}$
 - the idea is to sample around 0 but break symmetry
 - other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)
The Learning Algorithm

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize θ
 $\theta \equiv \{W^{(1)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)}\}$
 - for N iterations
 - for each training example $(x^{(t)}, y^{(t)})$
 $$\Delta = -\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta)$$
 $$\theta \leftarrow \theta + \alpha \Delta$$
 - iteration over all examples
 - training epoch

- To apply this algorithm to neural network training, we need
 - the loss function $l(f(x^{(t)}; \theta), y^{(t)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)})$
 - the regularizer $\Omega(\theta)$ (and the gradient $\nabla_{\theta} \Omega(\theta)$)
 - initialization method
Toolkits

• TensorFlow
 – https://www.tensorflow.org/
 – Python and C++

• Theano
 – http://deeplearning.net/software/theano/
 – Python

• Torch
 – http://torch.ch/
 – LuaJIT
Unsupervised Learning with Neural Networks

• Unsupervised learning: only use the inputs for learning
 – automatically extract meaningful features for your data
 – leverage the availability of unlabeled data
 – add a data-dependent regularizer to training

$(-\log p(x^{(t)}))$
Unsupervised Learning with Neural Networks

- Restricted Boltzmann machines
RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
\[E(x, h) = -h^T W x - c^T x - b^T h \]
\[= - \sum_j \sum_k W_{j,k} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \]

Distribution:
\[p(x, h) = \exp(-E(x, h))/Z \]
EXAMPLE OF DATA SET: MNIST

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>6</th>
<th>9</th>
<th>6</th>
<th>4</th>
<th>5</th>
<th>3</th>
<th>8</th>
<th>4</th>
<th>5</th>
<th>2</th>
<th>3</th>
<th>8</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
FILTERS
(LAROCHELLE ET AL., JMLR2009)
Topics: RBM, visible layer, hidden layer, energy function

Energy function: \[E(x, h) = -h^T W x - c^T x - b^T h \]

\[= -\sum_j \sum_k W_{j,k} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \]

Distribution: \[p(x, h) = \exp(-E(x, h))/Z \]

RESTRICTED BOLTZMANN MACHINE
Inference

• Conditional distributions: $P(h|x)$, $P(x|h)$

• Sample distribution: $P(x)$
Topics: conditional distributions

- **p(h|x):**
 \[p(h|x) = \prod p(h_j|x) \]
 \[p(h_j = 1|x) = \frac{1}{1 + \exp(-(b_j + W_{j.x}))} \]
 \[= \text{sigm}(b_j + W_{j.x}) \]

- **p(x|h):**
 \[p(x|h) = \prod p(x_k|h) \]
 \[p(x_k = 1|h) = \frac{1}{1 + \exp(-(c_k + h^\top W_{.k}))} \]
 \[= \text{sigm}(c_k + h^\top W_{.k}) \]

*j*th row of \(W\)

*k*th column of \(W\)
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} \]
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} \]

\[= \frac{\exp(h^T W x + c^T x + b^T h)/Z}{\sum_{h' \in \{0, 1\}^H} \exp(h'^T W x + c^T x + b^T h')/Z} \]
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} \]
\[= \frac{\exp(h^T W x + e^T x + b^T h)/Z}{\sum_{h' \in \{0,1\}^H} \exp(h'^T W x + e^T x + b^T h')/Z} \]
$$p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')}$$

$$= \frac{\exp(h^\top W x + e^\top x + b^\top h)/Z}{\sum_{h'\in\{0,1\}^H} \exp(h'^\top W x + e^\top x + b^\top h')/Z}$$

$$= \frac{\exp(\sum_{j} h_j W_j . x + b_j h_j)}{\sum_{h'_1\in\{0,1\}} \cdots \sum_{h'_H\in\{0,1\}} \exp(\sum_{j} h'_j W_j . x + b_j h'_j)}$$
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} \]

\[= \frac{\exp(h^\top W x + e^\top x + b^\top h)/Z}{\sum_{h'\in\{0,1\}^H} \exp(h'^\top W x + e^\top x + b^\top h')/Z} \]

\[= \frac{\exp(\sum_j h_j W_j x + b_j h_j)}{\sum_{h'_1\in\{0,1\}} \cdots \sum_{h'_H\in\{0,1\}} \exp(\sum_j h'_j W_j x + b_j h'_j)} \]

