CS 6120/CS 4120: Natural Language Processing

Instructor: Prof. Lu Wang
College of Computer and Information Science
Northeastern University
Webpage: www.ccs.neu.edu/home/luwang
Logistics

• Reminder for late day usage:
 • “Each student has a budget of 5 days throughout the semester before a late penalty is applied.”
 • No need to inform TAs about late submission.
 • For assignments, we will start grading one week after the deadline. Let us know on piazza if you plan to submit later than that.
 • Grace period of one hour is given.

• NO CLASS next Tuesday (instructor out of town for academic meetings). Quiz will be on next Friday.
 • See schedule at http://www.ccs.neu.edu/home/luwang/courses/cs6120_sp2019/cs6120_sp2019.html
Brown Clusters
Brown Clusters -- Unsupervised

- Goal
 - To learn about regularities in words
 - By clustering words into groups
Example Clusters

- Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
- June March July April January December October November September August
- people guys folks fellows CEOs chaps doubters commies unfortunates blokes
- down backwards ashore sideways southward northward overboard aloft downwards adrift
- water gas coal liquid acid sand carbon steam shale iron
- great big vast sudden mere sheer gigantic lifelong scant colossal
- man woman boy girl lawyer doctor guy farmer teacher citizen
- American Indian European Japanese German African Catholic Israeli Italian Arab
- pressure temperature permeability density porosity stress velocity viscosity gravity tension
- mother wife father son husband brother daughter sister boss uncle
- machine device controller processor CPU printer spindle subsystem compiler plotter
- John George James Bob Robert Paul William Jim David Mike
- anyone someone anybody somebody
- feet miles pounds degrees inches barrels tons acres meters bytes
- director chief professor commissioner commander treasurer founder superintendent dean custodian
- liberal conservative parliamentary royal progressive
- Tory provisional separatist federalist PQ
Brown Clustering Algorithm

• Input: a (large) corpus of words

• Output 1: a partition of words into word clusters

• Output 2 (generalization of 1): a hierarchical word clustering
• Assigns each word a binary representation

guava orange onion potato coke pepsi blue
Assigns each word a binary representation

- onion: 0010
Different prefix lengths: different abstractions

- 1111111110110000 slapped
- 1111111110110000 shattered
- 1111111110110000 commissioned
- 1111111110110000 drafted
- 1111111110110000 authorized
- 1111111110110000 authorised
- 1111111110110000 imposed
- 1111111110110000 established
- 1111111110110000 developed
- 1111111111001110 officer
- 1111111111001110 acquaintance
- 1111111111001110 policymaker
- 1111111111001110 instructor
- 1111111111001110 investigator
- 1111111111001110 advisor
- 1111111111001110 aide
- 1111111111001110 expert
- 1111111111001110 adviser
Intuition
• Similar words appear in similar contexts

• Similar words have similar distributions of words to their immediate left and right

eat
grow
...
... guava
juice
seeds
...

eat
grow
...

juice
seeds
...

orange
Formulation

- \(V \) is the set of all words seen in the corpus

- Say C: \(V \rightarrow \{1, 2, \ldots, k\} \) is a partition of the vocabulary into \(k \) classes (\(k \sim 1000 \))

- The model: \((C(w_0) \) is a special \(<s> \) state) \[
 p(w_1, w_2, \ldots, w_N) = \prod_{t=1}^{N} e(w_t | C(w_t)) q(C(w_t) | C(w_{t-1}))
\]
Formulation

- V is the set of all words seen in the corpus

- Say C: $V \rightarrow \{1, 2, \ldots, k\}$ is a partition of the vocabulary into k classes ($k \sim 1000$)

- The model:

 $$p(w_1, w_2, \ldots, w_N) = \prod_{t=1}^{N} e(w_t \mid C(w_t))q(C(w_t) \mid C(w_{t-1}))$$

 (C(w_0) is a special <s> state)
Difference from HMM: each word can be labeled as *only* one class!
C(l)=1, C(ate)=C(drank)=2
C(guava)=C(pepsi)=3, C(and)=4

e(l|1)=1, e(ate|2)= e(drank|2)= 0.3
e(guava|3)=e(pepsi|3)=0.1, e(and|4)=1
q(1|0)=0.2, q(2|1)=0.4, q(3|2)=0.3, q(4|3)=0.1, q(2|4)=0.2
C(I)=1, C(ate)=C(drank)=2
C(guava)=C(pepsi)=3, C(and)=4

e(I|1)=1, e(ate|2)= e(drank|2)= 0.3
e(guava|3)=e(pepsi|3)=0.1, e(and|4)=1
q(1|0)=0.2, q(2|1)=0.4, q(3|2)=0.3, q(4|3)=0.1, q(2|4)=0.2

P(I ate guava and drank pepsi) =
0.2*1*0.4*0.3*0.3*0.1*0.1*1*0.2*0.3*0.3*0.1
The Model