\[= \frac{\prod_j \exp(h_j W_j x + b_j h_j)}{\sum_{h'_1\in\{0,1\}} \cdots \sum_{h'_H\in\{0,1\}} \prod_j \exp(h'_j W_j x + b_j h'_j)} \]
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} \]
\[= \frac{\exp(h^T W x + e^T x + b^T h)}{\sum_{h' \in \{0,1\}^H} \exp(h'^T W x + e^T x + b^T h')/\mathcal{Z}} \]
\[= \frac{\exp(\sum_j h_j W_j x + b_j h_j)}{\sum_{h_1' \in \{0,1\}} \cdots \sum_{h_H' \in \{0,1\}} \exp(\sum_j h_j' W_j x + b_j h_j')} \]
\[= \frac{\prod_j \exp(h_j W_j x + b_j h_j)}{\left(\sum_{h_1' \in \{0,1\}} \exp(h_1' W_{1} x + b_1 h_1')\right) \cdots \left(\sum_{h_H' \in \{0,1\}} \exp(h_H' W_{H} x + b_H h_H')\right)} \]
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} \]

\[= \frac{\exp(h^T W x + e^T x + b^T h)/Z}{\sum_{h' \in \{0,1\}^H} \exp(h'^T W x + e^T x + b^T h')/Z} \]

\[= \frac{\exp(\sum_j h_j W_j x + b_j h_j)}{\sum_{h'_1 \in \{0,1\}} \cdots \sum_{h'_H \in \{0,1\}} \exp(\sum_j h'_j W_j x + b_j h'_j) \prod_j \exp(h_j W_j x + b_j h_j)} \]

\[= \frac{\prod_j \exp(h_j W_j x + b_j h_j)}{\left(\sum_{h'_1 \in \{0,1\}} \exp(h'_1 W_1 x + b_1 h'_1)\right) \cdots \left(\sum_{h'_H \in \{0,1\}} \exp(h'_H W_H x + b_H h'_H)\right)} \]

\[= \frac{\prod_j \exp(h_j W_j x + b_j h_j)}{\prod_j \left(\sum_{h'_j \in \{0,1\}} \exp(h'_j W_j x + b_j h'_j)\right)} \]
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} \]

\[= \frac{\exp(h^T W x + e^T x + b^T h) / Z}{\sum_{h' \in \{0,1\}^H} \exp(h'^T W x + e^T x + b^T h') / Z} \]

\[= \frac{\exp(\sum_{j} h_j W_j x + b_j h_j)}{\sum_{h'_1 \in \{0,1\}} \cdots \sum_{h'_H \in \{0,1\}} \exp(\sum_{j} h'_j W_j x + b_j h'_j)} \]

\[= \frac{\exp(\sum_{j} h_j W_j x + b_j h_j)}{\prod_j \exp(h'_j W_j x + b_j h'_j)} \]

\[= \frac{\exp(\sum_{j} h'_j W_j x + b_j h'_j)}{\prod_j (1 + \exp(b_j + W_j x))} \]
\[p(h|x) = \frac{p(x, h)}{\sum_{h'} p(x, h')} = \frac{\exp(h^T W x + e^T x + b^T h) / Z}{\sum_{h' \in \{0,1\}^H} \exp(h'^T W x + e^T x + b^T h') / Z} = \frac{\exp(\sum_j h_j W_j . x + b_j h_j)}{\sum_{h'_1 \in \{0,1\}} \cdots \sum_{h'_H \in \{0,1\}} \prod_j \exp(h'_j W_j . x + b_j h'_j)} = \frac{\prod_j \exp(h_j W_j . x + b_j h_j)}{\prod_j (\sum_{h'_j \in \{0,1\}} \exp(h'_j W_j . x + b_j h'_j))} = \frac{\prod_j \exp(h_j W_j . x + b_j h_j)}{\prod_j (1 + \exp(b_j + W_j . x))} = \prod_j \frac{\exp(h_j W_j . x + b_j h_j)}{1 + \exp(b_j + W_j . x)} = \prod_j p(h_j | x) \]
\[p(h_j = 1 | x) = \frac{\exp(b_j + W_j \cdot x)}{1 + \exp(b_j + W_j \cdot x)} \]
\[p(h_j = 1|x) = \frac{\exp(b_j + W_j.x)}{1 + \exp(b_j + W_j.x)} \]

\[= \frac{1}{1 + \exp(-b_j - W_j.x)} \]

\[= \text{sigm}(b_j + W_j.x) \]
Inference

• Conditional distributions: $P(h|x), P(x|h)$

• Sample distribution: $P(x)$
RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function: \[E(x, h) = -h^T W x - c^T x - b^T h \]
\[= - \sum_j \sum_k W_{j,k} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \]

Distribution: \[p(x, h) = \exp(-E(x, h))/Z \]

partition function (intractable)
\textbf{FREE Energy}

\textbf{Topics:} free energy

- What about $p(x)$?

\[
p(x) = \sum_{h \in \{0,1\}^H} p(x, h) = \sum_{h \in \{0,1\}^H} \exp(-E(x, h))/Z
\]

\[
= \exp \left(c^\top x + \sum_{j=1}^H \log(1 + \exp(b_j + W_{j,x})) \right)/Z
\]

\[
= \exp(-F(x))/Z
\]

free energy
\[p(x) = \sum_{h \in \{0,1\}^H} \exp(h^T W x + c^T x + b^T h) / Z \]
\[p(x) = \sum_{h \in \{0,1\}^H} \exp(h^T W x + c^T x + b^T h) / Z \]

\[= \exp(c^T x) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp \left(\sum_j h_j W_j x + b_j h_j \right) / Z \]
\[p(x) = \sum_{h \in \{0,1\}^H} \exp(h^\top W x + c^\top x + b^\top h) / Z \]

\[= \exp(c^\top x) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp \left(\sum_{j} h_j W_j x + b_j h_j \right) / Z \]

\[= \exp(c^\top x) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 W_1 x + b_1 h_1) \right) \cdots \left(\sum_{h_H \in \{0,1\}} \exp(h_H W_H x + b_H h_H) \right) / Z \]
\[
p(x) = \sum_{h \in \{0,1\}^H} \exp(h^T W x + c^T x + b^T h) / Z
\]

\[
= \exp(c^T x) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp \left(\sum_j h_j W_j x + b_j h_j \right) / Z
\]

\[
= \exp(c^T x) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 W_1 x + b_1 h_1) \right) \cdots \left(\sum_{h_H \in \{0,1\}} \exp(h_H W_H x + b_H h_H) \right) / Z
\]

\[
= \exp(c^T x) (1 + \exp(b_1 + W_1 x)) \cdots (1 + \exp(b_H + W_H x)) / Z
\]
\[p(x) = \sum_{h \in \{0,1\}^H} \exp(h^T W x + c^T x + b^T h) / Z \]

\[= \exp(c^T x) \sum_{h_1 \in \{0,1\}} \cdots \sum_{h_H \in \{0,1\}} \exp \left(\sum_j h_j W_j . x + b_j h_j \right) / Z \]

\[= \exp(c^T x) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 W_1 . x + b_1 h_1) \right) \cdots \left(\sum_{h_H \in \{0,1\}} \exp(h_H W_H . x + b_H h_H) \right) / Z \]

\[= \exp(c^T x) (1 + \exp(b_1 + W_1 . x)) \ldots (1 + \exp(b_H + W_H . x)) / Z \]

\[= \exp(c^T x) \exp(\log(1 + \exp(b_1 + W_1 . x))) \ldots \exp(\log(1 + \exp(b_H + W_H . x))) / Z \]
\[p(x) = \sum_{h \in \{0,1\}^H} \exp(h^T W x + c^T x + b^T h)/Z \]

\[= \exp(c^T x) \sum_{h_1 \in \{0,1\}} \ldots \sum_{h_H \in \{0,1\}} \exp \left(\sum_j h_j W_j x + b_j h_j \right) /Z \]

\[= \exp(c^T x) \left(\sum_{h_1 \in \{0,1\}} \exp(h_1 W_1 x + b_1 h_1) \right) \ldots \left(\sum_{h_H \in \{0,1\}} \exp(h_H W_H x + b_H h_H) \right) /Z \]

\[= \exp(c^T x) \left(1 + \exp(b_1 + W_1 x) \right) \ldots \left(1 + \exp(b_H + W_H x) \right) /Z \]

\[= \exp(c^T x) \exp(\log(1 + \exp(b_1 + W_1 x))) \ldots \exp(\log(1 + \exp(b_H + W_H x))) /Z \]

\[= \exp \left(c^T x + \sum_{j=1}^H \log(1 + \exp(b_j + W_j x)) \right) /Z \]
RESTRICTED BOLTZMANN MACHINE

Topics: free energy

\[h \ p(x) = \exp \left(c^T x + \sum_{j=1}^{H} \log(1 + \exp(b_j + W_j . x)) \right) / Z \]

\[= \exp \left(c^T x + \sum_{j=1}^{H} \text{softplus}(b_j + W_j . x) \right) / Z \]
RESTRICTED BOLTZMANN MACHINE

Topics: free energy

\[p(x) = \exp \left(c^T x + \sum_{j=1}^{H} \log(1 + \exp(b_j + W_j x)) \right) / Z \]

\[= \exp \left(c^T x + \sum_{j=1}^{H} \text{softplus}(b_j + W_j x) \right) / Z \]

"feature" expected in \(x \)

bias of each feature

bias the prob of each \(x_i \)
Useful Resources for Deep Learning

• Book for deep learning
 – Deep Learning
 – By Ian Goodfellow, Yoshua Bengio, and Aaron Courville
 – http://www.deeplearningbook.org/
Useful Resources for Deep Learning

• Tutorials
 – General
 – Natural language processing
 – Computer Vision
 • https://sites.google.com/site/deeplearningcvpr2014/
What we learned today

• Feedforward neural network

• Training neural networks

• Restricted Boltzmann machine
Homework

• Read Murphy CH 16.5 and CH 28.
• Read slides from Hugo Larochelle.
 – http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html