- Vocabulary V
- A function $C: V \rightarrow \{1..k\}$
 - partitioning of vocabulary into k classes
- Emission probabilities $e(w | C(w))$
- Transition probability $q(c' | c)$
Scoring a Partition: Quality (C)

\[
\frac{1}{N} \sum_{t=1}^{N} \log\left(\frac{e(w_t \mid C(w_t))q(C(w_t) \mid C(w_{t-1}))}{\frac{p(c,c')}{p(c)p(c')}}\right) + \sum_{w} p(w) \log p(w)
\]

c and c' are in \{1, 2, ..., k\}

N is the number of words in the corpus

\(n(c)\): \#occurrences of c in corpus under function C

\(n(c,c')\): \#occurrences of (c,c') in corpus under function C

\[
p(c,c') = \frac{n(c,c')}{N} \quad p(c) = \frac{n(c)}{N}
\]
Scoring a Partition: **Quality (C)**

\[
\frac{1}{N} \sum_{t=1}^{N} \log \left(\frac{e(w_t \mid C(w_t))q(C(w_t) \mid C(w_{t-1}))}{p(c,c') \log \left(\frac{p(c,c')}{p(c)p(c')} \right)} \right) + \sum_{w} p(w) \log p(w)
\]

- **N** is the number of words in the corpus

- **Mutual information (MI)**

- **Constant**

- \(n(c)\): #occurrences of \(c\) in corpus under function \(C\)

- \(n(c,c')\): #occurrences of \((c,c')\) in corpus under function \(C\)

\[
p(c,c') = \frac{n(c,c')}{N} \quad p(c) = \frac{n(c)}{N}
\]
Proof (not required)

$$\text{Quality}(C) = \frac{1}{n} \sum_{i=1}^{n} \log P(C'(w_i)|C(w_{i-1}))+ P(w_i|C(w_i))$$

$$= \sum_{w,w'} \frac{n(w,w')}{n} \log P(C'(w')|C(w)) P(w'|C'(w'))$$

$$= \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(C(w), C(w'))}{n(C(w))} \frac{n(w')}{n(C(w'))}$$

$$= \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(C(w), C(w')) n}{n(C(w)) n(C(w'))} + \sum_{w,w'} \frac{n(w,w')}{n} \log \frac{n(w')}{n}$$

$$= \sum_{c,c'} \frac{n(c,c')}{n} \log \frac{n(c,c') n}{n(c) n(c')} + \sum_{w'} \frac{n(w')}{n} \log \frac{n(w')}{n}$$
A First (Naïve) Algorithm

• Start with $|V|$ clusters: each word gets its own cluster
• Our aim is to find k final clusters
• We run $|V| - k$ merge steps:
 – At each merge step we pick two clusters c_i and c_j, and merge them into a single cluster
 – We greedily pick merges such that $\text{Quality}(C)$ for the clustering C after the merge step is maximized at each stage
A First (Naïve) Algorithm

• Start with $|V|$ clusters: each word gets its own cluster
• Our aim is to find k final clusters
• We run $|V| - k$ merge steps:
 – At each merge step we pick two clusters c_i and c_j, and merge them into a single cluster
 – We greedily pick merges such that Quality(C) for the clustering C after the merge step is maximized at each stage
A First (Naïve) Algorithm

- Start with $|V|$ clusters: each word gets its own cluster
- Our aim is to find k final clusters
- We run $|V| - k$ merge steps:
 - At each merge step we pick two clusters c_i and c_j, and merge them into a single cluster
 - We greedily pick merges such that $\text{Quality}(C)$ for the clustering C after the merge step is maximized at each stage
A First (Naïve) Algorithm

- Cost?
 - Naive = $O(|V|^5)$. \textit{Calculate everything on-the-fly!}
 - Improved algorithm gives $O(|V|^3)$ \textit{Store word transitions!}
A First (Naïve) Algorithm

- **Cost?**
 - Naive = $O(|V|^5)$. *Calculate everything on-the-fly!*
 - Improved algorithm gives $O(|V|^3)$. *Store word transitions!*

Too slow!
A Second Algorithm

- New parameter: \(m \) (e.g., \(m = 1000 \))
- Take the top \(m \) most frequent words, put each into its own cluster, \(c_1, c_2, \ldots, c_m \)
- For \(i = (m + 1) \ldots |V| \)
 - Create a new cluster, \(c_{m+1} \), for the \(i \)'th most frequent word. We now have \(m + 1 \) clusters
- Choose two clusters from \(c_1 \ldots c_{m+1} \) to be merged:
 - pick the merge that gives a maximum value for \(\text{Quality}(C) \)
 - We're now back to \(m \) clusters
- Carry out \((m - 1) \) final merges, to create a full hierarchy
A Second Algorithm

- Running time: $O(|V|m^2 + n)$ where n is corpus length
A perfect balanced binary tree

- Level 0:
 - 00: apple
 - 01: pear
 - 10: Apple
 - 11: IBM

- Level 1:
 - 00: bought
 - 01: run
 - 10: of
 - 11: in

level:

- 0
- 1
- 2
- 3
In reality:

```
  0
   |
00 01
   |
000 001
   |
0000 0001 0010 0011
apple  pear Apple IBM
```

level:
0
1
2
3
4